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HIGHLIGHTS

• We suggest classifying variability of neuronal responses as follows: false (associated

with a lack of knowledge about the influential factors), “genuine harmful”

(noise), “genuine neutral” (synonyms, repeats), and “genuine useful” (the basis of

neuroplasticity and learning).

• The genuine neutral variability is considered in terms of the phenomenon of

degeneracy.

• Of particular importance is the genuine useful variability that is considered as a potential

basis for neuroplasticity and learning. This type of variability is considered in terms of

the neural Darwinism theory.

In many cases, neural signals detected under the same external experimental conditions

significantly change from trial to trial. The variability phenomenon, which complicates

extraction of reproducible results and is ignored in many studies by averaging, has

attracted attention of researchers in recent years. In this paper, we classify possible types

of variability based on its functional significance and describe features of each type. We

describe the key adaptive significance of variability at the neural network level and the

degeneracy phenomenon that may be important for learning processes in connection

with the principle of neuronal group selection.

Keywords: variability of neuronal responses, motor evoked potentials, transcranial magnetic stimulation, neural

Darwinism, degeneracy

Randomness is only a measure of our ignorance of the different causes involved in the production of events

(Laplace, 1825)

Most certainly chance is “impossible.” There is no “chance” in Nature, wherein everything is

mathematically co-ordinated and mutually related in its units. “Chance,” says Coleridge, “is but the

pseudonym of God (or Nature), for those particular cases which He does not choose to subscribe openly

with His sign manual.”

(The Secret Doctrine by H. P. Blavatsky, Vol. 1)

VARIABILITY OF NEURONAL RESPONSES

A fundamental problem in neuroscience is decoding of information contained in the structure and
functional activity of the nervous system. Apart from its significance for the general understanding
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of brain functions, the problem is of increasing practical
importancemainly in connection with developing the technology
of brain-computer interfaces and using them to control
prostheses. However, there emerges a very serious problem
in the way to information decoding—variability of neuronal
responses.

A stable spike frequency is detected upon registration of the
membrane potential of a single neuron in vitro. In contrast, the
spike frequency becomes irregular (variable) when activity of a
similar neuron is detected in vivo, including cases where identical
stimuli are presented (Masquelier, 2013). Similarly, spike patterns
vary across trials in many cortical areas in response to sensory
stimuli, as well as in the motor cortex upon making stereotyped
movements. The causes and functional role of the variability are
unknown.

Variability of neuronal responses can also be registered on
a larger scale during detection of motor evoked potentials
(MEPs) in response to stimulation of the cortex with a
magnetic field pulse. Upon stimulation of the same cortical
area with the same intensity using skin myographic electrodes,
a MEP of a varying amplitude and latency is detected.
Figure 1 shows the results of a similar experiment performed
in our laboratory. The mean amplitude is 4693µV, and
the standard deviation is 766µV, which is 16% of the
mean.

Studies have shown that variability of the MEP amplitude in
TMS is affected by a number of factors, including the position
of a skin electrode, muscle topography (Dunnewold et al., 1998),
high stimulation intensity (Pitcher et al., 2003), voluntary muscle
contraction, readiness for contraction (Darling et al., 2006),
gender of a subject (Pitcher et al., 2003), and presenile age
(Pitcher et al., 2003). Also, factors that do not affect the variability
have been identified: the size of a skin electrode (Dunnewold
et al., 1998), exact positioning of a coil (navigation systems) (Jung
et al., 2010), cognitive task (Kiers et al., 1993), breathing, heart
rate (Amassian et al., 1990), hemisphere, and handedness.

EXPLANATIONS OF VARIABILITY

Inmodern literature, there are a number of models describing the
causes of variability (Dinstein et al., 2015). Most of them are as
follows. At the single cell level, response variability is determined
by noise of a peripheral sensor (Schneeweis and Schnapf, 1999),
stochastic nature of synaptic transmission (Ribrault et al., 2011),
dynamic changes associated with neuronal adaptation (Clifford
et al., 2007), and neuroplasticity (Feldman, 2009).

At the network level, the variability of neural responses in the
same behavioral conditions is commonly supposed to originate
from internal dynamics in the brain. Thus, Arieli et al. (1995)
observed coherent ongoing activity in cat visual cortex with
an amplitude almost as high as that evoked by optimal visual
stimulation. They concluded that the observed activity is a
result of functionally important interaction of the spontaneous
activity and the evoked response. Thus, the common procedure
of averaging over trials “ may not be an optimal approach to study
higher cognitive function, because it ignores the instantaneous

state of the cortex and its influence on the individual response”
(Arieli et al., 1995).

