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Next-generation sequencing (NGS) technologies have deeply changed our
understanding of cellular processes by delivering an astonishing amount of data
at affordable prices; nowadays, many biology laboratories have already accumulated
a large number of sequenced samples. However, managing and analyzing these data
poses new challenges, which may easily be underestimated by research groups devoid
of IT and quantitative skills. In this perspective, we identify five issues that should be
carefully addressed by research groups approaching NGS technologies. In particular,
the five key issues to be considered concern: (1) adopting a laboratory management
system (LIMS) and safeguard the resulting raw data structure in downstream analyses;
(2) monitoring the flow of the data and standardizing input and output directories and file
names, even when multiple analysis protocols are used on the same data; (3) ensuring
complete traceability of the analysis performed; (4) enabling non-experienced users
to run analyses through a graphical user interface (GUI) acting as a front-end for the
pipelines; (5) relying on standard metadata to annotate the datasets, and when possible
using controlled vocabularies, ideally derived from biomedical ontologies. Finally, we
discuss the currently available tools in the light of these issues, and we introduce
HTS-flow, a new workflow management system conceived to address the concerns
we raised. HTS-flow is able to retrieve information from a LIMS database, manages
data analyses through a simple GUI, outputs data in standard locations and allows the
complete traceability of datasets, accompanying metadata and analysis scripts.

Keywords: high-throughput sequencing, workflow management system, genomics, epigenomics, laboratory
information management system

INTRODUCTION

Next-generation sequencing (NGS) technologies have unveiled with unprecedented detail the
genomic and epigenomic patterns associated with cellular processes, therefore revolutionizing
our understanding of biology. In the last years, a large number of laboratories adopted these
technologies, also thanks to the steady decrease of the associated costs. However, working with
NGS data inescapably creates issues in the management, storage and analysis of large and
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complex datasets, which are often largely underestimated: for
example, a medium-sized lab (10–15 scientists) could easily
generate over 500 NGS samples per year, corresponding to 1–2
terabytes of raw data.

Standard analysis of NGS data can be divided in two steps.
First, the raw sequencing reads need to be assembled or aligned
to a reference genome: this process often requires substantial
computing time and infrastructures, produces large output
files, but it typically does not involve much hands-on time
and can be standardized for a given data type; we will call
these first steps primary analyses. Second, biologically relevant
information needs to be extracted from the assembled/aligned
reads: this part of the analysis is strongly data-type-dependent,
outputs small files but it may involve multiple attempts
using different tools (whose parameters need to be tuned),
resulting in a much larger hands-on time and potential
branching of the analysis flow; we will refer to these steps as

secondary analyses. An overview of this process is given in
Figure 1.

We identified five issues to be addressed by labs generating and
analyzing a large amount of NGS data, which we discuss below.

ISSUE 1: STRUCTURING THE RAW DATA

Research groups and sequencing facilities using high-throughput
sequencers will quickly deal with large numbers of samples;
therefore, they will likely need a laboratory information
management system (LIMS) to manage the production of NGS
data. A LIMS can handle information typically associated and
submitted with the sequencing request. In addition, it can follow
the processing of the sequencers up to the generation and
archiving of the final sequencing reads. A LIMS typically relies
on a database for keeping track of all the steps and includes a

FIGURE 1 | Workflow management systems for NGS: overview and issues discussed in the text. A typical analysis workflow for NGS is presented,
associated to both the corresponding metadata and to optional additional external data. The workflow is linked to the corresponding issues discussed in the text.
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graphical user interface (GUI) to process user requests, as well
as taking care of the maintenance of data. Specifically, a LIMS
deals with general tasks such as quality controls, tracking of data,
de-multiplexing of reads, and it commonly adopts a structured
tree of directories for the distribution of the final data to the user
(typically unaligned reads as FASTQ files).

