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Andean orogeny is considered as one of the most important events for the development
of current plant diversity in South America. We compare available phylogenetic studies
and divergence time estimates for plant lineages that may have diversified in response to
Andean orogeny. The influence of the Andes on plant diversification is separated into four
major groups: The Andes as source of new high-elevation habitats, as a vicariant barrier,
as a North-South corridor, and as generator of new environmental conditions outside
the Andes. Biogeographical relationships between the Andes and other regions are also
considered. Divergence time estimates indicate that high-elevation lineages originated and
diversified during or after the major phases of Andean uplift (Mid-Miocene to Pliocene),
although there are some exceptions. As expected, Andean mid-elevation lineages tend
to be older than high-elevation groups. Most clades with disjunct distribution on both
sides of the Andes diverged during Andean uplift. Inner-Andean clades also tend to have
divergence time during or after Andean uplift. This is interpreted as evidence of vicariance.
Dispersal along the Andes has been shown to occur in either direction, mostly dated
after the Andean uplift. Divergence time estimates of plant groups outside the Andes
encompass a wider range of ages, indicating that the Andes may not be necessarily the
cause of these diversifications. The Andes are biogeographically related to all neighboring
areas, especially Central America, with floristic interchanges in both directions since
Early Miocene times. Direct biogeographical relationships between the Andes and other
disjunct regions have also been shown in phylogenetic studies, especially with the eastern
Brazilian highlands and North America. The history of the Andean flora is complex and plant
diversification has been driven by a variety of processes, including environmental change,
adaptation, and biotic interactions.
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1. INTRODUCTION
The uplift of the Andes is considered as one of the most impor-
tant events in the biogeographical history of the Neotropical
biota (Hoorn et al., 2010) and the tropical Andes are one of the
most diverse areas on earth in terms of vascular plant species
(Barthlott et al., 2005). Gentry (1982) suggested that Andean
uplift is responsible for nearly half of the Neotropical plant species
diversity (Figure 1). Due to its geographical setting in the South
American continent, the Andes have been proposed to act as a
corridor, promoting North-South exchange of biotic elements,
as a barrier, generating both East-West and internal vicariance,
and as promoter of speciation, with new high elevation envi-
ronments becoming available during their formation (Simpson,
1975, 1983; Luebert et al., 2009, 2011b; Antonelli and Sanmartín,
2011b; Hoorn et al., 2013). The rising Andes also influenced cli-
matic and hydrological conditions at a continental level (Hartley,
2003; Blisniuk et al., 2005; Hoorn et al., 2010), affecting the evo-
lutionary history of species groups outside the mountain chain
(Antonelli et al., 2009). Currently, two major problems limit our
understanding of the effects of the Andes and their orogeny on
plant diversification: the scarcity of dated phylogenies (Antonelli

and Sanmartín, 2011b) and the controversy surrounding the
detailed sequence and timing of the Andean orogeny (cf. Garzione
et al., 2008; Ehlers and Poulsen, 2009). The purpose of this review
is to offer a synopsis of Andean plant diversifications as known
today based on phylogenetic studies. It will become apparent that
there are now a wider range of dated phylogenies than commonly
assumed. Conclusions obtained from these phylogenies can also
contribute to the debate about the timing of Andean uplift.

A precise definition of “Andes” is necessary to circumscribe the
scope of this review. We follow the operational concept adopted
by Nagy and Grabherr (2009), which includes the mountain
regions from Venezuela to southern Chile and Argentina. This
definition coincides with Körner et al. (2011), in which moun-
tains are defined by the roughness of the landscape rather than
a given elevation, which is useful for mountain chains such
as the Andes with a long North-South extension and dramatic
differences in elevation, especially toward the South. Absolute
elevation of the thermal and vegetation belts on the mountains
decreases with increasing latitude (Körner, 1998). In this cir-
cumscription, the Andes comprise the biogeographical provinces
of Páramo, Puna, Yungas, Prepuna, and Subandean Patagonia
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FIGURE 1 | Left panel: South American map showing the major geographical
Andean units discussed in the text and approximate location of the most
commonly used geographical areas. Brown area are elevations above
3000 m. Right panel: Selected high Andean plants. (A) Gentianella

thyrsoidea (Gentianaceae); (B) Perezia pinnatifida (Asteraceae); (C) Azorella
compacta (Apiaceae); (D) Lupinus weberbaueri (Fabaceae); (E) Draba
weberbaueri (Brassicacae); (F) Valeriana globularis (Valerianaceae). Photos by
H. H. Hilger.