The MEP variability is explained as follows. “Related to
TMS of M1, neurophysiologic parameters such as independent
fluctuations in excitability of the M1 and interneurons as well as
motoneurons on the spinal level (e.g., spinal desynchronization)
also contribute to the variability of MEPs” (Kiers et al., 1993;
Magistris et al., 1998). “Two-third of the MEP size variability
is caused by the variable number of recruited α-motoneurons
and approximately one-third by changing synchronization of
motoneuron discharges” (Rösler et al., 2008).

CLASSIFICATION OF VARIABILITY ON THE
BASIS OF FUNCTIONAL SIGNIFICANCE

In addition to the classification of variability on the basis
of its origin, it is also important to distinguish types of
variability according to its functional role. Four types of
variability may be distinguished (Figure 2): “false” (which is
determined by unexplored factors), “genuine useful” (which is
the basis of neuroplasticity and learning), “genuine harmful”
(neuronal noise), and “genuine neutral” (a peculiarity of
system functioning, including the presence of synonymous
commands). In principle, the false variability may be attributed
to uncontrollable factors that alter, to some extent, the cognitive
task presented to the nervous system in each trial, which causes
appropriate changes in the system response. In practice, a
complete analysis of these factors may be extremely difficult. The
harmful variability is a fundamental limitation of the precision
with which the nervous system can repeat its responses under
conditions imposed by a behavioral task. The useful and neutral
variabilities are conceptually more complex and interesting types.
Theymay shed light on the fundamental principles of the nervous
system organization. This issue is discussed in the following
sections.

HARMFUL VARIABILITY (NOISE)

A widely held view of trial-to-trial variability of neural activity,
and especially of inter-spike interval patterns, considers it as
random noise that limits the precision of signal representation by
a neuron. Shadlen and Newsome (1998) suggested that this noise
is a consequence of the maintenance of an adequate dynamic
range of a neuron by balancing its excitation and inhibition,
which leads to a random-walk-like pattern of spikes. This noise
is supposed to be reduced at the later stages of processing by
pooling signals from groups of approximately 100 neurons with
similar responses.

Even if considered random, these fluctuations of neuronal
activity are correlated between cells. Averbeck et al. (2006)
explored the consequences of these correlations for the encoding
and decoding of stimuli assuming a representation by firing
rates. They found that, under certain circumstances, even week
pair-wise correlations can significantly reduce the amount of
information about the stimulus in a large neuronal population.
The authors underline, however, that experimental assessment of
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FIGURE 1 | MEP amplitudes of m. abductor pollicis brevis in a healthy subject; 100 TMS-stimuli in the hot spot M1 with an intensity of 110% of the

response threshold. (A) Amplitudes of 100 sessions one by one; (B) Distribution of 100 sessions amplitudes on graph. Mean amplitude ark as horizontal line.

(C) Point of stimulation. APB hotspot.

FIGURE 2 | Classification of variability.

the role of correlations is very hard, especially for large neuronal
ensembles because of data limitations.

NEUTRAL VARIABILITY AND
DEGENERACY

Variability of neuronal signals can occur in connection with
the phenomenon of degeneracy. This term is widely used in

mathematics in reference to particular cases when an object has
atypical features, e.g., when a certain quantity vanishes. The
meaning of the term “degeneracy” used in biology (Edelman
and Gally, 2001) is close to the concept of a degenerate square
matrix, i.e., a zero-determinant matrix that can produce the same
vector when multiplied by different vectors. In the biological
context, degeneracy is the ability of structurally different elements
to perform the same function or yield the same output (Edelman
and Gally, 2001). This phenomenon is distinguished from
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redundancy when the same function is performed by identical
elements. Degeneracy can be observed in living systems at many
levels of organization, from the genetic code where an amino
acid is encoded by any of several possible nucleotide triplets to
duplication of information by different sense organs and to a
variety of ways to solve the same motor task.

Three types of degeneracy can be distinguished with regard
to neural networks: parametric, dynamical, and structural. The
parametric degeneracy is associated with the fact that parameters
describing a particular neural network, such as ionic conductivity
of neuronal membranes, can take a variety of value combinations
that give similar patterns of neural activity in this network
(Leonardo, 2005). For example, more than 20 million different
combinations of parameter values were analyzed for a model
of one of the chains from the lobster stomatogastric ganglion
in a study by Prinz et al. (2004). Of these, about 2% yielded
dynamics statistically indistinguishable from the three-phase
rhythm observed experimentally in this network.