A number of recently developed solutions are available
in this field. SMITH (Venco et al., 2014) offers a complete
automatic system for handling NGS data on high performance
computing clusters (HPCs) and can run various downstream
workflows through the Galaxy Workflow Management System
(WMS) (Blankenberg et al., 2007; Boekel et al., 2015), limiting
the user interaction only to administrative tasks. MendeLIMS
(Grimes and Ji, 2014) is mainly focused on the management
of clinical genome sequencing projects. WASP provides a basic
managements system that hosts automated workflows (McLellan
et al., 2012) for ChIP-Seq, RNA-Seq, miRNA-Seq, and Exome-
Seq. SLIMS is a sample management tool that allows the creation
of metadata information for genome-wide association studies
(Van Rossum et al., 2010). The Galaxy platform offers the module
Galaxy LIMS (Scholtalbers et al., 2013) providing full access to
Galaxy analysis tools in addition to basic LIMS functions.

ISSUE 2: MONITORING THE ANALYSIS
FLOW

A LIMS allows complementing raw NGS data with storage
locations and metadata information, guaranteeing complete
traceability, and therefore easily pinpointing inconsistencies. The
subsequent analysis of those data, both at the primary and
secondary levels, commonly neglects the structure provided by
the LIMS, severely affecting the robustness and reproducibility of
the analyses, ultimately complicating the retrieval and sharing of
the final results. Indeed, renaming of files and/or their relocation
in non-standard locations can often occur and ultimately impair
the association of the output of the analysis to the original LIMS
entries. In some cases, the lack of this link could be particularly
problematic, and would obfuscate batch effects or issues affecting
specific samples. For example, read length is a parameter that is
usually stored in a NGS LIMS, and it is generally not conserved
along the downstream analysis. Let us suppose that, during
the sequencing, a sample was generated with a different read
length. This sample could become an outlier due to this specific
difference; yet, if the connection to this piece of information
stored in the LIMS is lost, the cause of this peculiar behavior
could not be easily traced. On the contrary, while the extraction
of biological information from NGS data requires the creation
of new and possibly complex data structures, it is essential to
avoid losing the structured order given by the LIMS, allowing the
traceability of the performed analyses and defining standards for
reproducibility.

Importantly, the secondary data analysis often involves testing
several combinations of tools and parameters, further inflating
the required disk space and generating multiple outputs. Without
a careful organization of the results and without tracking their
association with the raw data, primary analysis, and associated

metadata, very rapidly the final results could become difficult
to interpret by collaborators or colleagues. Given enough time,
this would likely be also the case for the person who performed
the final secondary analyses. The ability to monitor the flow of
NGS data from their generation to preliminary and higher-level
analyses becomes then critical for dissemination and integration
of the results of a single experiment in a larger community.

ISSUE 3: AUTOMATIZING AND
DOCUMENTING TOOLS

Typically, a scientist with quantitative background (often a
bioinformatician) is responsible for the primary and secondary
analysis of NGS data. This task is accomplished through the
execution of a series of existent or custom-made pipelines, which
may need to be manually changed to account for the peculiarities
of each given experiment. If this process is not properly managed,
it could rely on copying and pasting lines of code, followed by
manual renaming and moving of script files. The automation
of these processes is a key point for a standardized (while
flexible) analytical workflow and largely prevents the possibility
of committing errors, especially for routine tasks that have to be
manually repeated several times.

Automation is facilitated by the definition of modular,
interconnected functions, which can be used to tailor the
application of pipelines to the specific user’s needs. Modularity
makes pipelines flexible, efficient, and easy to maintain and is
critical when contribution from multiple people is expected;
moreover, the high turnover of Ph.D. students and postdocs,
implies frequent transfers of knowledge, which may result in
a loss of critical information. To this regard, the usage of
established versioning system (e.g., Git1 and Subversion2) allows
to easily reproduce old results, to retrieve and correct errors in the
code, and to increase the productivity of collaborative projects
of software development. The modularity of software is also
instrumental in promoting the adoption of parallel computation:
given the growing field of cloud computing and multicore
processors, having efficient pipelines that can distribute data and
tasks across different parallel computing nodes and/or processors
is a clear advantage and greatly reduces the amount of waiting
time for the user.