as defined in Morrone (2001). Within this region, three major
geographical units can be identified: The Northern, the Central,
and the Southern Andes (Figure 1, see Weigend, 2002). These
units are also biogeographically meaningful. The Northern Andes
comprise the mountains of Venezuela, Colombia, Ecuador, and
the extreme North of Peru. At their southern edge a transi-
tion zone, the Amotape-Huancabamba zone, has been considered
as a North-South biogeographical barrier, with high richness
and endemism and many high-elevation groups reaching their
northern and southern limits in this region (Weigend, 2002,
2004; Weigend et al., 2005). The Amotape-Huancabamba zone
might represent a dispersal barrier for high-elevation lineages
under current climatic conditions. Support for this idea has
been found in the distribution of groups such as Lithospermum
(Boraginaceae; Weigend et al., 2010), Macrocarpea (Gentianaceae;
Struwe et al., 2009), Nasa (Loasaceae; Weigend, 2002), Peperomia
(Piperaceae; Symmank et al., 2011). The Central Andes are situ-
ated between the Amotape-Huancabamba zone and the southern
limit of the dry Puna around 25–29◦S, where the precipitation
regime changes from summer-rainfall to winter-rainfall (Luebert
and Pliscoff, 2006), which is paralleled by floristic turnover
(Villagrán et al., 1983; Martínez-Carretero, 1995; Arroyo et al.,
1997, 1998). Here, aridity has been suggested as an environmen-
tal filter for Andean elements distributed to the North and to the
South of this zone (Villagrán et al., 1983). Finally, the Southern
Andes include the remaining Andean zones south of 29◦S where
elevation tends to decrease from North to South (Pankhurst and

Herve, 2007) an effect that—for plants—is compensated by lati-
tude. Thus, “high-Andean flora” can be found from its northern
limit in Colombia/Venezuela to the southern tip of South America
(Troll, 1968). In spite of this subdivision, there are plant groups
that are distributed along the entire Andes. This may suggest that
the barriers identified do not act as filters for the dispersal of all
plant groups, or that they developed after the respective groups
occupied their present range. Dated phylogenies interpreted in
the light of Andean geological history can contribute to clarifying
this kind of questions.

Several articles based on geophysical and paleobotanical infor-
mation argue for the “rapid rise model,” suggesting a recent and
sudden uplift of the Andes, with more than half of the current
elevation of the Central Andes uplifted between 10 and 6 Ma
(Gregory-Wodzicki, 2000; Graham et al., 2001; Ghosh et al., 2006;
Garzione et al., 2008; Leier et al., 2013). The rapid rise model
has generated considerable controversy and some authors have
seriously challenged it. Ehlers and Poulsen (2009) suggest that
paleoaltimetric estimates must be corrected with paleoclimatic
data before the uplift history of the Andes can be reconstructed.
According to Ehlers and Poulsen (2009), such correction would
result in a more gradual uplift since, at least, Oligocene times
and with most of the current elevation reached before 25 Ma.
Other authors have suggested that the rapid rise model is at odds
with geological evidence (e.g., Sempere et al., 2006; Hartley et al.,
2007), but these authors place an emphasis on methodological
issues and on the necessity of re-evaluating elevation estimates
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rather than on explicitly proposing new dates for the Andean
uplift.

In spite of the controversy, all of these views are an over-
simplification if applied to the Andes as a whole. The evidence
supporting one or the other view comes from the central Andean
plateau, but there are studies indicating that the timing of the
Andean uplift varies along its extension from North to South.
While in the Northern Andes the timing of the uplift should
be reflected in its different tectonic history (Gregory-Wodzicki,
2000), studies show that the northern Andean uplift appears to
have been approximately simultaneous with the Central Andes,
or even younger (Bayona et al., 2008; Bermúdez et al., 2010;
Mora et al., 2010; Erikson et al., 2012). Some studies show that
the uplift rate decreased toward the end of the Pliocene (Erikson
et al., 2012) with a renewal of the uplift during Quaternary times
(Regard et al., 2010; Rodríguez et al., 2013), and in general the
Venezuelan Andes seem to be older than the rest of the Northern
Andes (Mora et al., 2010). Within the Central Andes, Saylor and
Horton (2014) showed that the timing of uplift pulses may dif-
fer between regions, with current elevations in the northern part
of the central Andean plateau as old as 16 Ma, and thus ∼6 Ma
older than other parts of the central Andean plateau. Such non-
uniform spatial patterns of uplift have also been suggested for the
Northern Andes (Hoorn et al., 1995). For the Southern Andes,
Blisniuk et al. (2005) indicates that most of the uplift would have
occurred by 16.5 Ma, earlier than most of the Central Andes, and
several studies are in line with the idea of an Early Miocene uplift
of the Southern Andes (e.g., Jordan et al., 2001; Encinas et al.,
2013; Fosdick et al., 2013), but Late Miocene phases of uplift have
also been reported for the northern Patagonian Andes (Ramos
et al., 2014).

