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In normal adult brain the microtubule associated protein (MAP) tau contains 2–3 phos-
phates per mol of the protein and at this level of phosphorylation it is a soluble cytosolic
protein. The normal brain tau interacts with tubulin and promotes its assembly into micro-
tubules and stabilizes these fibrils. In Alzheimer disease (AD) brain tau is three to fourfold
hyperphosphorylated.The abnormally hyperphosphorylated tau binds to normal tau instead
of the tubulin and this binding leads to the formation of tau oligomers. The tau oligomers
can be sedimented at 200,000×g whereas the normal tau under these conditions remains
in the supernatant.The abnormally hyperphosphorylated tau is capable of sequestering not
only normal tau but also MAP MAP1 and MAP2 and causing disruption of the microtubule
network promoted by these proteins. Unlike Aβ and prion protein (PrP) oligomers, tau
oligomerization in AD and related tauopathies is hyperphosphorylation-dependent; in vitro
dephosphorylation of AD P-tau with protein phosphatase 2A (PP2A) inhibits and rehyper-
phosphorylation of the PP2A-AD P-tau with more than one combination of tau protein
kinases promotes its oligomerization. In physiological assembly conditions the AD P-tau
readily self-assembles into paired helical filaments. Missense tau mutations found in fron-
totemporal dementia apparently lead to tau oligomerization and neurofibrillary pathology by
promoting its abnormal hyperphosphorylation. Dysregulation of the alternative splicing of
tau that alters the 1:1 ratio of the 3-repeat: 4-repeat taus such as in Down syndrome, Pick
disease, and progressive supranuclear palsy leads to the abnormal hyperphosphorylation
of tau.

Keywords: microtubule associated protein tau, abnormal hyperphosphorylation of tau, O-GlcNAcylation of tau,
protein phosphatase 2A, alternate splicing of tau, Alzheimer neurofibrillary degeneration, Alzheimer disease,
tauopathies

In Alzheimer disease (AD) the oligomer states of Aβ and tau
pathologies are believed to cause the neurodegeneration. Oligomer
is an intermediate stage between monomer and a large polymer. It
consists of a relatively small and identifiable number of monomers,
which is usually 3–10 in the case of most proteins. Unlike a poly-
mer, if one of the monomers is removed from an oligomer, its
chemical properties are altered. Protein oligomers may be formed
by the polymerization of a number of monomers or the depoly-
merization of a large protein polymer. Protein polymerization is
employed by the cell to perform several useful functions, such
as neurofilaments and actin filaments serve as cytoskeleton of a
neuron and maintain the cell shape. Microtubules that are poly-
mers of tubulin facilitate axoplasmic flow, a vital function of a
neuron. Some protein polymerization reactions are very efficient
and almost all the protein in the cell is seen as polymers, as is
the case with neurofilaments. In contrast, microtubule assembly
and disassembly are extremely dynamic to meet the axoplasmic
transport needs of a neuron. The oligomers of neurofilaments
and microtubules are apparently very short-lived and are, to date,
of no known deleterious consequence.

In AD, Aβ and, in the case of tau also in tauopathies, the
protein polymerization is apparently employed as a detoxifying
process to get rid of the toxic protein oligomers, which seem to
stay in the diseased brain and have been isolated and studied.

Tau oligomerization is increasingly being suspected as a prion-
like phenomenon. This article, which is an update of our previous
article on this subject (1), discusses the tau oligomers seen in AD
brain and how they differ from Aβ and PrP oligomers.

In human brain tau is alternatively spliced into six isoforms
and the ratio of the 3-repeat: 4-repeat protein is altered in differ-
ent tauopathies. The alternative splicing of human tau pre-mRNA
results in six molecular isoforms of the protein (2). These six tau
isoforms differ in containing three (3R) or four (4R) microtubule
binding repeats (R) of 31–32 amino acids in the carboxy-terminal
half and one (1N) or two (2N) amino-terminal inserts (N) of 29
amino acids each; the extra repeat in 4R tau is the second repeat
(R2) of 4R taus. This alternative splicing of tau pre-mRNA results
in the expression of three 3R taus (0N3R, 1N3R, 2N3R) and three
4R taus (0N4R, 1N4R, 2N4R). The 2N4R tau is the largest size
human brain tau with a total of 441 amino acids (tau441) in length.
The smallest size tau isoform, which lacks both the two amino-
terminal inserts and the extra microtubule binding repeat (0N3R;
tau352) is the only isoform that is expressed in fetal human brain.
Tau has little secondary structure; it is mostly random coil with β

