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Determining the moment at which a visual recognition process is completed, or the order
in which various processes come into play, are fundamental steps in any attempt to under-
stand human recognition abilities, or to replicate the corresponding hierarchy of neuronal
mechanisms within artificial systems. Common experimental paradigms for addressing
these questions involve the measurement and/or comparison of backward-masking (or
rapid serial visual presentation) psychometric functions and of physiological EEG/MEG/LFP
signals (peak latencies, differential activities, single-trial decoding techniques). I review and
illustrate four common mistakes that scientists tend to make when using these paradigms,
and explain the conceptual fallacies that motivate their reasoning. First, contrary to collec-
tive intuition, presentation times, or stimulus-onset asynchrony masking thresholds cannot
be taken to reflect, directly or indirectly, the timing of relevant brain processes. Second,
psychophysical or electrophysiological measurements should not be compared without
assessing potential physical differences between experimental stimulus sets. Third, such
comparisons should not be performed in any manner contingent on subjective responses,
so as to avoid response biases. Last, the filtering of electrophysiological signals alters
their temporal structure, and thus precludes their interpretation in terms of time course.
Practical solutions are proposed to overcome these common mistakes.
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INTRODUCTION
A major portion of vision science is devoted to investigating the
timing of perceptual processes: the absolute latency or the rela-
tive order in which they arise after a novel object enters the visual
scene or after we open our eyes onto a novel scene. This is the
main subject covered in the various companion articles published
in this Special Topic. Example questions include: how long does it
take the visual system to detect, recognize, categorize, or identify
an object? how long to get the gist of the scene, and how long
for a detailed analysis? do detection and categorization processes
happen sequentially, or all at the same time? how about differ-
ent levels of categorization? For each of these questions, there
exist many experimental approaches relying on psychophysical
measurements and sometimes accompanied by recordings of elec-
trophysiological activity. Having published on these questions for
the last 12 years or so, I am often asked to review novel findings
in this field. In this process, I started noticing a small number of
technical and conceptual errors that appear to come back repeat-
edly. I can see at least two reasons behind this. The first possible
reason is that these mistakes have been committed and the corre-
sponding results published in the past, sometimes in high profile
journals – encouraging new authors to pursue in the same direc-
tion. The second reason is that there exists no formal, citable report
warning authors against these faulty rationales. While nothing
can be done about the first reason (and throughout this man-
uscript I will purposefully avoid referring to specific published
studies as examples of guilty reasoning), the present manuscript

is an attempt at correcting the second reason. I will insist on four
common mistakes, listed here by decreasing order of conceptual
importance, frequency of occurrence, and generality: (i) confusing
stimulus presentation time and processing time; (ii) comparing
experimental conditions with systematic physical differences in
stimulus sets; (iii) comparing experimental conditions contingent
on subjective responses; and (iv) filtering of electrophysiological
signals.

MISTAKE #1. CONFUSING STIMULUS PRESENTATION TIME
AND PROCESSING TIME
One scientist measures that a stream of rapidly changing images
(rapid serial visual presentation or RSVP) can be “processed” (e.g.,
recognized or classified) up to a rate of 10 images per second, and
concludes that “processing” takes the visual system about 100 ms.
Another scientist measures that backward-masking (flashing a
powerful “mask” shortly after a target “stimulus”) prevents process
C, but leaves both processes A and B unaffected when stimulus-
onset asynchrony (SOA) between the stimulus and the mask is
about 100 ms (Figure 1). In turn, process C can be performed effi-
ciently, but only when enough presentation time is given before
mask onset, i.e., with SOAs above 150 ms. This scientist concludes
that process C takes the visual system about 50 ms longer to com-
plete than processes A and B, and that these two have comparable
time courses.