The Andes exerted an enormous influence on climate and
hydrology at continental scale. The most conspicuous effect is
the disruption of large-scale atmospheric circulation (Garreaud
et al., 2009). Asymmetries in rainfall between western and eastern
South America are influenced by the elevation and orientation
of the Andes, with two dry regions, the Atacama and Peruvian
coastal deserts on the western side of the Andes and the extra-
tropical plains in southern Argentina on the eastern side of the
Andes (Garreaud, 2009), strongly affected by a rain-shadow effect
caused by the Andes (Stern and Blisniuk, 2002; Houston and
Hartley, 2003; Smith and Evans, 2007), with well-documented
consequences for vegetation (Troll, 1968). In the Southern Andes,
precipitation on the western slope is caused by frontal systems
moving eastward from the Pacific. The effect of these frontal sys-
tems is orographically enhanced by the Andes (Garreaud, 2009),
with precipitation maxima around 47◦S (Luebert and Pliscoff,
2006) and an increase of precipitation with elevation and distance
from the Pacific Ocean on the western Andes (Stern and Blisniuk,
2002). On the eastern side of the Southern Andes, precipitation
strongly decreases due to a rain-shadow effect. Paleobotanical
evidence (Barreda and Palazzesi, 2007) tend to confirm the rela-
tionship between Andean uplift and onset of arid conditions over
Patagonia during the Miocene if the time estimates of Blisniuk
et al. (2005) are accepted. In the Central and Northern Andes the
asymmetry between East and West is reversed. Aridity is max-
imal a few kilometers off the Pacific coast on the western side

of the Andes, mostly due to the combined effects of the Pacific
anticyclone, the Humboldt current and the rain-shadow effect of
the Andes (Hartley, 2003; Houston and Hartley, 2003; Rutllant
et al., 2003). The effect of the cold Humboldt current on arid-
ity in western South America may have also been intensified or
reinforced by Andean uplift (Sepulchre et al., 2009). No compa-
rable paleobotanical evidence is available for the onset of aridity
in the Peruvian and Atacama deserts, but phylogenetic studies in
Atacama endemic taxa tend to indicate a rather recent (Miocene-
Pliocene) origin of diversification of these lineages in response to
aridity (e.g., Luebert and Wen, 2008; Dillon et al., 2009; Heibl
and Renner, 2012), falling into the range of estimates for onset
of present-day hyperaridity of the Atacama Desert (Alpers and
Brimhall, 1988; Hartley, 2003; Hartley and Rice, 2005; Arancibia
et al., 2006; Reich et al., 2009). These climatic changes exerted
feedbacks on Andean uplift. While aridity on the western slope
can be seen as a cause of uplift (Lamb and Davis, 2003), posi-
tive feedbacks between uplift and aridity are to be expected in the
Central Andes. Conversely, in the Southern Andes uplift led to
increases in precipitation in the western Andean side, so that neg-
ative feedback is to be expected (Blisniuk et al., 2005). Rainfall also
tends to increase with elevation on the western side of the Central
Andes, but rather due to the influence of the northeast summer
monsoon over the Altiplano (Houston and Hartley, 2003). This
summer monsoon is co-responsible for humid conditions on the
eastern side of the continent at tropical and subtropical latitudes,
the influence of which is prevented by the Andes on the western
side (Garreaud et al., 2009).

Hydrological effects of the Andes are complex (Buytaert et al.,
2009). One of the most important factors is related to the increase
of precipitation with elevation, which makes the Andes one of
the most important water sources on the continent and supports
rivers, glaciers and ice fields (Houston, 2006; Garreaud, 2009),
as well as sediment supply into the major water basins East and
West of the Andes (e.g., Aalto et al., 2006; Hoorn et al., 2010).
Drainage system formation requires topographic control. In par-
ticular, surface deformation and erosion required for drainage
development has been documented to be coincident or poste-
rior to the Andean uplift in the northern (Mora et al., 2010) and
Central Andes (Hoke et al., 2007; Schildgen et al., 2009). The
idea of a causal effect between Andean uplift and canyon forma-
tion has recently been challenged, arguing that surface uplift and
canyon incision are temporally decoupled and putting forward
the idea that climate change has been at least co-responsible for
canyon formation in the Central Andes (Lease and Ehlers, 2013).
This temporal decoupling between uplift and canyon formation
is based on a divergent view of the timing Andean orogeny, as
discussed above.

In this paper we discuss the available literature on dated and
undated phylogenies of Andean lineages of vascular plants in the
light of the various scenarios proposed for the timing of Andean
uplift. We attempt to cover most of literature on vascular plant
diversification related to the Andes, including some extra-Andean
lineages whose diversification may have been influenced by the
Andes. However, the number of lineages involved is potentially
so high that it will exceed the capacity of the authors to finish this
review before it becomes obsolete. Therefore, there is no intention
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to exhaustively revise all the literature or to cover all Andean plant
groups.

2. EFFECTS OF THE ANDES ON PLANT DIVERSIFICATION
According to Simpson (1975, 1983), Luebert et al. (2009),
Antonelli and Sanmartín (2011b), and Hoorn et al. (2013),
effects of the Andes on plant diversification and evolution can be
grouped into four major categories: (1) The Andes as source of
new high-elevation habitats; (2) The Andes as a vicariant barrier,
both on their eastern and western sides as well as internally; (3)
The Andes as a North↔South corridor; (4) The Andes as gener-
ator of new environmental conditions outside the Andes. It has
to be emphasized, that these factors acted in dramatically differ-
ent ways for different ecosystems: The western and eastern slopes
are today disjunct habitats, their disjunction came about by the
final stages of Andean orogeny, when the central Andean chains
and plateaus reached their current elevations. Exchange since then
has only been possible via long-distance dispersal. Conversely,
high-Andean habitats naturally formed later, in the last stages
of orogeny, and—depending on topography—nowadays form
more or less coherent or disjunct regions, which underwent dra-
matic changes in extent and connectivity during the glaciations.
Although these factors may certainly act in combination upon
some lineages, we will try to analyse the phylogenetic literature
considering each of these causal mechanisms separately.

