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Transcranial magnetic stimulation (TMS) is widely used in the clinic, and while it has a
direct effect on neuronal excitability, the beneficial effects experienced by patients are
likely to include the indirect activation of other cell types. Research conducted over the
past two decades has made it increasingly clear that a population of non-neuronal cells,
collectively known as glia, respond to and facilitate neuronal signaling. Each glial cell
type has the ability to respond to electrical activity directly or indirectly, making them
likely cellular effectors of TMS. TMS has been shown to enhance adult neural stem and
progenitor cell (NSPC) proliferation, but the effect on cell survival and differentiation is less
certain. Furthermore there is limited information regarding the response of astrocytes
and microglia to TMS, and a complete paucity of data relating to the response of
oligodendrocyte-lineage cells to this treatment. However, due to the critical and yet
multifaceted role of glial cells in the central nervous system (CNS), the influence that
TMS has on glial cells is certainly an area that warrants careful examination.
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INTRODUCTION

Over 30 years ago Barker et al. (1985) showed that it was possible to non-invasively stimulate
neurons by generating a localized magnetic field (MF) that penetrated through the scalp, skull
and meninges, to induce an electrical current in the brain. Unlike classical electromagnetic fields
(EMF), which are usually static in nature, this technique of transcranial magnetic stimulation
(TMS) can be administered in different patterns, which appear to exert specific effects on
brain activity. For example, low frequency stimulation dampens neural activity, while high
frequency stimulation has an excitatory effect (reviewed in Dayan et al., 2013; Parkin et al.,
2015). TMS has since been used as an effective tool for understanding neurophysiology, and
has also been utilized in the diagnosis and monitoring of neurodegenerative diseases such as
motor neuron disease (MND) and Multiple Sclerosis (MS; reviewed by Caramia et al., 2004;
Vucic et al., 2013). More recently the clinical application of TMS has been expanding, due to
research demonstrating its therapeutic potential for the treatment of migraines (Lipton et al.,
2010), tinnitus (Kleinjung et al., 2005), anxiety and major depressive disorders (George et al.,
2010; Mantovani et al., 2010), and stroke (Khedr et al., 2010), as well as the management of
neurodegenerative disorders such as Parkinson’s disease (PD; Torres et al., 2015), Alzheimer’s
disease (AD; Rabey et al., 2013) and MND (Zanette et al., 2008). The therapeutic effect
of TMS is largely attributed to its ability to dampen neuronal hyper-excitability, decrease
neuro-inflammation, alter blood-brain-barrier (BBB) permeability, and promote neuronal survival.
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While TMS is widely utilized within the clinical setting,
and the basic principles of TMS have been well described
(reviewed by Hallett, 2007), we lack the requisite understanding
of how it regulates biological processes. Essentially there is little
non-human experimental data demonstrating how TMS works
at the cellular and molecular levels. Research conducted in this
area initially investigated the effect that TMS exerts on neuronal
function, and revealed that it influences neuronal firing patterns
in vivo and in vitro (reviewed by Müller-Dahlhaus and Vlachos,
2013; Tang et al., 2015). The repetitive magnetic stimulation
of mouse entorhino-hippocampal slice cultures (70 mm figure
eight coil, 10 Hz, 900 pulses) was reported to enhance the
NMDA receptor-dependant recruitment of AMPA receptors
to the post-synaptic density to increase glutamatergic synaptic
strength (Vlachos et al., 2012). These data may help explain
why sub-threshold low-frequency repetitive TMS (rTMS; 25 mm
figure eight coil, 1 Hz for 4 min), which would be expected to
have the opposite effect, can actually prevent the development
of seizures in a rat kindling model of epilepsy (Shojaei et al.,
2014). However it is likely that a number of mechanisms
are involved, as low-intensity rTMS has also been shown
to correct a genetically-programmed aberrant axon guidance
phenotype in mice (Rodger et al., 2012; Makowiecki et al., 2014),
suggesting that rTMS may influence cytosolic calcium regulation
in multiple ways.