Intuition suggests that the findings of these two scientists are
valid and worthy of publication. In fact, peer review has followed
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VanRullen Fallacies in time course experiments

FIGURE 1 | Psychometric functions (hypothetical) for a typical RSVP or

masking experiment. The x -axis would represent presentation time of
each image in the sequence, or stimulus-mask SOA (respectively). The
natural tendency to read from this graph that processes A and B have
similar speeds whereas process C is 50 ms slower is inaccurate. See text
for explanation.

this intuition (in at least some documented cases), and the above-
mentioned arguments have been printed in forefront scientific
journals. Again, the purpose of this paper is not to point at spe-
cific past instances of the mistakes listed, but rather to avoid their
re-occurrence in the future; therefore, no citation to faulty publi-
cations will be provided here (names of brain processes and their
corresponding latencies have been altered, all resemblance to exist-
ing findings is fortuitous). What could possibly be wrong with their
apparently flawless logic?

First, it is easy to see that processing N images per second
does not imply a processing duration of 1/N second. Indeed,
in certain situations the brain has been reported to “process”
(more specifically, detect the presence of a face) up to 72 images
per second (Keysers et al., 2001). (Note: citations will of course
be provided in this manuscript, but only when the corresponding
methodology or interpretation are free of the alleged mistakes).
Pushing the previous reasoning would result in the conclusion
that this process takes the brain about 14 ms, and therefore cul-
minates at the level of retinal ganglion cells! The fallacy of this
reasoning is best illustrated by a simple metaphor: a car factory
can produce one new car every minute, yet it does not take 1 min
to produce a car! Just in the same way, considering the visual
system’s hierarchy as a “pipeline” (or an assembly line, to follow
the metaphor) can help explain how the brain can process a new
image every few 10 ms, when visual discrimination processes actu-
ally take hundreds of milliseconds: it is the time spent at each stage
of the pipeline that limits the processing rate, not the cumulative
time for all stages.

What of the second scientist? If absolute statements about pro-
cessing duration are subject to erroneous logic, purely relative
statements should at least be immune to it: this scientist should
be allowed to compare processes A, B, and C and conclude that

the latter takes 50 ms longer than the other two. Right? In fact,
not. Presentation times (or SOAs) directly affect the amount of
information (or the “signal-to-noise”) that reaches the earliest lev-
els of visual representation; it is always possible that one process
requires more “information” to complete than another, yet the two
processes proceed at the same exact speed. Think of a camera tak-
ing pictures, and a computer processing these pictures; when the
camera shutter opens for a very short time, the computer may
not be able to perform certain functions that it could have per-
formed easily with longer shutter opening times (i.e., with more
input signal-to-noise); however, when signal-to-noise is sufficient,
all these functions may take exactly the same processing time to the
computer (e.g., in terms of clock cycles). In other words, stimulus
presentation time is better likened to a measure of information,
than to a measure of processing duration.

PRACTICAL SOLUTIONS
If you must use RSVP or masking psychometric functions to com-
pare two brain processes, do not draw any conclusion in terms of
their duration, or the relative order in which they are completed.
The only safe conclusion when two psychometric functions are
found to differ is that the two processes cannot be equated, and
thus rely (at least in part) on distinct neuronal mechanisms. Of
course, no conclusion can be drawn if the psychometric functions
do not differ – the underlying processes may still differ in other
respects.

Other psychophysical methods can be better suited to the com-
parison of processing times between different conditions. For
example, comparing reaction times is rather safe: assuming that
purely motor components do not change significantly, a difference
in reaction times can be taken to reflect a difference in the tim-
ing of completion of each process. Here again, there are dangers
to avoid: for example, the mean reaction time is generally not a
good measure, because it is not representative of a skewed reaction
time distribution. Working with the entire distribution, or using
only the fastest (significantly above chance) responses, are viable
options (Fabre-Thorpe et al., 2001; VanRullen and Thorpe, 2001a;
Rousselet et al., 2002; Mace et al., 2005).

Finally, there exists no psychophysical method that can provide
a measure of absolute rather than relative process duration. Here
again, reaction times can at least prove useful in providing an upper
limit for this duration. For example, using saccadic eye movements
(a response with a very short and automatic motor component),
Thorpe and colleagues estimated that certain natural scene clas-
sifications can be performed in less than 120 ms (Kirchner and
Thorpe, 2006; Crouzet et al., 2010; see also Thorpe and Crouzet
in this Special Topic). In order to pinpoint the precise latency of
a given brain process rather than just an upper limit, one should
turn to electrophysiological rather than psychophysical methods.