2.1. THE ANDES AS SOURCE OF NEW HIGH-ELEVATION HABITATS
High plant diversity in the Andes is associated with high lev-
els of endemism (Young et al., 2002). Simpson (1975) attempted
to explain the high degree of diversity and endemism by colo-
nization and diversification (extinction-speciation) processes that
took place during the Pleistocene. This author postulated that
Quaternary glaciations favored the expansion of Páramo environ-
ments, promoting floristic exchange across the region, followed
by isolation during interglacial periods. This view is strongly
influenced by the belief that the Andes reached their current ele-
vation only just before the Pleistocene (Vuilleumier, 1971). After
creation of high-Andean environments, vacant niches became
available for colonization and speciation from lowland and mid-
elevation elements, both from within and from outside the
Neotropics (Simpson, 1983; Sklenář and Balslev, 2007). Results
of phylogenetic studies tend to agree with this interpretation.
This conclusion could automatically be extended to the Puna and
Jalca habitats, which should have more or less parallel histories,
but have been studied less extensively. Divergence time estimates
for high- and mid-elevation Andean clades are summarized in
Figure 2.

2.1.1. Northern Andes
One of the best-known phylogenetic studies dealing with a
species-rich high-Andean group was carried out on the genus
Lupinus (Fabaceae; Hughes and Eastwood, 2006; Drummond
et al., 2012). One of the centers of diversity of Lupinus (Figure 1D)
are the northern and Central Andes with ∼85 species, 81 of which
represent a monophyletic group with most of its species growing
above 3.000 m. The authors estimate a crown node age for this
clade to ∼2 Ma, suggesting a Pleistocene radiation. In addition,

this radiation is interpreted as the result of ecological opportunity,
which is supported by the exceptional life-form diversity observed
in high-Andean Lupinus, and it is claimed that an island-like
diversification process can be invoked, driven by the isolation
of the high-elevation areas in the Andes and reinforced by the
geographical extension of the Andean region. Similar results and
interpretations had been proposed for Gentianella (Gentianaceae;
von Hagen and Kadereit, 2001, Figure 1A), or with a more recent
age of diversification (<1 Ma) for Andean Halenia (Gentianaceae;
von Hagen and Kadereit, 2003). High-Andean species in the
genus Lepechinia (Lamiaceae) form a clade of ca. 30 species
that may have started their divergence during the Early Pliocene
(∼3 Ma; Drew and Sytsma, 2013). The latter authors explain this
diversification by climatic changes and the simultaneous rise of
the Andes, leading to an increased availability of open habitats
favored by Lepechinia.

Similar crown node ages have been reported for the Páramo
clade of the genus Hypericum (Hypericaceae), with diversification
rates that are greater than in any other clade in Hypericum (Nürk
et al., 2013). High diversification rates in the Páramos have also
been suggested for the Andean genus Diplostephium (Asteraceae;
Vargas and Madriñán, 2012). In this line, Páramo flora has
been recently studied extensively by Madriñán et al. (2013) who
analyzed diversification rates for over 15 of the most diverse
Páramo plant groups, including Aragoa (Plantaginaceae),
Arcytophyllum (Rubiaceae), Berberis (Berberidaceae),
Calceolaria (Calceolariaceae), Draba (Brassicaceae, Figure 1E),
Espeletiinae (Asteraceae), Festuca (Poaceae), Jamesonia
(Pteridaceae), Lupinus (Fabaceae), Lysipomia (Campanulaceae),
Oreobolus (Cyperaceae), Puya (Bromeliaceae), and Valeriana
(Valerianaceae, Figure 1F). They found the highest diversifica-
tion rates among biodiversity hotspots across the world in these
groups. Since most of the speciation events detected in these
lineages occurred during the Pleistocene, the authors suggest
that these exceptional diversification rates may have been a
consequence of range expansion and contraction of populations
due to Quaternary climatic oscillations.

However, for the Páramo clade of Valerianaceae Bell and
Donoghue (2005) and Madriñán et al. (2013) estimated older
ages, ranging from ∼20 to ∼5 Ma. Andean uplift has been sug-
gested as a possible explanation for all these diversifications and
similar scenarios are plausible for mid-elevation taxa.