Research conducted over the past two decades has made it
increasingly clear that a group of non-neuronal cells, collectively
known as glia, respond to and facilitate neuronal signaling.
Glia make up the majority of cells in the adult brain, far
exceeding neurons in number and diversity. Within the adult
central nervous system (CNS), they can be divided into five
major cell types: adult neural stem cells, which generate new
neurons that are required for learning and memory (reviewed
by O’Rourke et al., 2014); astrocytes, which perform a diverse
range of functions, including neurotransmitter uptake and
the buffering of extracellular potassium ion concentration
(reviewed by Clarke and Barres, 2013); oligodendrocytes, which
support axons through myelin production and the provision
of trophic support (reviewed by Nave, 2010); oligodendrocyte
progenitor cells (OPCs), which proliferate and generate new
oligodendrocytes (reviewed by Richardson et al., 2011); and
microglia, which are the resident immune cells (Tambuyzer
et al., 2009). Each glial cell type has the ability to respond
to electrical activity directly or indirectly, making them likely
cellular effectors of TMS—a possibility that will be explored in
this review.

NEURAL STEM CELLS RESPOND TO TMS

Neural stem cells are located within the dentate gyrus of
the hippocampus and the subventricular zone of the mature
brain in both humans and rodents (reviewed in Ming and
Song, 2011). They can be identified by their expression of
glial fibrillary acidic protein (GFAP), a protein generally
associated with astrocytes, as well as nestin, and sox2 (Lugert
et al., 2010), and are relatively quiescent, dividing infrequently
to produce intermediate progenitor cells, which are rapidly

dividing, and in turn generate neuroblasts (Silva-Vargas and
Doetsch, 2014). A fraction of adult-born neurons survive, mature
and synaptically integrate into the neural network as functionally
mature neurons (Fuentealba et al., 2012; Silva-Vargas et al.,
2013). Proliferation in the neural stem cell niche is known
to be regulated by neuronal activity (reviewed Kempermann,
2015), and a number of studies indicate that rTMS can drive
neural stem cell proliferation and neurogenesis. For example, the
application of rTMS to adult mice, every day for 2 weeks (100mm
diameter coil, 150 pulses per day), at either 1 Hz or 30 Hz,
increased the number of neural stem/progenitor cells present in
the subventricular zone (SVZ), suggesting that rTMS induced
proliferation and an expansion of the population (Abbasnia
et al., 2015). A similar increase in neural stem and progenitor
cell (NSPC) proliferation was detected when TMS was directed
towards the hippocampus in vivo, irrespective of whether it was
the deep-brain magnetic stimulation of mice (20 min successive
trains of 500 ms pulses administered daily; Zhang et al., 2014) or
the chronic rTMS treatment of rats (70 mm figure 8 coil, 25 Hz,
14000 pulses for 14 consecutive days; Ueyama et al., 2011).

The ongoing addition of highly plastic immature neurons to
the hippocampus is crucial for learning and memory (Denny
et al., 2012; Garthe and Kempermann, 2013)— making this
adult neural stem cell niche an interesting target for the
treatment of dementia (Ager et al., 2015). However, new
hippocampal neurons are also thought to influence mood,
making the ability of TMS to stimulate neurogenesis also
particularly relevant to the positive effect that rTMS has
when used to treat patients with depression. One of the
current working models of this disease links a decrease in
hippocampal volume, stem cell activity and neurogenesis with
the establishment of depression, and its reversal with the
success of anti-depressant therapies (reviewed by Chaudhury
et al., 2015; Miller and Hen, 2015). The antidepressant drug
Quetiapine and deep brain TMS (7 cm diameter magnet pair,
60 Hz, 0.7T, 2 h twice daily) are both able to increase neural
stem cell proliferation in the dentate gyrus of chronically
stressed rats. Alone neither treatment maximally stimulates
NSPC proliferation, as their joint application can further
increase the number of 5-bromo-2′-deoxyuridine (BrdU+) cells
present in the dentate gyrus (Chen et al., 2015). However the
magnitude of this increase is small, suggesting that limited
therapeutic benefit would be obtained by combining these
treatments.