structure in the second and third microtubule binding repeats.
In a normal mature neuron almost all tau is bound to micro-

tubules; tubulin is present in over 10-fold excess of tau. The
concentration of tau in a neuron is ∼2 µM (3, 4) and it binds

www.frontiersin.org August 2013 | Volume 4 | Article 112 | 1

http://www.frontiersin.org/Neurology
http://www.frontiersin.org/Neurology/editorialboard
http://www.frontiersin.org/Neurology/editorialboard
http://www.frontiersin.org/Neurology/editorialboard
http://www.frontiersin.org/Neurology/about
http://www.frontiersin.org/Neurodegeneration/10.3389/fneur.2013.00112/abstract
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=KhalidIqbal&UID=8176
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=CHENG_XINGONG_1&UID=20719
http://www.frontiersin.org/people/FeiLiu_1/105427
mailto:khalid.iqbal.ibr@gmail.com
http://www.frontiersin.org
http://www.frontiersin.org/Neurodegeneration/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Iqbal et al. Tau oligomerization in Alzheimer’s disease

to microtubules at a kd (dissociation constant) of ∼100 nM (5).
Overexpression of tau causes microtubule bundling in cultured
cells. However,neither in AD nor in any tauopathy has microtubule
bundling been reported.

Neurofibrillary degeneration not only is seen in AD and Down
syndrome (DS) but also in a family of related neurodegener-
ative diseases called tauopathies. These include frontotemporal
dementia with Parkinsonism linked to chromosome 17 (FTDP-17)
caused by tau mutations, Pick disease, corticobasal degeneration,
dementia pugilistica, and progressive supranuclear palsy. In every
one of these tauopathies the neurofibrillary pathology is made up
of abnormally hyperphosphorylated tau and these pathological
changes in the neocortex are associated with dementia; in a large
number of supranuclear palsy cases the tau pathology in the brain
stem is associated with motor dysfunction.

OLIGOMERIZATION OF TAU AND HOW IT DIFFERS FROM
THAT OF Aβ AND PrP
In 1986 we discovered that not only Alzheimer neurofibrillary
tangles were made up from abnormally hyperphosphorylated tau
protein (6) but also the altered tau was present in AD brain
cytosol and was responsible for the inhibition of microtubule
assembly (7). In subsequent studies we showed that the cytosolic
AD abnormally hyperphosphorylated tau (AD P-tau) sequestered
some of the normal tau and sedimented at 200,000× g, whereas
most of the non-hyperphosphorylated tau from the same AD
brains remained in the 200,000× g supernatant (8, 9). The AD
P-tau showed up as globular particles by negative stained electron
microscopy (Figure 1). The sedimentable AD P-tau is increasingly
being referred to as the oligomeric tau or granular tau (10). In situ
demonstration of oligomeric tau seen immunohistochemically as
amorphous aggregates in the neuronal cytoplasm was described
at “stage 0” tangles for the first time by Bancher et al. (11). Bio-
chemical analysis of AD P-tau sedimented from AD brain showed
that it co-sedimented some of the non-hyperphosphorylated tau,
suggesting that the AD P-tau oligomers are hetero-oligomers of
hyperphosphorylated and non-hyperphosphorylated tau (8). Fur-
thermore, normal tau was found to co-aggregate with and promote
the aggregation of AD P-tau into filaments (12). As much as 40%

FIGURE 1 | Electron micrograph showing tau oligomers from an
Alzheimer disease brain negatively stained with phosphotungstic acid.

of abnormally hyperphosphorylated tau in AD brain is seen as AD
P-tau (8).