Most of the diversity of the genus Vasconcellea (Caricaceae)
is in the Northern Andes, with 18 out of its 20 species
(Antunes Carvalho and Renner, 2012). Crown node age of
Vasconcellea was dated to the Middle Miocene (ca. 14 Ma), origi-
nating in situ from a Central American ancestor, with a later sec-
ondary colonization of Central America (Antunes Carvalho and
Renner, 2012). Andean orogeny has been invoked to explain the
diversification of Vasconcellea. Two early diverging (Late Miocene,
∼8 Ma) species of Brunfelsia (Solanaceae) inhabit the Andean
foothills and montane forests of the Northern Andes (Filipowicz
and Renner, 2012). For the tribe Cinchoneae (Rubiaceae),
Antonelli et al. (2009) suggested that diversification at mid-
elevation habitats in the northern and Central Andes during the
Middle and Late Miocene was favored by ecological adaptation
to higher altitudes. New World Gesneriaceae have a center of
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FIGURE 2 | Divergence times for high- and mid-elevation Andean

groups that may have diversified in response to the Andean

uplift. Mid-elevation groups are signalised by asterisk. Groups are
sorted by their geographical distribution in the Northern, Central, and
Southern Andes and putative age ranges for the rapid phases of

uplift of these Andean regions are marked as gray bars. Error bars
represent 95%HPD intervals for all estimates using BEAST. Reported
Standard Deviations were transformed to 95% Confidence Intervals.
Q, Quaternary; P, Pliocene. For source of data and details see
Supplementary Material.
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diversity in the Northern Andes and Perret et al. (2013) document
at least two Andean radiations (in Gloxinieae and Episcieae).
Gloxinieae originated in the Andes during the Early Miocene,
but did not start their diversification until the Middle or Late
Miocene. Andean diversification of Episcieae started during the
Middle Miocene (ca. 10 Ma), coincident with a period of presum-
ably rapid Andean uplift. According to Perret et al. (2013), the
latter radiation accounts for more Andean species than any other
clade of Gesneriaceae. Diversification of the genus Hedyosmum
(Chloranthaceae) in the Northern Andes has been dated to ca.
10 Ma (Antonelli and Sanmartín, 2011a), similar to the age
reported for the Andean palm genus Ceroxylon (Arecaceae; Trénel
et al., 2007).

2.1.2. Central Andes
In the genus Puya, an Andean radiation gave rise to ∼200 species
during the Late Miocene-Early Pliocene (Givnish et al., 2011)
and this may have been favored by the evolution of CAM pho-
tosynthetic pathway in some species (Givnish et al., 2014) plus
allopatric speciation driven by Pleistocene glacial cycles (Jabaily
and Sytsma, 2013). Evolution of CAM photosynthetic pathway
was also put forward as an explanation for the diversification
of the genus Deuterocohnia (also Bromeliaceae) at various eleva-
tions in the Andes during the Late Miocene (Givnish et al., 2014).
Andean uplift associated with the development of root tubers
was proposed for the origin of the high-Andean Heliotropium
sect. Hypsogenia (two species, Heliotropiaceae) in the Central
Andes (Luebert et al., 2011a), whose diversification has been
dated to ca. 5 Ma (Luebert et al., 2011b). In Lithospermum
(Boraginaceae), a genus with a center of diversity in the Central
Andes (Weigend et al., 2010), Weigend et al. (2009) estimated a
crown node age for the South American to ca. 3.5 Ma. In the high-
Andean Corryocactus (Cactaceae), Hernández-Hernández et al.
(2014) estimated a Pliocene age for its diversification (∼3 Ma).
Shifts in diversification rates were inferred for the subtribe
Trichocereinae (Cacatceae), centered on the Central Andes, whose
diversification started after 7 Ma, coincident with the Andean
uplift in that region (Arakaki et al., 2011; Hernández-Hernández
et al., 2014). However, according to the phylogeny presented by
Schlumpberger and Renner (2012), many subsequent dispersal
events between the Andes and eastern South America can be
inferred in both directions. Taxonomic complexity and the lack
of detailed dated phylogenies and biogeographical analyses in this
group of Cactaceae make it difficult to provide an explanation
for its diversification. Nonetheless, based on the distribution of
its Andean taxa both in the inter-Andean valleys and at high-
elevation habitats (Anderson, 2005), it is likely that a combination
of inner Andean vicariance and upward colonizations played a
role in the divergence of this group with well over 100 extant
species. The study of Schlumpberger and Renner (2012) sug-
gests that pollinations syndromes are evolutionarily labile in this
group. Therefore, repeated evolution of pollination syndromes
may have contributed to reproductive isolation in recent speci-
ation events. In Peperomia subg. Tildenia (Piperaceae), there are
several central-Andean clades, all of which started their diver-
sification after ca. 13 Ma, coincident with the onset of central
Andean uplift (Symmank et al., 2011). Poa sect. Dissanthelium

(Poaceae), with a center of diversity in the Central Andes,
forms a monophyletic group of 20 species (Refulio-Rodriguez
et al., 2012) that diversified in the last ca. 1 Ma (Hoffmann
et al., 2013). In another central Andean example, Soejima et al.
(2008) estimated that the stem node of Paranepheliinae, a high
Andean plant group, to be around 13 Ma old. However, the main
diversification of the group did not occur until around 2 Ma.
Hybridization may have played a role in the diversification of
this group. Two genera of Paranepheliinae, Paranephelius (seven
species) and Pseudoonoseris (three species), are distributed at
higher (2500–4000 m) and lower elevations, respectively. They
seem to be sister groups, which indicates that the group orig-
inated at lower elevations during the Miocene and one of the
lineages, Paranephelius, later diversified at higher elevations. One
of the odd endemic Central Andean groups is Laccopetalum +
Krapfia, sister to subcosmopolitan Ranunculus (Ranunculaceae).
Species of this clade are currently restricted to very high elevations
(>3500 m), but their divergence from Ranunculus is placed into
the early Miocene (ca. 21 Ma), with a divergence of Laccopetalum
and Krapfia placed at ca. 6 Ma (Emadzade and Hörandl, 2011).