MISTAKE #2. COMPARING STIMULUS SETS WITH
SYSTEMATIC PHYSICAL DIFFERENCES
In a typical experiment, electrophysiological responses (say, EEG)
are recorded for two classes of images differing along a critical
dimension (e.g., faces vs. other objects, familiar vs. non-familiar
faces, animal vs. non-animal scenes, etc.). Subtle but significant
differences in event-related potentials (ERPs) between the two
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conditions are interpreted as the signature of neuronal mecha-
nisms that are capable of distinguishing between them (i.e., of
recognizing faces, or detecting animals). A more recent variant of
this class of experimental paradigms consists in applying mul-
tivariate decoding methods to the electrophysiological signals,
in order to reveal the moment at which the brain is capable of
discriminating the stimuli.

In many cases these approaches rely on the diversity of the
image set as a guarantee that the effects are due to true classifi-
cation, rather than a trivial low-level cheat of the visual system.
The underlying logic is more or less as follows: if it was always the
same face and always the same object presented to the observers,
then a low-level trick could suffice, but so many different faces and
objects were used that any simple trick should fail to differenti-
ate them all. Right? In fact, not. First, systematic differences exist
between various natural image classes (see Figure 2 for examples
of information available in the pixel domain and in the Fourier
domain), and it has been shown that these differences can allow a
simple classifier (i.e., a low-level “trick”) to discriminate between
image classes with 80–90% accuracy (Oliva and Torralba, 2001).
Second, the observers may be classifying the images at 95% correct
or more, but it is the neuronal signals under study, not the sub-
ject’s behavior, that should be pitted against the null hypothesis
of a low-level “trick.” If differential ERP activities are considered
at their earliest latencies (when they are just reaching statistical
significance, and represent only a small proportion of the ERP
itself), if multivariate decoding performance is also around 80 or
even 90% correct (just like low-level image classifiers), then there
is always a risk that the observed signals were simply a reflection
of small but systematic physical differences in the stimulus sets.

PRACTICAL SOLUTIONS
The confounds described cannot be simply discarded by assuming
that “physical differences are unlikely to account for the observed
effects” (a phrase often encountered in author correspondence or

even in certain published manuscripts). Rather, the physical dif-
ferences should, at least, be quantified or, even better, eliminated.
For example, Honey et al. (2008) created meaningless images (ran-
domized phase spectrum) possessing the power spectrum of face
images (low-level oriented energy information) to show that the
natural tendency of observers to move their gaze toward faces
was in fact a consequence of low-level image properties. This
question is discussed more fully in a recent article by Crouzet
and Thorpe (2011), as part of this same Special Topic. Another
example is a study by Rousselet et al. (2008) who used a para-
metric approach (general linear model) to quantify the influence
of various physical descriptors for natural images (skewness and
kurtosis of the pixel value histogram, Fourier phase spectrum) on
the amplitude of the EEG at various delays post-stimulus. Well-
controlled studies are now made widely accessible even to authors
with no prior image processing expertise, thanks to certain soft-
ware packages and libraries. For example, a wavelet-based software
by Portilla and Simoncelli (2000) allows one to synthesize textures
(i.e., meaningless images) matched to a given target image along
several statistical dimensions. A recent MATLAB toolbox by Wil-
lenbockel et al. (2010) permits matching two images or image sets
in terms of several low-level properties: luminance, contrast, pixel
histogram, Fourier amplitude spectrum.

Arguably, this brief survey fails to encompass the complexity
of the problem. There are many different ways of attempting to
compare images based on “low-level” properties and there is a
whole field of papers dealing with computer vision and compu-
tational neuroscience modeling approaches to image recognition.
Normalizing or eliminating “low-level” confounds, where “low-
level” is not always clearly defined, is easier said than done. Still,
authors will gain by attempting to tackle the problem, rather than
pretending it does not exist.