Most of the BrdU labeling studies that examine the effect
of TMS on neural stem cell activity and neurogenesis, do
not distinguish between the effect of TMS on neural stem
cell proliferation vs. new cell survival. Therefore more detailed
studies are needed to elucidate the mechanisms underlying the
influence that TMS exerts on this cell type. However it is clear
that numerous stimulation methods and patterns of TMS can
enhance adult neurogenesis from both stem cell niches. Of
particular interest for NSPC regulation, the application of TMS
has been linked to changes in the expression of microRNA
(miR)-25. Mir-25 has been previously shown to promote neural
stem cell proliferation (Brett et al., 2011) by blocking the
expression of a cyclin-dependent-kinase inhibitor, p57 (Guo
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et al., 2014). However the repetitive magnetic stimulation of
cultured P3 rat hippocampal neural stem cells, which also
enhances their proliferation (≥800 pulses from a 90 mm figure
eight coil), is reported to reduce miR-25, but increase miR-
93 and miR-106b (Liu et al., 2015), which instead target the
cell cycle regulators integrin-β8 and p21 (Kim et al., 2009;
Fang et al., 2011). While the exact regulators may vary between
experimental conditions, it appears likely that TMS influences
NSPC proliferation by altering gene expression.

The application of TMS for the treatment of dementia and
mood disorders seems logical, given the natural function of
the new neurons being added to the hippocampus, however
TMS may also allow the manipulation of NSPC behavior to
enact nervous system repair more broadly. Deep-brain magnetic
stimulation has been shown to increase the number and length
of dendrites on newly generated dentate granule neurons (Zhang
et al., 2014), suggesting that it can influence the maturation
of new neurons. Furthermore TMS maybe suitable to promote
remyelination. New oligodendrocytes are produced from neural
stem cells in the mouse subventricular zone (Young et al.,
2010), and they are produced in larger numbers in response
to cuprizone-mediated demyelination of the corpus callosum
(CC; Xing et al., 2014). In a similar focal model of CC
demyelination, mice exposed to oscillating EMF (7 cm diameter
magnet pair, 60 Hz, 0.7T, 2 h twice daily from injury) had
a larger number of BrdU+ newborn cells present in the CC
and more nestin+ cells in the subventricular zone, relative to
control mice (Sherafat et al., 2012). These changes in NSPC
activity were accompanied by a less severe demyelination,
prompting the authors to suggest that this intervention had
promoted neural stem cell-mediated repair. TMS may be
similarly beneficial following stroke, as rats receiving supra-
threshold rTMS, to target the ipsilateral motor cortex (6 cm, 3.5T
coil, 10 Hz for 300 pulses, daily for 7 days) following middle
cerebral artery occlusion, showed enhanced NSPC proliferation
in the underlying subventricular zone (Guo et al., 2014).
However the longer-term benefits of this treatment have not
been examined. More research is clearly needed to define the
outcomes of TMS treatment in these different disease models
and define the signaling mechanisms that are downstream of
TMS, including those regulating NSPC proliferation. However
there are a number of likely mechanisms, which we have
outlined below.

TMS-Mediated Neurotransmitter Release
as a Driver of Adult Neurogenesis
Two key signaling molecules regulating neural stem cell
proliferation within the hippocampus are GABA and glutamate.
GABA is released from parvalbumin-positive interneurons and
can ‘‘spill over’’ and act on GABAγ2 receptors on neural
stem cells to maintain their quiescence (Song et al., 2012).
Therefore, a reduction in parvalbumin-positive interneuron
activity would be expected to promote neural stem cell
proliferation. Furthermore, using an alternative method of
stimulation, it has been shown that the induction of hippocampal
long-term potentiation (LTP) enhances the production of

new neurons from hippocampal NSPCs in rats (Cho et al.,
2013), and rTMS would be expected to induce LTP in
some hippocampal neurons and produce a similar response.
In mice, the activity-dependent increase in neurogenesis
can be blocked using mGluR5 antagonists, and mimicked
using a blood-brain-barrier permeable mGluR5 agonist (Nochi
et al., 2012). Therefore it would interesting to determine
the importance of mGluR5 in mediating TMS-stimulated
neurogenesis.