ISSUE 4: EASE OF USE

In a typical scientific department or research group working
with high-throughput sequencing technologies, the number of
bioinformaticians in charge of the analysis of NGS data is
considerably smaller than their wet-lab counterparts. This either
causes an exceeding number of requests to the bioinformaticians
or encourages wet-lab scientists to embark in NGS data analysis.
Even in presence of consolidated and thoroughly tested pipelines,
running the analysis requires being able to use command-line

1https://git-scm.com/
2https://subversion.apache.org/
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interfaces and some familiarity with the Linux/Unix operating
systems: these skills are typically not taught in biology courses.
Setting up a GUI that offers access to the pipelines would strongly
increase the ease of use of the analysis framework, and disclose
it to users devoid of specific training in computer science. GUI-
based systems could alternatively offer the possibility of tuning
the parameters of the various implemented tools, implement
only default parameters, or implement automatic choices of
the optimal parameters based on the input data and metadata
(Pelizzola et al., 2006). In any case, the analysis should finally
provide simple, standardized diagnostics and clear figures and
tables summarizing standard outputs, and should possibly
automatically highlight failed quality checks and inconsistencies.
These last features are particularly important when inexperienced
users can control the parameters of the available tools.

Equipped with these options, the analysis framework can
easily be used by wet-lab scientists with minimal training
(especially the part concerning secondary analyses). This
would in turn free up a substantial amount of time for
bioinformaticians, which could be relocated from repetitive tasks
to more challenging and rewarding projects. Based on our
experience, we believe this model is particularly effective for
medium to large labs.

ISSUE 5: DATA REPRODUCIBILITY

The analysis of high-throughput biological data, including NGS
data, often relies on annotation data available in public databases.
For example, the alignment of the reads requires the availability of
FASTA files for a reference genome; the determination of absolute
gene expression in RNA-seq experiments depends on having GTF
files containing the structure of transcriptional units constituents
(such as exons, and coding sequences). Importantly, reference
genomes and other annotation data are periodically updated, and
tracking their versions becomes essential to ensure compatibility
with future analyses. At the same time, multiple annotation
data have to be consistent with a particular reference genome
build. In addition, some metadata can be retrieved by alternative
providers or generated based on different criteria (see for example
transcript annotations based on RefSeq or ENSEMBL). As a
result, analyses based on alternative sources of metadata will
likely provide different results, even if matched to the correct
reference genome.

For these reasons it is fundamental to track the adopted
resources and maintain compatible and updated annotation data.
To this regard, projects such as Bioconductor (Gentleman et al.,
2004) encourage the adoption of standard annotation packages
as reference for the community of scientists working in this field,
ranging from annotation databases (packages of the TxDb series)
to complete genome assemblies (BSgenome packages). In this
way, one could rely on those metadata packages, thus ensuring
the reproducibility and comparability of the results.

Similarly, the usage of controlled vocabularies, ideally derived
from biomedical ontologies, would prevent ambiguities and help
properly organizing the metadata. This can help creating an
unambiguous description of the type of treatment that a given

cell or tissue type in a specific disease state was subjected to. The
use of these resources is often encouraged, for example when
publishing NGS data in large-scale repositories, and standards
such as MIAME are available (Brazma et al., 2001). Nevertheless,
these good practice recommendations are only sporadically
applied and, as a result, querying databases of high-throughput
biological data can be cumbersome. The same issue can affect
the metadata contained in the LIMS and WMSs: therefore, it can
be extremely useful to provide metadata specific for the primary
and secondary analyses, containing a minimal description of the
experimental design and the performed analysis (for examples
describing the rational of comparing specific conditions within
an analysis of differential expression), therefore making the
results more intelligible to other scientists. Noteworthy, the
availability of proper metadata for the samples and their analysis
can greatly facilitate the export of the output files in public
repositories.

WORKFLOW MANAGEMENT SYSTEMS

Workflow Management Systems try to cope with Issues 2–5 and
are essential for efficiently managing the analysis of large NGS
datasets.