Finally, it is worth mentioning that physical differences between
two image classes can sometimes be eliminated by interchang-
ing their task-related status in different experimental blocks (e.g.,

FIGURE 2 | Low-level differences exist between image classes in the

pixel and in the Fourier domains. These confounds are systematic enough
to allow distinguishing between images containing animals or cars, for
example. As can be seen in the two columns on the right, the average of 124
pictures of animals (including mammals, birds, reptiles, fish) itself resembles

(a “hazy” view of) an animal, whereas the average of 124 cars is much more
similar to a car picture. The same can be said of averages in the Fourier
domain (bottom). A simple “detector” or “classifier” using the two patterns
on the right as templates would easily distinguish between the two examples
on the left, without any need for feature, object, or category representations.
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target or distractor in a go/no-go task). With this approach, Van-
Rullen and Thorpe (2001b) demonstrated that although brain
signals can “distinguish” between natural image categories as early
as 70–100 ms post-stimulus, the true categorization of an image as
target or distractor does not happen until 150 ms post-stimulus.
One obvious advantage of this method is that it requires no image
processing whatsoever (only twice the number of experimental
trials, since each image category must be presented once as target,
and once as distractor).

MISTAKE #3. COMPARING EXPERIMENTAL CONDITIONS
CONTINGENT ON SUBJECTIVE RESPONSES
Let us assume that our favorite scientist has now learned her les-
son, and is contrasting the brain signals elicited by two classes of
images that have been carefully controlled for systematic low-level
differences. In her comparison, this scientist decides to include
only the correct trials: surely if the observer was not able to recog-
nize or categorize the picture on a given trial, including this trial
in the analysis would only add noise, but not help reveal the brain
correlates of recognition/classification. Right? In fact, not.

Allow me another example. A second scientist boldly attempts
to isolate the brain correlates of the conscious perception of a stim-
ulus. During a task in which the target stimulus is difficult to detect
(thanks to a masking procedure, or to short presentation times,
low contrast, etc.), the scientist will sort the experimental trials
according to the observer’s subjective report: did they perceive the
target on this trial or not? A brain signal that would be present for
detection but absent otherwise would constitute a good candidate
for a “neural correlate of consciousness.” Right? In fact, not.

The problem is very similar in these two examples, but may
be more easily understood with the second. In the (hypothetical)
experiment described, the stimulus was the same on every trial,
and only the subject’s perception changed. Comparing the two
outcomes (perceived vs. unperceived) should, in theory, isolate the
brain signals that were elicited by conscious perception. However,
let us assume for a minute that the subjects’ reports are not direct
and dependable markers of perception: sometimes, the subject
simply did not know or did not see very well (or was not pay-
ing attention to the task), and ended up making a response based
on whatever information was at hand. For example, on these few
trials (maybe only 10% of the total) the subject responded “per-
ceived” whenever frontal lobe activity around the expected time
of stimulus onset was high, and “unperceived” when it was low.
Contrasting perceived and unperceived trials should now logically
give rise to a positive difference in frontal electrodes. Even if the
proportion of trials contributing to this effect is low, with enough
signal-to-noise (i.e., a sufficient total number of trials) the differ-
ence will turn out significant. Depending on which activity period
was used by the brain to make up the response on these trials,
one may then be drawn to conclude that frontal brain activity at
100 ms, or even just 50 ms post-stimulus, or even before stimulus
onset, is a correlate of conscious perception. In a recent study, we
actually demonstrated that the phase of a frontal 7–10 Hz oscilla-
tion at a given moment can determine (to some extent) whether
a stimulus presented 100 ms later will be reported by the sub-
ject as consciously perceived or not (Busch et al., 2009). It is easy
in this situation to avoid committing the mistake of calling such

pre-stimulus activity a “neural correlate of conscious perception.”
But what if the peak of this oscillatory effect had been observed
at 100 or 200 ms post-stimulus? The conclusion that this activ-
ity contributes to the neural correlates of consciousness may have
been more easily accepted – but it would still be logically wrong!