Alternatively, serotonin release from neurons in the raphe
nucleus, can act on 5HT-2C and 5HT-2A receptors on neural
stem cells situated in the subventricular zone, depolarizing the
cells, and ultimately promoting their proliferation (Tong et al.,
2014). Similarly the release of serotonin in the hippocampus
can promote hippocampal NSPC proliferation (reviewed Alenina
and Klempin, 2015). Therefore it is possible that TMS
promotes neurotransmitter release from serotonergic neurons,
either directly or indirectly, and thereby increases NSPC
proliferation. Activation of the g-protein coupled serotonergic
receptors would also be expected to trigger an increase
in cytoplasmic calcium, which could also modulate gene
transcription in the NSPCs, to facilitate neurogenesis. In vitro
neural stem cells connect via connexin-43 gap junctions,
which allow them to propagate electrical signals between
neighboring cells, activating voltage-gated calcium channels
and triggering calcium oscillations (Malmersjö et al., 2013).
The shRNA-mediated knockdown of connexin-43 from neural
stem cells during mouse development significantly reduced
stem cell proliferation (Malmersjö et al., 2013). Therefore,
if TMS increases neurotransmitter release from neurons,
which acts on neural stem cells, this altered activity may
be experienced across the neural stem cell network, feasibly
resulting in a calcium signal that would be sufficient to alter
transcription.

TMS-Induced Neurotrophin/Growth Factor
Release as a Driver of Adult Neurogenesis
rTMS increases BDNF and VEGF expression levels in the
hippocampus and cortex of rat brains (Müller et al., 2000; Zhang
et al., 2015), and the depolarization of cultured hippocampal
neurons by repetitive magnetic stimulation induces the release of
BDNF from their dendrites (Waterhouse et al., 2012). Similarly
cultured neuroblastoma cells have been shown to release BDNF,
NT3, GDNF and PDGF-A in response to repetitive magnetic
stimulation (Lee et al., 2015). BDNF, VEGF and NT-3 are known
regulators of adult neurogenesis. In vivo the dendritic release of
BDNF dampens neural stem/progenitor cell proliferation, but
enhances the survival of the new neurons (Waterhouse et al.,
2012). Whereas, VEGF has been reported to bind the VEGF
receptor 3 to facilitate NSPC division and neurogenesis in the
hippocampus of mice and humans (Han et al., 2015), but has
also been shown to promote new cell survival without altering
proliferation in the rat brain (Schänzer et al., 2004). Unlike
BDNF and VEGF which are both pro-neurogenic signals, NT-
3 is secreted from endothelial cells in the subventricular zone
and is a neural stem cell quiescence signal (Delgado et al., 2014;
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Silva-Vargas and Doetsch, 2014), making it unlikely that NT-3 is
a dominant signal in the neural stem cell niche following TMS.

ASTROCYTES RESPOND TO ELECTRICAL
ACTIVITY AND FACILITATE NEURONAL
SIGNALLING

Astrocytes are important regulatory cells within the CNS and are
likely to be critical mediators of TMS-induced brain changes.
Astrocytes provide metabolic support for neurons, shuttling
lactate through monocarboxylate transporters (Bélanger et al.,
2011; Choi et al., 2012), they actively communicate with neurons
in a reciprocal manner at the so called ‘‘tripartite synapse’’
(Santello et al., 2012), and they play a vital role in synapse
formation and function (reviewed by Clarke and Barres, 2013). In
the normal healthy brain, GFAP is a marker of fibrous astrocytes
(Young et al., 2010). Following a CNS injury the expression of
this protein can be up-regulated, even by protoplasmic astrocytes
(Nolte et al., 2001). However the change in GFAP expression can
be highly variable (Zamanian et al., 2012), making it an imperfect
marker of astrogliosis. Despite this, GFAP has been used to
examine astrogliosis in the TMS field, as a way of assessing
treatment safety.