The dynamical degeneracy is related to the fact that various
patterns of neural activity can lead to the same behavioral
patterns. For example, the study (Leonardo, 2005) describes
the brain structures controlling singing of birds. One of the
structures is the robust nucleus of the arcopallium (RA) that
has a projection on spinal cord neurons controlling the voice
muscles. Within one period of a sound pattern, RA neurons
pass through a number of spike activity states that are not
repeated during this period. At the same time, the song itself
contains intervals with a similar sound pattern within one
period. Therefore, different spike patterns can cause similar
muscle contractions. This degeneracy may be associated with the
presence of functionally “neutral (neither useful nor harmful)
variability” of neural signals when the brain solves a repeated
behavioral task using various neural activity patterns that lead to
the same movements (synonymous commands).

Another example of coding in the presence of synonymous
commands is coding with sequences of Markov model states,
which is described in Abeles et al. (1995), Jones et al. (2007). In
these studies, each individual record of neuron spike activity is
divided into intervals in which each neuron has an approximately
constant spike frequency. During each of these intervals, the
neural network remains in a particular state; interstate transitions
are described by a Markov model. For a particular sensory
stimulus, the set of the states and the sequence in which they
appear are repeated with a high precision from trial to trial,
while the length of stay in each state is variable. These patterns
form a set of synonyms coding for the same stimulus and,
probably, are similarly interpreted by the subsequent brain
areas. Although synonymous spike patterns can in general lack
common structural features (as is often the case for synonyms
in a natural language), we cannot exclude the existence of other
regular types of dynamical degeneracy.

The structural degeneracy is related to implementation of the
same function by different neuronal groups. According to the
neural Darwinism theory, this degeneracy is the basis of brain
development through life, providing a diversity of structures for
natural selection.

USEFUL VARIABILITY AND THE NEURAL
DARWINISM THEORY

Of particular importance is the genuine useful variability, which
we will consider in terms of the neural Darwinism theory. The
term “neural Darwinism” (selection of neuronal groups) was
introduced by G. Edelman in 1987 to explain the course of
ontogenetic development of the nervous system, based on the
principles of Darwin’s natural selection: “Variation and selection
within neural populations play key roles in the development and
function of the brain” (Edelman, 1993).

Selection of neurons during ontogeny is a competition for
sources of oxygen, glucose, and connections with other neurons.
The competition among neurons begins with a competition
among synapses. Edelman distinguished three stages of neuronal
group selection: selection of highly specialized groups in early
ontogeny, secondary selection of neural groups through personal
experience and an improved efficiency of synaptic connections,
and the formation of “reentrant signaling,” which results in
integration of a current state with long-term memory traces.

According to the Edelman theory, a newborn perceives
the world as a set of disordered chaotic signals, and only
acquired experience (not a predetermined instruction)
enables classification of these signals, identification of signal
combinations perceived as a particular object, and correlation
of the signals with pleasant or threatening events. Fixation of
individual experience occurs through competitive selection of
groups of neurons and synapses, with the selection patterns
being similar to the patterns of natural selection in evolving
populations.

For example, neurons in the visual cortex are not initially
specialized, and each neuron responds to a wide range of signals.
These spectra can slightly vary for individual neurons. There are
numerous interneuronal synaptic contacts formed more or less
randomly. When a visual stimulus (e.g., a dash moving up and
right) is presented, all neurons responding to it emit electrical
pulses at the same frequency. When the stimulus disappears,
the neurons can stay active, but the pulses are no longer
correlated. Contacts among synchronously responding neurons
are amplified, and the neurons are combined into a group. Later,
excitement of one of the neurons from the group induces the
activation of other neurons, i.e., the entire group starts to respond
to stimuli as a whole. Synapses among neurons whose activity
periods are not identical weaken or even disappear.

The formation of these neuronal groups in different cortical
areas (visual, auditory, and motor) starts even before birth.
Edelman calls the groups composed of neurons with initially
disordered contacts the primary repertoire. Groups acquire
certain specializations. For example, some groups in the visual
cortex respond more to vertical bars, other groups respond
to horizontal bars, and still other groups respond to sloped
bars. Many groups respond to each signal, with some groups
responding better than others. The possibility of the formation
of these specialized groups developed during evolution and was
genetically preserved. However, the cortex structure in each
particular case, i.e., how neurons are combined in groups and
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what their specialization is, is not predetermined either by
a genetic program or by the environment. Only the general
organization of cortical areas (visual, auditory, association, etc.)
is genetically determined.