What of our first scientist? Similarly, her restricting the analysis
to correct trials could have introduced response biases into the
results. The logic is a little more difficult to follow in this case,
so I ran a simple simulation to convince the reader (Figure 3).
Assume again that on a certain number of trials (even as low as
10%), because of a momentary lapse of attention or a failure of
perception, the urge to press response button A or B (for a sim-
ple categorization task) is determined not by stimulus properties
(category A or B) but merely by the level of activity somewhere
in the brain, say a frontal area: when activity is high, the sub-
ject will tend to press button A, when it is low they will press
button B. Comparing images from categories A and B that were
correctly categorized leads to a bias: certain correctly categorized
images of type A (maybe only 10%) will tend to be accompanied
by high activity in frontal brain regions, certain images of type B
being accompanied by low activity. Of course, there is normally
an equivalent number of type A images that should be accompa-
nied by low activity, and type B images with high activity – but
these were purposefully removed from the analysis, because they
were “incorrectly” classified! The net result is a purely artifactual
difference between the two experimental conditions. As in the pre-
vious example, depending on which activity period was used by
the brain to make up the response, this difference could conta-
minate the “correlates of categorization” as early as 100 or 50 ms
post-stimulus, or even before stimulus onset (see Figure 3). In this
latter case, the mistake would be easily detected, but the presence
of such a difference at 50 or 100 ms post-stimulus could well be
construed as a meaningful result – erroneously.

PRACTICAL SOLUTIONS
In order to understand how to avoid such mistakes, let us con-
sider what was common between the two examples described. In
both cases, the scientists recorded brain signals (e.g., frontal lobe
EEG) and used these as temporal markers for the completion of
specific neural decision processes (e.g., categorization, conscious
perception). What went wrong was due to the fact that neural
decision processes indeed modulate the amplitude of brain signals
recorded by the experimenter, but sometimes the amplitude of
certain brain signals can also contribute to determine the appar-
ent outcome of these neural decision processes. In a nutshell: if
the causal relation between neural decision processes and brain
signals can go in both directions, using one (the brain signal) as
a temporal marker for the completion of the other (the neural
decision process under study) is, to say the least, dangerous. One
simple way to avoid these dangers is to restrict data analyses to
the comparison of experimental conditions as manipulated by the
experimenter (e.g., stimulus categories A vs. B), without ever tak-
ing into account subjective responses. In our two examples, the
scientists did not follow this rule: they compared category A con-
tingent on response A to category B contingent on response B (first
example) or simply, response A to response B (second example). As
soon as subjective responses are entered into the comparison, the
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FIGURE 3 |Taking into account subjective responses when contrasting

brain signals can generate spurious differences. 1000 trials were
simulated, half of them with a stimulus from category A and the other half
from category B. For the purpose of demonstrating the existence of
response biases, each EEG waveform was drawn randomly with a 1/f
power spectrum, thus approximating the statistics of natural EEG but
without any selective response evoked by category A or B. Hence, we
should normally expect to obtain flat event-related potentials (ERPs,
computed by averaging all trials of each category, with each trial
baseline-corrected using the period [−50, +50 ms] around stimulus onset).
We assume that the observer correctly categorizes 75% of all trials, but on
the remaining 25%, the observer decides to respond not on the basis of
the stimulus category (A or B), but based on EEG activity during the 200-ms
pre-stimulus period: when the average pre-stimulus activity is positive, the
observer presses response button A, and button B when the activity is
negative. Of course, negative or positive pre-stimulus activity is equally
likely to occur regardless of stimulus type, and therefore the ERPs obtained
for stimulus categories A (in blue) and B (in red) will be statistically
indistinguishable (bottom panel). However, when only the correct trials are
included in the ERPs, many trials with negative pre-stimulus activity and
response A and many trials with positive pre-stimulus activity and response
B will be discarded from the ERPs (because they correspond to “incorrect”
categorization). As a result, the ERPs will show a purely artifactual but
significant difference during the pre-stimulus period (top panel).

possibility of an ill-defined causal relation between brain signals
and neural decision processes can introduce response biases and
obscure data interpretation. These biases, however, cannot be
exposed using classic signal detection theory methods, in which
the bias denotes an overall tendency to favor one response over
the other (e.g., response A over B): indeed, the kind of bias that we