Galaxy (Blankenberg et al., 2007; Boekel et al., 2015) is
a popular data analysis framework that handles NGS data
and allows designing articulated workflows. Its last release
provides a simplified framework for integrating and/or designing
new analysis pipelines, and despite being intended also for
non-programmer users, it is mainly restricted to skilled
bioinformaticians for complex tasks. While Galaxy addressed
Issue 1 with the development of Galaxy LIMS (which supports
request submissions, de-multiplexing, and delivery of the sample
files), the output of the pipelines is not standardized and depends
on the user. The high level of flexibility in modifying the
parameters decreases a lot the automation given by this resource,
limiting its usage to an audience with both a good knowledge of
the tools applied and good IT skills.

Chipster (Kallio et al., 2011) is another popular WMS with a
user-friendly interface that can analyze several types of NGS data
(such as RNA-, miRNA-, ChIP-, and whole-genome sequencing),
and save and share automatic workflows with other users.
Chipster is not designed to be integrated with a LIMS: the users
have to import their data manually. Workflows can be easily set
up in few minutes and then repeated on several samples with
little hands-on work. The lack of a LIMS-like system make this
tool suitable only for laboratories with a limited amount of NGS
datasets (each sample has to be loaded separately) and setting the
pipelines requires a good knowledge of the tools the user is going
to use.

Two recent tools, Omics Pipe (Fisch et al., 2015) and
QuickNGS (Wagle et al., 2015), were developed with the main
goal of making NGS analyses available to a broader audience.
However, Omics Pipe is strongly oriented for IT specialists
and bioinformaticians who need to analyze a large number
of dataset and want to automate data analysis pipelines for
multiple NGS technologies (RNA-, Exome-, miRNA-, ChIP-,
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and whole-genome sequencing). The Python modules at the
core of Omics Pipe make it easily extendable and allow users
with Unix command-line experience to execute the supported
pipelines, which can be debugged and corrected thanks to the
built-in version control. All these features combined make it
very difficult for a biologist with average computational expertise
to use Omics Pipe. On the other hand, QuickNGS allows
performing most of the common operations on NGS data, such
as primary analyses (filtering and alignment of the sequence reads
to the reference genome) and secondary analyses (differential
gene expression and differential exon usage for RNA sequencing
data) with very limited prior knowledge and hands-on time. The
results of the workflows are easily accessible by users through
the generation of standardized spreadsheet files, plots, and web
reports. The adoption of annotation databases such as BioMart
or genome sequence and annotations from Ensembl, make
the results highly reproducible. The web interface is extremely
simple and permits to follow the operations performed on
the samples, but does not allow parameter adjusting. Finally,
QuickNGS does not offer integration with a LIMS and the
pipelines require the samples being associated with metadata
information.

Despite the availability of various WMS, a recent review
highlighted that these solutions have a fundamental limit: users
have to switch to multiple GUIs to execute a complete NGS
analysis (Poplawski et al., 2016).

HTS-FLOW

A recent attempt to deal with the issues discussed here is the
HTS-flow framework, a WMS designed for simple and efficient
management and analysis of NGS data. HTS-flow is currently
used in our Research Institute to cope with the analysis of
several hundreds NGS samples, covering the most common
data types (ChIP-seq, RNA-seq, DNase-seq, BS-seq). HTS-flow
was designed to work together with a LIMS, used for the
management of the NGS data from a sequencing facility. In
our Research Institute, the samples submitted to sequencing
are centrally managed with the SMITH LIMS (Venco et al.,
2014), which takes care of keeping track and distributing the
raw sequencing data to the specific research group and user.
These raw NGS data are automatically visible within HTS-
flow for further analysis (Issue 1). In addition, since in our
experience it is often useful integrating data generated in house
with public datasets and data from external research groups,
we introduced the possibility to import in HTS-flow external
NGS samples. For the NGS data available in the GEO and
SRA repositories, HTS-flow allows to automatically import the
corresponding raw data. The user has to indicate the GSM or
GSE IDs of the samples interest, the corresponding SRA files are
automatically downloaded and converted into FASTQ files, and
features from the corresponding metadata that are critical for the
analysis for the data analysis are imported. These functionalities
guarantee that data coming from various sources are analyzed
with identical workflows, greatly facilitating the comparison of
the results.