According to the theory, the formation of neuronal groups
at all stages conforms to the principles of Darwinian selection.
However, the selection occurs not in successive generations
of individuals but in populations of somatic (nerve) cells
connected through synapses. The population approach widely
developed by Darwin considers intraspecies variations not as
mistakes, but as a prerequisite and source of diversity that
is used by natural selection to generate various kinds of
organisms. During evolution, mutations, i.e., random events,
recombination, and gene drift serve as the major sources
of variability; phenotypic functions provide exposure to the
environment and selection of the fittest organisms; differential
reproduction of phenotypes leads to preservation of selection
results in the next generation. According to the Edelman concept,
the variability during the ontogenetic brain development arises
due to random connections in ensembles of neuronal groups
and due to strengthening or weakening of existing synapses; the
behavior (initially, in the form of primarily irregular reactions,
but then, as categories form, becoming more and more ordered)
leads to exploring the environment; adaptive responses, which
are repeated more often than others, are accompanied by
preservation and strengthening of synapses of the neuronal
groups involved in the responses (Edelman, 1993; Seth et al.,
2006).

Thus, randomness and variability underlie the formation of
new mutations in the genotype and the gene drift, which results
in evolution upon fixation of a useful mutation. Randomness also
plays a big role in the formation of synapses. One of the possible
governing principles is the so-called Peters rule: “According to
the “Peters rule”, synaptic contacts occur where dendrites and
axons happen to be in apposition. These “potential synapses”
are required but not sufficient for an actual synapse formation;
and the expected number of connections between two neurons
is proportional to the product of their dendritic and axonal trees
densities” (Peters et al., 1991; Peters and Payne, 1993).

EXPERIMENTAL EVIDENCE SUPPORTING
THE EXISTENCE OF USEFUL VARIABILITY

Variability of neuronal responses can be one of the key drivers
of neuronal group selection. This hypothesis is supported
by recent studies on the auditory cortex of rats. Takahashi
et al. (2013) demonstrated that functional maps and plasticity
of the auditory cortex in rats correlated with variability of
neuronal responses, namely with the variability of mutual
information of the neural activity and the stimulus as well as
with the spike frequency. The degree of response variability
in functional units of computation (tonotopic columns and
auditory fields) is likely co-modulated with the representational
area in accordance with training and experience. In other
words, large representational areas promote the formation of a
heterogeneous population of neurons that emit various responses

to stimuli. These results indicate that the functional map plays
an important role in the implementation of the Darwinian
principles in cortical computations. The model proposed by
the authors can account for functional roles as well as some
specific features of plasticity of cortical maps (Takahashi et al.,
2013).

One of the important conclusions of the neural Darwinism
theory is that models based on it are capable of self-learning.
A line of Darwin computer models was developed based on
the neural Darwinism theory. For example, two forms of
learning were implemented in the Darwin VII model: perceptual
categorization based on plasticity of cognitive neurons and reflex
conditioning controlled by motor system plasticity upon action
of taste reinforcement (Sokolov and Nezlina, 2005).

Ölveczky et al. (2011) studied neuronal activity of the
bird RA area responsible for the song generation. It was
found that the variability of neuronal responses in this area
decreased during the learning to sing, and adult birds had
highly stereotypical spike patterns. Experiments involving the
inactivation of RA presynaptic regions identified an area
generating this variability—the lateral magnocellular nucleus
of the anterior nidopallium (LMAN). The presence of this
area suggests that response variability during learning may
be specifically generated by the brain, which would likely
be evidence that such variability is useful for neuroplasticity
processes (Ölveczky et al., 2011). It is particularly interesting if
there are analogs of the LMAN area in primates. According to
one view, an analog is the basal ganglia-thalamocortical loops
(Ölveczky et al., 2011). Another suggested functional analog
is the premotor cortex (PMC) (Jarvis, 2004). This assumption
is supported by the fact that a temporary reduction in the
premotor cortex activity leads to a decrease in the learning ability
(Mochizuki et al., 2005). Similarly, damage to the premotor
cortex in stroke reduces capabilities for planning of movements
and motor learning (Chang et al., 2010).

CONCLUSION

The phenomenon of variability of neuronal responses has
many facets concerning its causes and functional significance
for cognitive activity. To adequately account for variability in
interpretation of experimental results, the identification of its
functional meaning is required. For example, false variability
determined by unknown regular factors may potentially be
reduced through additional control of experimental parameters;
genuine harmful variability can be modeled as random noise;
genuine neutral variability indicates the presence of synonymous
commands due to functional degeneracy, which should be taken
into account in the decoding of information transmitted by
neuronal signals. Finally, the most important, genuine useful,
variability should be interpreted as purposefully generated and
regulated fluctuations of the neural activity that likely enable
involvement of various neuronal groups in different trials,
subjected to natural selection to fix the most effective responses.
This genuine useful variability may serve as the basis for
neuroplasticity and learning.
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