Unlike normal tau which binds to tubulin and promotes its
assembly into microtubules, the AD P-tau, instead of interacting
with tubulin, binds to normal tau as well as MAP1 and MAP2,
and causes depolymerization of microtubules (9, 12, 13). In vitro
hyperphosphorylation of tau revealed that the oligomeric tau was
an intermediate stage between monomeric and filamentous state
because at 4–6 mol phosphate/mole protein it became oligomeric
and microtubule-assembly inhibitory whereas further hyperphos-
phorylation made it polymerize into filaments. Neither the in vitro
formed hyperphosphorylated tau filaments nor PHF isolated from
AD brains had any detectable effect on tau-promoted assembly of
microtubules (14–16). While normal tau promoted GTP bind-
ing to tubulin and its assembly into microtubules, the AD P-tau
inhibited this activity. AD-PHF had no effect on GTP binding
but on in vitro dephosphorylation it promoted GTP binding to
tubulin (17). On dephosphorylation with protein phosphatase
2A (PP2A) the AD P-tau oligomers are converted into normal-
like non-sedimentable protein that, like normal tau, promotes
microtubule assembly (9, 12, 18). PP2A was also found to dis-
sociate Alzheimer neurofibrillary tangles, releasing protein which
behaved like normal tau in promoting microtubule assembly (19).
Thus, the AD P-tau oligomerization is unique because it is solely
induced by abnormal hyperphosphorylation and is reversible on
dephosphorylation of the protein (20).

In the AD field the interest in oligomers started with the initial
report of Lambert et al. (21) who showed that diffusible, non-
fibrillar ligands from Aβ1–42 were potent central nervous system
toxins. Though Aβ oligomers are toxic, in contrast to tau oligomer-
ization, they are formed by the strong hydrophobic nature of this
peptide and this process is not initiated or promoted by phos-
phorylation. Similarly, the PrP oligomers are formed at acidic pH
and on removal of denaturants such as sodium dodecyl sulfate
or salt from the protein solution (22, 23). Unlike AD P-tau and
Aβ1–42 oligomers, the PrP filaments are the infective state and
their depolymerization into oligomers results in the loss of the
infectivity (24). Most recently PrP cellular has been reported to
promote the Aβ oligomerization (25).

ROLE OF O-GLcNAcylation IN TAU OLIGOMERIZATION AND
NEURODEGENERATION
In addition to phosphorylation, tau is also modified by O-
GlcNAcylation, a dynamic protein posttranslational modifica-
tion, by which O-linked β-N -acetylglucosamine (O-GlcNAc) is
transferred enzymatically from a UDP-GlcNAc donor to the
hydroxyl group of serine or threonine residues of proteins. In
contrast to glycosylation of secreted and membrane proteins,
which occurs in the endoplasmic reticulum and Golgi appara-
tus, O-GlcNAcylation modifies nucleocytoplasmic proteins and
is more like protein phosphorylation (26). O-GlcNAcylation and
phosphorylation sometimes occur at identical or proximal sites
of a protein and thus are reciprocal to each other. The crosstalk
between O-GlcNAcylation and phosphorylation has been impli-
cated to be essential for the control of vital cellular processes
and for understanding the mechanisms of certain diseases (27,
28). O-GlcNAcylation also serves as a sensor of intracellular
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glucose metabolism (29), because the UDP-GlcNAc donor for
O-GlcNAcylation is formed from glucose metabolism via the
hexosamine biosynthetic pathway.

Tau is highly modified by O-GlcNAc, on average, with four O-
GlcNAc groups per tau molecule at more than 12 serine/threonine
residues (30, 31). Five O-GlcNAcylation sites (Thr123, Ser208,
Ser238, Ser400, and one site at Ser409, Ser412, or Ser413) have
been mapped to date (32–34). We previously demonstrated that
inhibition of O-GlcNAcylation leads to hyperphosphorylation of
tau in cultured cells and in rat brain slices (31). Experimental
reduction of brain glucose metabolism leads to decreased O-
GlcNAcylation and increased phosphorylation of tau in vivo (27,
35), and inhibition of protein O-GlcNAcylation induces hyper-
phosphorylation of tau in rat brain (27). Furthermore, we dis-
covered that the global O-GlcNAcylation of proteins, especially
of tau, is decreased, which likely results from impaired brain
glucose metabolism, and that the decrease in O-GlcNAcylation
correlates to hyperphosphorylation of tau in AD brain (27).
Furthermore, hyperphosphorylated tau purified from AD brains
contains approximately five times less O-GlcNAc than normal tau
(27). Therefore, we postulate that tau pathology and neurodegen-
eration can be caused by impaired brain glucose metabolism via
the down-regulation of tau O-GlcNAcylation in AD (27).