Polyploidization has often been associated with speciation
in high-Andean environments. Polyploidy was suggested to be
involved in the diversification of the Oxalis tuberosa Alliance
(Oxalidaceae; Emshwiller and Doyle, 1998, 2002), with a cen-
ter of diversity in the Central and Northern Andes (Emshwiller,
2002). The main diversification of this group was dated to be
of Late Miocene age (Heibl and Renner, 2012). In monophyletic
and widespread American Solanum sect. Petota (Solanaceae), a
high concentration of polyploid species relative to total number
of species was reported for the Northern Andes, while diploid
species predominate in the Central Andes (Hijmans et al., 2007).
This possibly originally South American group (Simon et al.,
2011), started its diversification about 7 Ma (Särkinen et al.,
2013). Polyploidization was also suggested as a driver of diver-
sification for the central and northern Andean genus Polylepis
(Rosaceae; Schmidt-Lebuhn et al., 2010), but divergence times
estimates are not provided. The genus Tarasa (incl. Nototriche;
Malvaceae), which includes several high-elevation species of the
Central Andes, also comprises some polyploids (Tate et al., 2005).
While diploid species predominate in low-elevation habitats,
most polyploids are high-Andean. In Tarasa, allopolyploidiza-
tion and shifts to autogamous breeding systems (both of which
occurred several times) may have enabled species to colonize high
Andean environments (Tate and Simpson, 2003). The process is
suggested to be relatively recent (Quaternary; Tate and Simpson,
2004), but molecular dating is not available.

2.1.3. Southern Andes
In the Southern Andes, the genus Schizanthus (Solanaceae) pos-
sesses two high Andean species that have been resolved as sis-
ter to each other and are estimated to have diverged ca. 1 Ma
(Särkinen et al., 2013), probably associated with a shift to hum-
mingbird pollination (Pérez et al., 2006). The divergence time
estimates for Valeriana (Valerianaceae) by Bell et al. (2012)
are considerably higher (∼13 Ma). These authors suggest that
Valeriana originated in the Southern Andes before final uplift,
and that the group diversified into the higher elevations from
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either sides of the Andes once the Southern Andes reached
their current elevation (see above). For the southern Andean
Palmatifoliae clade of Oxalis, Heibl and Renner (2012) suggested
an origin in alpine habitats and a start of diversification dur-
ing the Middle Miocene (∼19 Ma). The same authors estimate a
more recent origin (Late Miocene to Pliocene) of alpine species
of the Alpinae clade, which entered the alpine habitats several
times with no subsequent radiations in high-elevation environ-
ments. The southern Andean representatives of the genus Caltha
(Ranunculaceae) form two independent lineages, both with Late
Miocene crown node ages (Cheng and Xie, 2014). Similar ages
(∼5 Ma) were proposed for southern Andean Heliotropium sect.
Plagiomeris (Heliotropiaceae; Luebert et al., 2011b). This is
the only Neotropical section of the genus Heliotropium with
ephemeral annual life form, which is associated with the rela-
tive aridity of their habitats (Luebert et al., 2011a). Palazzesi et al.
(2012) found a divergence of the major southern/central Andean
lineages of Geraniales in the Oligocene and Early Miocene, with
actual species divergence only in the Pleistocene and argue for
an early south-temperate diversification of the order with much
later speciation in an Andean context. The subantarctic, Andean
species of Nothofagus s.str. (Nothofagaceae; see Heenan and
Smissen, 2013) diverged around 20 Ma (scenario 1 of Sauquet
et al., 2012). Unfortunately, the phylogeny of Nothofagus in this
part of the tree is not yet well-resolved (Sauquet et al., 2012;
Heenan and Smissen, 2013). Also in the Southern Andes, the
diversification of the genus Oriastrum (Asteraceae; nomenclature
following Davies, 2010) in high-elevation environments contrasts
between southern and central Andean clades (Hershkovitz et al.,
2006): while the southern Andean centered subgenus Oriastrum
may have diversified about 13 Ma, crown node age of the cen-
tral Andean subgenus Egania was estimated to ca. 5 Ma, possibly
correlated to the differences in the timing of the Andean uplift
between the central and the Southern Andes as discussed above.

2.2. THE ANDES AS A VICARIANT BARRIER
2.2.1. East-West Andean vicariance
Disjunct patterns in plants groups inhabiting both sides of the
Andes have long been noticed in the literature. One of the earli-
est authors mentioning this pattern was Kuntze (1895) and it has
since been interpreted by Neotropical biogeographers as a sign
of the effects of the Andean uplift and the subsequent develop-
ment of aridity in South America (e.g., Schmithüsen, 1956; Smith,
1962; Landrum, 1981; Moreira-Muñoz, 2011).