In HTS-flow, primary analyses can be seamlessly performed
as soon as the raw NGS data (FASTQ or SRA files) are tracked
in the LIMS: quality controls, pre-processing, and alignment to
reference genome are performed on a per-sample basis. Multiple
secondary analysis solutions are available to be applied on
individual samples or groups thereof. The following secondary
analysis are available in HTS-flow: (i) peak calling, differential
peak calling and saturation analysis for ChIP-Seq data, (ii)
absolute and differential expression quantification for RNA-Seq,
(iii) integrative analysis of nascent and total RNA-seq data,
thus quantifying mRNA synthesis, processing and degradation
rates through the INSPEcT Bioconductor package that we
recently developed (de Pretis et al., 2015), (iv) identification
of DHS regions and digital footprints in DNase-Seq data,
(v) determination of absolute and relative methylation levels
and identification of differentially methylated regions for high-
throughput DNA methylation data (including both targeted and
whole-genome base-resolution data).

The web interface has been designed to help users without
bioinformatics skills to run primary and secondary analyses and
track their progression (Issues 2 and 4). The user can choose
an analysis type and directly modify the specific settings, i.e.,
the maximum number of mismatches allowed in the alignment
process, the significance threshold for the peak caller, etc.
Importantly, the results of the primary and secondary analyses
can be automatically and effortlessly exported to the IGB
genome-browser (Nicol et al., 2009).

HTS-flow works with a suite of predefined, easily customizable
modular scripts. As NGS analyses are continuously evolving,
the tools and scripts used have to be versioned and tracked for
handling their evolution and hunting possible bugs (Issue 3); to
account for this issue, HTS-flow was deposited to Github for
versioning and distribution and the software web page can be
reached at http://arnaudceol.github.io/htsflow.

HTS-flow is entirely based on standard Bioconductor
metadata libraries for the annotation of transcripts and reference
genomes (Issue 5) such as TxDb and BSgenome packages, while
the usage of similar libraries in Galaxy, Chipster, OmicsPipe,
and QuickNGS has to be implemented by expert users by
modifying the available pipelines. Similarly, output data are
available in HTS-flow as R data objects complying with standard
Bioconductor infrastructures, to be quickly imported in R and
further analyzed using R/Bioconductor packages developed for
the analysis and the integration of different (epi)genomics
data types, such as the compEpiTools package (Kishore et al.,
2015).

The automation in HTS-flow is higher than in the other tools
considered in this perspective, mainly because of the integration
with the SMITH LIMS, and the (optional) possibility of tweaking
parameters in the pipelines; moreover, the GUI is designed to
be used by the typical wet-lab scientist. Both QuickNGS and
HTS-flow allow a consistent reduction of the hands-on time
users need to spend for basic NGS data analyses. In particular,
with QuickNGS a user has simply to upload the sample data
and wait for the completion of the analyses. However, this
extremely high level of automation is achieved at the expense
of flexibility, as it is not possible to set parameters. On the
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TABLE 1 | HTS-flow and other available WMSs: how they are positioned with respect to the issues discussed in the text.

HTS-flow Galaxy Chipster Omics Pipe Quick NGS

Issue 1
Structuring the raw
data

• SMITH LIMS
• database with

metadata information

Galaxy LIMS
(optional)