O-GlcNAcylation may also inhibit tau oligomerization directly.
The fourth microtubule binding repeat of tau self-aggregates at a
slower rate in vitro when it is modified by O-GlcNAc at Ser356
than the unmodified counterpart, as determined by turbidity, pre-
cipitation assay, and electron microscopy (36). A recent study
showed that O-GlcNAcylation inhibits tau aggregation in rodents
(37). O-GlcNAcylation also modulates proteotoxicity in C. elegans
models of human neurodegenerative diseases (38, 39). Therefore,
decreased O-GlcNAcylation may promote tau-mediated neurode-
generation through promoting tau oligomerization directly and
also indirectly by inducing its abnormal hyperphosphorylation.

ABNORMAL HYPERPHOSPHORYLATION OF TAU CAUSES
NEURODEGENERATION AND COGNITIVE IMPAIRMENT
Protein phosphatase 2A accounts for ∼70% of the total tau
phosphatase activity in the brain (40). A cause of the abnor-
mal hyperphosphorylation of tau in AD and adults with DS
is a decrease in the brain PP2A activity (41–43). PP2A activ-
ity is negatively regulated by two inhibitor proteins, I1

PP2A and
I2

PP2A in a substrate-specific manner (44, 45). Both I1
PP2A and

I2
PP2A inhibit PP2A activity toward AD hyperphosphorylated tau

(46) and these inhibitors are predominantly localized in the hip-
pocampus and the cerebellum (47). I1

PP2A, which is also known
as PHAP-1, is a 239 amino acid long cytoplasmic protein (48).
I2

PP2A, also known as SETα, PHAP-II, and TAF1β, is primarily a
nuclear protein of 277 amino acids in length with an apparent
molecular weight of 39 kDa on SDS-PAGE (45, 49, 50). mRNA
and protein expression levels of both I1

PP2A and I2
PP2A are selec-

tively increased in the affected areas of AD brain. I2
PP2A, which

is a 39 kDa and a primarily nuclear protein, is selectively cleaved
at N175 into an amino-terminal (I2NTF) and a carboxy-terminal
(I2CTF) fragment and translocated from the neuronal nucleus to
the cytoplasm in AD brain (51). Both I2NTF and I2CTF interact
with the PP2A catalytic subunit PP2Ac and inhibit its activity
toward hyperphosphorylated tau (52). Transduction of the brains

of newborn rats with adeno associated virus serotype 1 vector car-
rying human I2CTF (53) or I2NTF and I2CTF transgenes was found
to induce AD-like abnormal hyperphosphorylation and aggrega-
tion of tau, a loss of neuronal plasticity, and cognitive impairment
in these animals at 5–12 months post-infection (54); however, no
neurofibrillary tangles or Aβ plaques were detected in the brains
of AAV1-I2NTF-CTF rats up until 13 months. These findings sug-
gest a deleterious role of the abnormally hyperphosphorylated
oligomeric tau.

The inhibitory activity of the non-fibrillized abnormally hyper-
phosphorylated tau has been confirmed in yeast, drosophila, and
in mouse models that express human brain tau. The expression
of the longest human brain tau (2N4R tau) in yeast produces
pathological phosphoepitopes, assumes a pathological conforma-
tion, and forms aggregates. These processes are modulated by
yeast kinases Mds1 and Pho85, orthologs of GSK-3β and cdk5
(55, 56). In yeast the aggregation of tau increases with increas-
ing hyperphosphorylation and the mobility in SDS-PAGE retards.
The hyperphosphorylated tau isolated from the stably transfected
yeast is able to assemble into filaments, and nucleate the assem-
bly of the normal non-phosphorylated tau. These yeast studies,
like those carried out previously using AD P-tau, suggest that the
hyperphosphorylated tau works as a nucleation factor that initiates
and promotes the aggregation of tau (12, 15).