The acute magnetic stimulation of cultured astrocytes induces
a transient increase in GFAP levels that lasts for 3 days (10 Hz
for 10 s; Chan et al., 1999). rTMS has also been shown to induce
a transient increase in GFAP expression in vivo, when treatment
was applied following ischemic injury (continuous 50 Hz, 0.5 mT
exposure for 7 days; Rauš et al., 2013) or to a demyelinated lesion
(1 Hz for 5min per day for 14 days; Fang et al., 2010). By contrast,
rTMS was found to attenuate astrocyte activation at the site of
spinal cord (SC) injury in rats (25 Hz, 3 s on/off for 20min, 5 days
a week for 8 weeks; Kim et al., 2013). Furthermore rTMS (six
trains of 300 pulses daily for 18 days, 20 Hz) did not alter GFAP
expression in the dentate gyrus of rats experiencing chronic stress
(Czéh et al., 2002), or alter the number of GFAP-positive cells
in the motor cortex or hippocampus of normal, healthy rats
(1000 pulses per day for 5 days at 1 Hz; Liebetanz et al., 2003).
Astrogliosis is often accompanied by a morphological change in
the astrocytes, and this was observed following direct current
stimulation of cultured astrocytes (Pelletier et al., 2014), but was
not observed following magnetic stimulation (Chan et al., 1999).
These data indicate that TMS can effect astrocytes, however this
effect is highly context-dependent, and is therefore likely to be
a secondary effect and reliant on TMS influencing another cell-
type in the environment.

Astrocytic function is influenced by changes in neuronal
activity, they are key cellular components of synapses, and
they release factors that also influence synapse number. Given
what we know about astrocytic function, the observation that
rTMS alters neuronal synapse number in the CNS (Vlachos
et al., 2012), strongly implicates astrocytes as cellular effectors
of TMS. Neurotransmitter release from neurons is sensed by
astrocytes, which respond with an increase in intracellular
calcium, and the subsequent release of gliotransmitters
(see Paixão and Klein, 2010 for review). The addition of

astrocytes or astrocyte-conditioned media to cultured neurons
is known to increase the number of functional excitatory
synapses formed in the culture, while the removal of astrocytes
or their secreted signals results in a rapid reduction in functional
synapse number (Ullian et al., 2001). Some of the secreted
factors responsible have been identified, and include members
of the thrombospondin (TSP) family, namely TSP1, which
in vivo is thought to be secreted in response to release of the
neurotransmitter ATP (Tran and Neary, 2006), TSP2 and
TSP4. TSPs bind to the α2δ-1 subunit of voltage-gated calcium
channels, causing a conformational change in this subunit,
which triggers an uncharacterized signaling cascade, leading
to the recruitment of adhesion and scaffolding molecules to
the synaptic site (Eroglu et al., 2009). Hevin [also known as
secreted protein acidic and rich in cysteine (SPARC)-Like
protein 1] was also shown to promote excitatory synapse
formation, while its homolog— SPARC, is antagonistic to
this process (Kucukdereli et al., 2011). Astrocytes also control
synapse number by engulfing and eliminating synapses—a
process that is strongly regulated by neuronal activity (Chung
et al., 2013). Therefore it would be interesting to determine
whether the release of these factors is increased following
TMS, or whether there is any change in astrocyte-mediated
phagocytosis.