There are some recent phylogenetic studies documenting the
age of disjunct clades inhabiting both the eastern and the west-
ern versant of the Andes but not the intervening area. Marquínez
et al. (2009) report a mid-Miocene age (∼13–16 Ma) for the
crown node of a disjunct South American clade of Drimys
(Winteraceae). The authors suggest that speciation in the genus
Drimys in South America coincides with Central Andean uplift.
In Fuchsia sect. Quelusia (Onagraceae) Berry et al. (2004) report
a similar age for the disjunction between F. magellanica, prac-
tically restricted the south-western Andes, and the other mem-
bers of the section, distributed in southern Brazil (Berry, 1989),
which would thus indicate the onset of aridity in SE South
America around that time. Chacón et al. (2012) also report

mid-Miocene ages for the separation of the Brazilian clade of
Alstroemeria (Alstroemeriaceae) from the western clades. Three
species of Brunfelsia inhabit the Pacific coast of South America
and they diverged from their disjunct sister species in Venezuela
about 7 Ma, coincident with the peak of the Colombian Andean
uplift according to Filipowicz and Renner (2012). In the genus
Phytelephas (Arecaceae), distributed on the eastern and western
slopes of the Central and Northern Andes, crown node ages were
estimated to be of Middle to Late Miocene age (Trénel et al.,
2007). Finally, for the genus Monttea (Plantaginaceae), disjunctly
distributed on the arid zones of both sides of the Andes, the
split between eastern and western species was estimated to be
of Late Micocene age (∼5–10 Ma; Baranzelli et al., 2014), coin-
ciding with the Andean uplift according to the rapid model.
Figure 3A illustrates divergence time estimates for all vicariant
groups mentioned above.

Monophyly of several other disjunct plant groups has been
documented in recent phylogenetic studies, but dates have not
been proposed. For example, the genus Myrceugenia (Myrtaceae)
has long been considered a typical example of a South American
disjunction mediated by Andes uplift (Landrum, 1981). Murillo-
A. et al. (2012) suggest that the disjunction of Myrceugenia may
have taken place during the Early Miocene. Another example are
the sister genera Balsamocarpon and Zuccagnia (Fabaceae). The
former is distributed in the southern portion of the Atacama
Desert, on the western side of the Andes, while the latter has
a distribution in the Chaco region on the eastern side of the
Andes (Ulibarri, 2005). These genera form a monophyletic group
together with Hoffmannseggia and Stenodrepanum (Nores et al.,
2012). These authors suggest that the Andes acted as a bar-
rier in the divergence of Balsamocarpon and Zuccagnia, fol-
lowed by diversification and long-distance dispersal events in
Hoffmannseggia. Bulnesia subg. Bulnesia (Zygophyllaceae) is a
monophyletic group (Comas et al., 1998) with a similar distri-
bution pattern to Balsamocarpon/Zuccagnia on both sides of the
Andes. Similarly, Suaeda foliosa (Amaranthaceae) is distributed
in the Atacama and Peruvian deserts on the western side of the
Andes and has been shown to be sister to S. divaricata from
the Chaco region (Schütze et al., 2003). Davis and Anderson
(2010) showed the monophyly of the genera Dinemandra and
Dinemagonum (Malpighiaceae), both from north central Chile
on the western slope of the Andes, and the genus Ptilochaeta
from the Chaco and Paraná regions on the eastern side. Mexican
Lasiocarpus is nested in Ptilochaeta and Anderson (2013) argues
that Lasiocarpus represents a secondary colonization of this group
from South America to Mexico.

2.2.2. Inner Andean vicariance
The inner-Andean valleys also represent habitats that were iso-
lated by Andean orogeny and should thus promote vicariant
speciation. This idea has been suggested in several papers (e.g.,
Struwe et al., 2009).

One example is Heliotropium sect. Heliothamnus, with a center
of diversity in the inner-Andean valleys of Ecuador and Peru and
for which a Miocene age of its crown node was proposed (Luebert
et al., 2011b). Pennington et al. (2010) studied different popula-
tions of the species Cyathostegia mathewsii (Fabaceae), distributed
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FIGURE 3 | Divergence times for plant groups that may have diversified in

response to the Andean uplift. (A) Groups disjunct on the western and eastern
side of the Andes; (B) Groups distributed in the inner Andean valleys. Error bars

represent 95%HPD intervals for all estimates using BEAST. Reported Standard
Deviations were transformed to 95% Confidence Intervals. Q, Quaternary; P,
Pliocene. For source of data and details see Supplementary Material.