In wild-type human tau- and mutated human tau-transgenic
Drosophila, the accumulation of the abnormally phosphorylated
tau in the absence of its fibrillization into neurofibrillary tan-
gles leads to neurodegeneration (57). In a P301L tau inducible
transgenic mouse model, cognitive improvement was observed
when expression of human tau, which became abnormally hyper-
phosphorylated, was suppressed although neurofibrillary tangles
continued to form, suggesting that the accumulation of the cytoso-
lic abnormally hyperphosphorylated tau, and not its aggregation,
was apparently involved in behavioral impairment in these animals
(58). Reduction of soluble Aβ and soluble abnormally hyperphos-
phorylated tau, but not soluble Aβ alone, was found to ameliorate
cognitive decline in 3xTg mice that express both plaque and tangle
pathologies (59). Furthermore, in vitro dephosphorylation of neu-
rofibrillary tangles disaggregates filaments and, as a result, the tau
released behaves like normal protein in promoting microtubule
assembly (19).

Hyperphosphorylation of tau, though not to the same level as
in AD, is not only associated with the disease as in tauopathies,
but is also employed by the neuron to down regulate its activ-
ity transiently and reversibly where required. For instance, during
development the level of tubulin in the brain is at its highest, i.e.,
almost 33% of total cytosolic protein, which is almost 1.5-fold the
critical concentration of 4 mg/ml tubulin required for its poly-
merization into microtubules (60). Probably to avoid microtubule
bundling, the fetal tau is transiently hyperphosphorylated during
development. However, the level of hyperphosphorylation of tau
in fetal brain is far less than that seen in AD brain. Similarly, anes-
thesia and hypothermia induced by hibernation in animals induces
transient hyperphosphorylation of tau (61–64). The molecular
mechanism of the transient hyperphosphorylation of tau observed
during development is, at present, not understood. However, dur-
ing hypothermia the activity of PP2A is transiently and reversibly
reduced and is believed to cause the hyperphosphorylation of

www.frontiersin.org August 2013 | Volume 4 | Article 112 | 3

http://www.frontiersin.org
http://www.frontiersin.org/Neurodegeneration/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Iqbal et al. Tau oligomerization in Alzheimer’s disease

tau (62, 63). In AD and DS the decrease in brain PP2A activity
apparently involves different molecular mechanisms, and occurs
in a non-transient and irreversible manner (41–43). It is the non-
reversible nature of the abnormal hyperphosphorylation of tau
in AD, DS, and related tauopathies which results in an involun-
tary slowing down of neuronal activity and a consequent chronic
progressive neurodegeneration and its clinical phenotype, the
dementia.

There is approximately as much tau in the somatodendritic
compartment as in the axon (65). In the somatodendritic com-
partment tau is associated with rough endoplasmic reticulum
and Golgi apparatus (7, 8, 66, 67). The abnormal hyperphos-
phorylation of tau and its accumulation in the somatodendritic
compartment in AD might have been responsible for the mor-
phological alterations of the RER and the Golgi apparatus and
the abnormal N-glycosylation of tau in AD (68–71). In AD brain
abnormally hyperphosphorylated tau, in addition to forming neu-
rofibrillary tangles, is associated with granulovacuolar changes (6,
72–74). Overexpression of tau, which results in its hyperphospho-
rylation, has been found to induce fragmentation of Golgi both in
neuronal cultures and in neurons in JNPL3 P301L tau-transgenic
mice (66). In P301S tau-transgenic mice, which show abnormal
hyperphosphorylation of tau, a selective decrease in mitochon-
dria and RER has been observed (75). The chronic accumulation
of the hyperphosphorylated tau as a misfolded protein in the ER
could cause neurodegeneration due to protracted ER stress (76).
Hyperphosphorylation of tau might also be involved in neurode-
generation through alterations of RER and Golgi and a consequent
reduction in RER and mitochondria.