In addition to mediating synapse formation, astrocytes
are likely to affect changes in spine shape in response to
TMS. The repetitive magnetic stimulation of hippocampal
slice cultures has been reported to induce the clustering of
post-synaptic AMPA receptors, as well as the enlargement
of the post-synaptic terminals (Vlachos et al., 2012; Lenz
et al., 2015). This is likely mediated by Ephrin A3 expressed
in astrocytic processes, and its receptor EPHA4 which is
highly expressed by dendritic spines (Filosa et al., 2009).
Inhibition of ephrin A3-EPHA4 interaction has been shown
to distort spine shape and organization, suggesting a role for
astrocytes in regulating neuronal morphology (Murai et al.,
2003). Furthermore astrocytes regulate synaptic maturation
and excitability via the secretion of glypicans, which increase
the insertion of Glu1A-containing AMPA receptors into the
post-synaptic membrane, leading to greater excitability of
the post-synaptic neuron (Allen et al., 2012). Additionally,
the release of glutamine from astrocytes is critical for the
sustained release of glutamate from neurons (Tani et al., 2014).
The therapeutic effect of TMS in counteracting depression has
been largely attributed to the potentiation of glutamatergic
transmission (Croarkin et al., 2016), and these data provide a
strong case for the involvement of astrocytes in mediating this
effect of TMS on synaptic structure and efficacy.

Astrocytes further modulate synaptic function through their
uptake of the potassium released by neurons during action
potentials, and through their uptake of glutamate and GABA
from the synaptic cleft (reviewed by Anderson and Swanson,
2000). Glutamate uptake into astrocytes occurs via the VGLUT1
transporter, which is regulated in a dose-dependent manner in
the frontal, motor, somatosensory and visual cortices of rats, by
the application of rTMS (70 mm figure eight coil, continuous or
intermittent TBS, 600–2400 pulses; Volz et al., 2013). While this
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study did not look at the cell-type specific levels of VGLUT1, this
receptor is highly expressed by astrocytes, and therefore a change
in expression by these cells would be necessary to observe this
overall effect. Therefore, in response to TMS, it is likely that the
increased neuronal firing is detected by astrocytes, and that they
modulate VGLUT1 expression to ensure their sustained uptake
of synaptic glutamate.

MICROGLIA MODULATE SYNAPTIC
PLASTICITY

Microglia are the resident immune cells of the CNS, and they play
amultifaceted role inmodulating synaptic plasticity. The effect of
TMS onmicroglia in vivo has been largely unexplored. In normal
healthy rats, the application of high intensity, low frequency
rTMS does not affect microglial number in the motor cortex or
hippocampus (Liebetanz et al., 2003). However the application
of very low intensity, but high frequency rTMS following an
ischemic injury, or the induction of demyelination, appears to
activate microglia, leading to increased Iba1 expression (Fang
et al., 2010; Rauš et al., 2013). In contrast, high intensity, high
frequency rTMS applied to the injured SC, reportedly attenuates
microglial activation (Kim et al., 2013). While it is not possible to
gauge the effect of TMS on microglia from such a small number
of studies, TMS would be expected to affect microglial behavior.
Microglia are known to preferentially phagocytose weak or
inactive pre-synaptic terminals, guided by the activity-dependent
expression of complement (Schafer et al., 2012; reviewed by
Morris et al., 2013). Furthermore, microglia secrete BDNF and
the cytokine interleukin 1β, which have been shown to facilitate
LTP (Rogers et al., 2011; Ferrini and De Koninck, 2013). As
microglia influence neuronal activity, and respond to signals that
are altered by neuronal activity, their role as cellular mediators of
TMS warrants further investigation.

CELLS OF THE OLIGODENDROCYTE-
LINEAGE RESPOND TO ELECTRICAL
STIMULATION

How do Mature Oligodendrocytes
Respond to TMS?
Oligodendrocytes are the cells that myelinate axons in the
CNS. As an oligodendrocyte matures, it extends its myelin
membrane to wrap around multiple axons. Following this
process of ensheathment, the membrane compacts to form
the functional myelin internode (Snaidero et al., 2014). Each
internode increases the membrane resistance and decreases the
capacitance of the axon segment it surrounds, and they are
vital for the saltatory conduction of action potentials along
the axon. While the effect of TMS on oligodendrocytes has
not been investigated, they are known to express a range
of neurotransmitter receptors and ion channels (reviewed by
Káradóttir and Attwell, 2007). Furthermore, recent studies
suggests that they can sense and respond to neuronal activity,
and adjust the properties of their myelin sheath to modulate
conduction velocity (Yamazaki et al., 2007, 2014). This