FIGURE 4 |The dangers of filtering. 50 trials of a “fake” EEG signal were

simulated. Activity is null until the “onset” of a neural process, occurring at
a random time between 150 and 180 ms (uniform distribution), after which
activity is set to 1. Gaussian-distributed noise (mean 0 and SD of 0.05) is
added to all signals. In the top panel, the original trials are stacked vertically
and the EEG amplitude is color-coded. The middle panel represents the
same trials after low-pass filtering with a 30-Hz cut-off (using the function
eegfilt from the EEGLAB software, and its default parameters). The bottom
panel illustrates the corresponding ERPs. The red ∗ symbols on the
horizontal axis indicate the moments at which the filtered ERPs depart from
zero. Even though, by design, the process under study never started before
150 ms, its EEG correlates are detected with latencies as early as 100 ms!

are discussing would be conditional on the value of certain brain
signals, and there may be no apparent overall response bias. It is
up to the experimenter to consider what sort of biases could arise,
and whether their analysis will be immune to such bias. As a rule
of thumb, comparison between two classes of stimuli presented
to an observer in interleaved trials, without any subsequent trial
selection based on response type or correctness, should be free of
these response biases; on the other hand, such comparisons may
not be free of stimulus-induced low-level confounds, as developed
in the preceding section! The solution of interchanging target and
distractor status for two (or more) stimulus categories, which we
described in the previous section, could also apply here, i.e., it
would be immune to response biases (if all trials are considered,
not just the correct trials) and of course to low-level confounding
factors.
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MISTAKE #4. FILTERING OF ELECTROPHYSIOLOGICAL
SIGNALS
The last mistake is one that is easy to understand, yet often occurs
in the electrophysiological literature. It is common practice when
dealing with EEG signals (or MEG, LFP, etc.) to low-pass filter
the signals in order to temporally “smooth” them and remove
the “noise” – which is generally considered to be proportion-
ately most manifest at higher frequencies. Many classic studies
list in their Methods section a cut-off frequency of 40 Hz or
even 30 Hz. While this is mostly harmless for studies interested
in the amplitude or even the latency of specific ERP peaks (in
technical terms, because these filters have “zero phase-lag”), it
can be extremely problematic when assessing the precise tim-
ing and dynamics of brain processes. Indeed, because of the
width of the filters used, the EEG correlates of a given neu-
ronal event will be smeared out in time for several tens or even
hundreds of milliseconds before and after the event. As illus-
trated in Figure 4, a neuronal process that actually starts between
150 and 180 ms post-stimulus can appear to start as early as
100 ms, after a simple 30 Hz low-pass filter is applied. When
it comes to determining the time course of visual recognition
processes, mistakes of this magnitude are sure to have drastic
consequences.

PRACTICAL SOLUTIONS
For such a simple ailment there is a simple remedy: raw data should
be analyzed directly, without filtering (of course, artifact rejection

can still be applied whenever appropriate). If filtering must be
used, then the authors should be careful to restrict their interpre-
tations to the quantification and comparison of peak amplitudes
and latencies – but not examine onset latencies or precise tem-
poral dynamics. Note, however, that this problem only concerns
filters with low-pass frequencies in a range likely to correspond
to physiologically meaningful time scales (as a rule of thumb,
lower than 100 Hz): for example, many EEG amplifiers use built-
in low-pass filters with cut-off frequencies at 1 kHz or higher, and
although these could theoretically distort neuronal onset latencies
by 1 or 2 ms, most experimental conclusions would be unlikely to
be significantly affected.

CONCLUSION
We reviewed four important conceptual mistakes that often re-
occur in the psychophysical and electrophysiological literature on
visual timing. There are certainly many other possible pitfalls in
studying the timing of visual recognition. My own previous stud-
ies (and likely, my future ones) are probably also not exempt
of conceptual mistakes. The list of mistakes presented here was
not intended to be exhaustive, nor the proposed solutions to
encompass all possibilities. The present aim was, merely, to alert
colleagues about the existence of these fallacies, and to provide
them with a source and a reference. Hopefully this work will help
prevent perpetuating these four mistakes on the grounds that “this
is how things have always been done” and “no-one ever said it was
wrong.” Now, you know.
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