In addition to abnormal hyperphosphorylation, truncation of
tau has been found in neurofibrillary tangles in AD and in mutated
tau overexpression transgenic mouse models [e.g., (77–82)]. Of all
the proteases that can cleave tau, the role of caspases has been stud-
ied the most (83, 84). Caspase 3 and caspase 6 cleave tau at D421
and D13, respectively, and treatment with Aβ can induce the D421
cleavage in cultured neurons (78, 80, 81). Truncation of tau, along
with its hyperphosphorylation, promotes its aggregation into fib-
rils (85, 86). Although only a small fraction of tau is truncated in
AD, the truncated protein can apparently recruit the full-length
protein to co-aggregate with it in both tau-transgenic rat and
mouse models (87, 88). To date, the bulk of the evidence suggests
the soluble hyperphosphorylated tau is neurotoxic and upstream
of truncation and aggregation of this protein into neurofibrillary
tangles [e.g., (89, 90)].

ROLE OF MUTATIONS AND ALTERNATIVE SPLICING OF TAU
IN NEURODEGENERATION
In FTDP-17 several mutations in tau co-segregate with the disease
(91–93). Four of these missense mutations, G272V, P301L,V337M,
and R406W, which have been most studied to date, all make tau a
preferable substrate for abnormal hyperphosphorylation in vitro
(94). Some of the tauopathies are associated with altered alternate
splicing of tau. In normal human brain the 3-repeat and 4-repeat
taus are expressed in 1:1 ratio.

In some of the FTDP-17 mutations, i.e., tauK257T (95), tauG272V

(96), tau∆K280 (97), tauE10+19, and tauE10+29 (98), and in Pick dis-
ease most of the tau is 3R isoforms due to the exclusion of axon 10

which codes for the second microtubule binding repeat (R2). In
contrast, in other FTDP-17 mutations, cortical basal degeneration
and progressive supranuclear palsy, most of the tau is 4R (99, 100).

How the imbalance of 3R tau/4R tau leads to neurofibrillary
degeneration and dementia is currently not understood. The 4R
taus bind microtubules more readily than 3R taus. Thus, a change
in 3R:4R ratio of 1:1 in tauopathies results in free tau that is
unbound to microtubules and free tau becomes a favorable sub-
strate for abnormal hyperphosphorylation (101). In DS brain an
increase in 3R:4R ratio combined with an extra copy of Dyrk1A,
which can hyperphosphorylate tau, results in tau pathology dur-
ing the fourth decade of life which is almost two decades earlier
than the average age of onset of AD (102, 103).

Hyperphosphorylation by brain protein kinases induces the
self-assembly of all six human brain tau isoforms into tangles
of PHF/SF under physiological conditions of protein concentra-
tion, ionic strength, pH, temperature, reducing conditions, and the
absence of any cofactor (9). The hyperphosphorylation of tau is
catalyzed by one or more combinations of the proline-directed
protein kinases (PDPKs) and non-PDPKs. Phosphorylation of
tau by non-PDPKs generally primes taus for hyperphosphory-
lation by PDPKs (20, 104–106). Tau isoforms in vitro might be
phosphorylated differentially. 2N4R tau is a more favorable sub-
strate for phosphorylation by rat brain protein kinases and is
phosphorylated faster and to a higher extent than 2N3R tau at
Thr181, Ser199, Ser202, Thr205, Thr212, Ser214, Thr217, Thr231,
Ser235, Ser262, Ser396, Ser404, and Ser422 (94). The differen-
tial phosphorylation of 3R and 4R taus involves a combination
of non-PDPKs and PDPKs because, GSK-3β alone phospho-
rylates tau isoforms similarly (107). Pseudophosphorylation of
seven GSK-3β phosphorylation sites S199, S202, T205, T231,
S235, S396, and S404, affects the aggregation of tau isoforms
differently; the pseudophosphorylation at these seven sites was
found to enhance arachidonic acid-induced polymerization of
0N4R tau while greatly inhibiting the aggregation of the 3R iso-
forms (108). Thus, phosphorylation generated by the same set
of kinases could be sufficient to increase the propensity of some
isoforms to aggregate while reducing the aggregation of others,
resulting in the differential isoform inclusion in pathological tau
aggregates (108).