dynamic regulation of conduction velocity by oligodendrocytes
is dependent on the magnitude of depolarization (Yamazaki
et al., 2014). The large surface area of oligodendrocytes may
allow TMS to directly induce a current in these cells, as the
application of TMS to neurons can increase intracellular calcium
to levels equivalent to that seen post action potential firing
(Grehl et al., 2015). However it seems more likely that any
TMS-mediated effect on oligodendrocytes would be indirect and
act to trigger the release of calcium from intracellular stores.
While white matter abnormalities are closely associated with
a number of psychiatric disorders (reviewed by Fields, 2008),
the benefit of oligodendrocyte depolarization is physiologically
unclear, making it difficult to speculate how this phenomenon
might relate to the therapeutic benefits of TMS in the treatment
of neurological disorders.

Can TMS Influence the Behavior or OPCs
and Promote Oligodendrogenesis?
TMS may also effect myelination by the indirect stimulation
of OPCs - the population of cells that give rise to mature
oligodendrocytes throughout life (Richardson et al., 2011). OPCs
are unique glial cells, in that they receive direct synaptic
input from neurons (Bergles et al., 2000; Lin and Bergles,
2004; Kukley et al., 2007; Ziskin et al., 2007). In recent
years it has been shown that theta burst firing of the pre-
synaptic neuron can trigger the insertion of calcium-permeable
AMPA receptors (glutamate receptors) at the OPC post-
synaptic density, in a process termed glial LTP (Zonouzi
et al., 2011). Additionally, blocking neuronal action potentials
in vivo decreases OPC proliferation (Barres et al., 1993) and
oligodendrocyte production (Demerens et al., 1996), while
the repeated stimulation of neurons in the motor cortex
(using a tripolar electrode) promotes the activity-dependent
proliferation of OPCs in the corresponding corticospinal tract
(Li et al., 2010). Increased axonal myelination also occurs in
vitro following the frequency-dependant electrical stimulation
of neurons (Malone et al., 2013). Similarly the direct current
stimulation of oligodendrocyte and neuron co-cultures enhanced
the survival and myelinating capacity of the oligodendrocytes
(Gary et al., 2012). More recently, in vivo optogenetic stimulation
(20 Hz) of projection neurons in the pre-motor cortex
demonstrated that increased neuronal firing was accompanied
by increased OPC proliferation, oligodendrocyte generation,
and the addition of thicker myelin to the axonal projections
extending from the premotor cortex to the CC (Gibson et al.,
2014). Given the ability of TMS to increase neuronal firing,
these data would strongly suggest that TMS would enhance
oligodendrogenesis in this way. However the influence of TMS
on oligodendrogenesis may be two fold. There is mounting
evidence that TMS increases BDNF levels in the CNS, and BDNF
is known to bind to tropomyosin receptor kinase B on immature
oligodendrocytes to regulate axonal ensheathment (Xiao et al.,
2010; Wong et al., 2013). Therefore it is likely that TMS enhances
oligodendrogenesis in adulthood, but that each of these effects
are secondary to the influence that TMS exerts on neuronal
activity.
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CONCLUSIONS AND FUTURE
PERSPECTIVES

The use of TMS and other activity-based therapies is increasing,
and despite the important role played by glial cells in responding
to activity and regulating activity in the CNS, they have been
largely overlooked in this field, with only a small number
of studies examining the role of TMS on glia in vivo (see
Table 1). It is likely that many of the beneficial effects of
TMS are the result of the secondary activation of glial cells.
To fully understand the therapeutic benefits that can be
obtained through the application of TMS, it will be critical to
understand which stimulation patterns most influence glial cell
populations, perhaps even opening up previously unconsidered

therapeutic options for the use of TMS to manipulate glial cell
function.
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