– – Database with
metadata
information

Issue 2
Monitoring the analysis
flow

via GUI and/or
command line for raw
data, primary and
secondary

via GUI for primary
and secondary
analysis

via GUI for primary and
secondary analysis

via command line for
primary and secondary
analysis

via GUI for primary
and secondary
analysis

Issue 3
Automatizing and
documenting tools

• Provided pipelines
• user’s custom-made
pipelines
• version controlled

User’s
custom-made
pipelines

User’s
custom-madepipelines

• Provided pipelines
• user’s custom-made
pipelines
• version controlled

• Provided
pipelines
• user’s
custom-made
pipelines

Issue 4
Ease of use

• GUI
• default parameters
provided
• possibility to tweak
some parameters

• GUI
• possibility to
tweak all the
parameters

• GUI
• default parameters
provided
• possibility to tweak all
the parameters

• default parameters
provided
• possibility to tweak all
the parameters

• GUI
• default
parameters
provided

Issue 5
Data reproducibility

Annotation based on
metadata packages
from TxDB, Bsgenome,
compEpiTools

Annotation files
provided by user

Annotation files
provided by user

Annotation files
provided by user

Annotation based
on ENSEMBL
metadata

Recently described or very popular WMS (one for each column) are compared to HTS-flow in respect to their ability of coping with the issues described in the text (rows).

contrary, the GUI in HTS-flow is designed to give enough
control to wet-lab scientists by choosing a few critical parameters,
while leaving the rest as defaults. An overview of how several
WMS handle Issues 1–5 compared with HTS-flow is given in
Table 1.

PERSPECTIVES

Current developments toward the automation and integration of
management and analysis of sequencing data will improve the
efficiency of research units heavily relying on NGS technologies.
Although larger groups with enough computational members
may prefer to develop and maintain their own tailored
frameworks, smaller laboratories would save resources and
improve their results by adopting solutions developed by third
parties, so to be able to concentrate on the main scientific task,
namely the interpretation of the analysis results.

One aspect that we have not covered in this manuscript is the
need for substantial resources both in terms of computational
power and storage. The largest institutes have usually access to
large clusters and storage infrastructures, and are able to deal with
the associated cost of software licenses and technologists required
for maintenance; on the other hand, this hardware and resources
is usually too expensive for smaller institutes. Fortunately, cloud
solutions are becoming accessible: companies like Amazon3 and
Google4 provide access to their computational power to store
and analyze data on the cloud; these are only the most visible
examples in a field in fast development. Taking advantage of
this opportunity, Taverna (Oinn et al., 2004; Wolstencroft et al.,

3https://aws.amazon.com/health/genomics/
4https://cloud.google.com/genomics/

2013), another widely used WMS, can successfully process whole-
genome sequencing data on the Amazon cloud. A cloud version
of Galaxy and similar frameworks have also been implemented
(Afgan et al., 2010, 2015).

Furthermore, solving all the issues discussed here will only
be useful if the final data is released and easily accessible to
the final users. HTS-flow outputs results as standard R objects,
ready for further analyses with the R language; typically, wet-
lab scientists are interested in visualizing them in a genome
browser, such as the UCSC Genome browser (Rosenbloom et al.,
2015), where genomic data can be loaded as tracks on a web
interface. Next-generation browsers, often available as desktop
applications, allow faster visualization and further analyses. IGB,
for example, has implemented a powerful zooming, searching,
and exporting functions and it can be extended to integrate the
genomic results with proteomic, network and structure biology
(Céol and Müller, 2015). It is therefore crucial to release the data
in a format flexible enough to satisfy all users. The output could
be made available preformatted as data tracks for a particular
genome browser, or through standards servers implementing for
instance a DAS/1 or DAS/2 service (Hubbard and Birney, 2000;
Dowell et al., 2001). Although the latter has been neglected,
it allows loading the data directly in several genome browsers
(including IGB) and supports authentication. This last feature
will be particularly important if the data are shared among several
research groups.

Finally, an additional positive aspect of the integration of the
data management and analyses is the possibility to leverage on the
metadata associated to the samples for further analyses of these
data. As the amount of genomic and epigenomic resources grows
and need to be confronted with reference datasets like those
from the ENCODE (The Encode Project Consortium, 2011) or
the TCGA consortium (Cancer Genome Atlas Network, 2012),
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new querying tools as the GenoMetric Query Language
(Masseroli et al., 2015) will make it possible to interrogate and
compare large scale genomic information based on experimental
and phenotypic properties.
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