Aggregation of tau isoforms is affected by the type of inducer
for aggregation used. Arachidonic acid induces 4R tau to polymer-
ize to a greater extent than 3R tau (107). 0N tau requires higher
concentration of arachidonic acid to get maximal polymerization.
The concentration of arachidonic acid for reaching a maximal
polymerization of 1N tau and 2N tau were reported to be sim-
ilar, suggesting addition of exon 3 containing isoforms does not
further reduce inducer concentrations needed for maximal poly-
merization (107). Similar results were obtained for the heparin
induction of tau isoform polymerization (107). The 2N4R tau
required less heparin inducer for maximal polymerization than
1N4R and 0N4R taus. Aggregation of six tau isoforms by thi-
azine red inducer was also reported in a tau isoform-dependent
manner. Tau exons 2 and 10 were found to promote aggrega-
tion, whereas exon 3 depressed it with its efficacy dependent on
the presence or absence of a fourth microtubule binding repeat
(109).
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FIGURE 2 | Abnormal hyperphosphorylation of tau promotes its
oligomerization and self-assembly into paired helical filaments, forming
neurofibrillary tangles. A protein phosphorylation/dephosphorylation
imbalance apparently caused by a decrease in protein phosphatase 2A (PP2A)
activity leads to abnormal hyperphosphorylation of tau in AD brain. The
abnormally hyperphosphorylated tau binds to normal tau (and not to tubulin)

and this sequestration leads to the disruption of microtubules and the
formation of oligomers which can be sedimented at 200,000×g; the tau
oligomers show up as granular structures by negative stain electron
microscopy. The abnormally hyperphosphorylated tau isolated from AD brain
cytosol readily self-assembles into paired helical filaments in vitro under
polymerizing conditions.

Alzheimer disease P-tau sequesters normal tau, MAP1, and
MAP2 and disassembles microtubules and that the dephospho-
rylation of AD P-tau eliminates this toxic property (9, 13). Tau
isoforms bind to AD P-tau deferentially. The binding of AD P-
tau to 4R tau tends to be greater than to the corresponding
3R tau and its binding to normal human recombinant tau was
found to be 2N4R > 1N4R > 0N4R and 1N4R > 1N3R > 0N3R
(110). AD P-tau interacts preferentially with the tau isoforms that
have the amino-terminal inserts and four microtubule binding
domain repeats and that hyperphosphorylation of tau appears to
be sufficient to acquire AD P-tau characteristics. Thus, lack of
amino-terminal inserts and extra microtubule binding domain

repeat in fetal human brain might be protective from Alzheimer’s
neurofibrillary degeneration.

CONCLUSION
In conclusion, in AD and related tauopathies the abnormal hyper-
phosphorylation of tau promotes its oligomerization (Figure 2).
The tau oligomers sequester normal tau as well as MAP1 and
MAP2 and can be separated from normal tau by sedimenta-
tion at 200,000× g. The abnormal hyperphosphorylation of tau
seen in AD is different from the normal and from the transient
hyperphosphorylation of this protein that occurs during develop-
ment, anesthesia, or hypothermia. The oligomeric cytosolic AD
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P-tau probably causes neurodegeneration by sequestering normal
MAPs and disrupting the microtubule network. Tau mutations
found in frontotemporal dementia may cause neurodegeneration
through promoting abnormal hyperphosphorylation of tau. AD
P-tau self-assembles into PHF/SF, forming neurofibrillary tangles.
Tau truncation found in AD brain promotes its self-assembly into
PHF/SF. Unlike AD P-tau, the tangles neither show any detectable
activity to sequester normal MAPs nor inhibit microtubule assem-
bly. Inhibition of abnormal hyperphosphorylation of tau offers
a promising therapeutic target for AD and related tauopathies.
Animal models that recapitulate various disease mechanisms seen
in AD and related tauopathies are no less valuable for preclin-
ical studies for drug development than transgenic mouse and

rat models in which one or more mutated human proteins are
overexpressed to produce Aβ plaques and/or tau neurofibrillary
tangles.
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