disjunctly in inner-Andean valleys from southern Ecuador to
southern Peru. The authors found a strong phylogenetic signal
in the distribution of the populations and identified four geo-
graphically well-defined clades. They estimated the crown-node
age of C. mathewsii to be Late Miocene/Early Pliocene (5.4 ±
1 Ma), which they associate with the vicariant effect of valley for-
mations just before the origin of C. mathewsii. The crown node
of the genus Poissonia (Fabaceae) was dated to the Early Miocene
(∼ 20 Ma; Pennington et al., 2004; Särkinen et al., 2011). This
genus is composed of two well-supported clades of seasonally dry
tropical forests (SDTF) species, one inhabiting both sides of the
Andes (Chaco and Peruvian Desert) and the other distributed
along the Central Andes (Pennington et al., 2004; Särkinen
et al., 2011). Both clades started their diversification around
10 Ma (Särkinen et al., 2011). The northern Andean species of
Ruprechtia (Polygonaceae), also from SDTF, diversified during
the Early Pliocene (clade C; Pennington et al., 2004). An even
more recent diversification was suggested for the northern and
central Andean SDTF species of Loxopterygium (Anacardiaceae),
which was dated to Late Pliocene age (clade B; Pennington et al.,
2004). Other examples are provided by Särkinen et al. (2011)
for several Fabaceae lineages from Andean SDTF. These authors
found that the crown node ages of the lineages from the SDTF
range from ca. 19 to 4 Ma, suggesting that isolation of SDTF frag-
ments in the Andes dates back to the Early Miocene and has
persisted since, which they regard as in agreement with the “rapid
rise” model described above. In the Andean genus Fosterella
(Bromeliaceae), allopatric speciation associated with the Andean
uplift was invoked to explain the diversification of this genus,
whose origin was dated to Middle Miocene age (Wagner et al.,
2013). Outside the Andes (SDTF and Yungas), Fosterella has some
species distributed in azonal rock outcrops of the Brazilian high-
lands, lowlands of central Amazonia and Central America; the
latter three areas were reached in different and recent colonization

events after the Andean diversification of the group (Wagner et al.,
2013). Figure 3B summarizes divergence time estimates for all
these inner-Andean clades.

2.3. THE ANDES AS A CORRIDOR
Floristic and paleoecological studies suggest that the Andes acted
as a dispersal corridor, overcoming dispersal barriers such as the
most arid zone of the Atacama Desert or the low-lying Amotape-
Huancabamba zone (e.g., van der Hammen and Cleef, 1983;
Moreno et al., 1994; Weigend, 2002; Linares-Palomino et al., 2003;
Pinto and Luebert, 2009; Schwarzer et al., 2010). Andean North-
South exchanges may have been favored by Quaternary climatic
oscillations (van der Hammen, 1974; Moreno et al., 1994; Dillon
et al., 1995). This may not only explain the distribution of several
widely distributed plant groups of the Andes. Phylogenetic studies
in the recent decades have contributed to clarify this question.

Doan (2003) proposed a general south-to-north diversifica-
tion patterns for plants and animals based on the earlier uplift
of the Southern Andes. This theory has found support for a
range of plant groups. The genera Azorella (p.p., Figure 1C),
Laretia and Mulinum (p.p.) (Apiaceae) form a well-supported
clade distributed from Costa Rica to Patagonia along the Andes.
Its geographical origin was inferred for the southern part of
its distribution range, from which it migrated northwards since
about 12 Ma (Nicolas and Plunkett, 2012, 2014). These authors
suggest that this group colonized the Central and Northern
Andes after the Mid-Miocene climatic optimum (5–17 Ma), when
the global climate became cooler (Zachos et al., 2001) and the
Andes reached their current elevation (see above). In the genus
Oreobolus (Cyperaceae), there is a South American clade with
a wide Andean distribution; this clade may also have origi-
nated in the Southern Andes and migrated northwards during
the Early Pliocene (∼4 Ma; Chacón et al., 2006). In the genus
Perezia (Asteraceae, Figure 1B), Simpson et al. (2009) suggest that
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the genus colonized high-elevation habitats from low-elevation
ancestors in the Southern Andes and subsequently migrated
northwards along the Andes to eventually diversify in the Central
Andes. An essentially parallel hypothesis is provided by Meudt
and Simpson (2006) based on data on Ourisia (Plantaginaceae),
which clearly originated in the Southern Andes and subse-
quently dispersed to the Central and Northern Andes, where
further speciation took place. In Chuquiraga (Asteraceae), dis-
tributed from Patagonia to Venezuela along the Andes (Ezcurra,
2002; Gruenstaeudl et al., 2009), a southern origin was inferred
(Gruenstaeudl et al., 2009). Unfortunately, no time framework is
provided for Perezia or Chuquiraga. Extensive northward migra-
tions from south-temperate regions are also documented by a
combination of fossils and a dated phylogeny for several lineages
in Geraniales (Palazzesi et al., 2012).

Antonelli et al. (2009) suggested a considerable importance
of the Western Andean Portal (WAP) in Andean biogeog-
raphy. The WAP was an East-West corridor located around
the present Ecuadorian/Peruvian border (i.e., the Amotape-
Huancabamba zone) that enabled Pacific marine incursions
into the Amazonian basin until the Middle Miocene, when the
marine incursions ceased due to Andean uplift (Hoorn, 1993).
Biogeographical reconstructions in the genera Cinchona and
Ladenbergia (Rubiaceae) suggest multiple migrations from the
northern to the Central Andes around 12–10 Ma, attributed to
the closing of the WAP (Antonelli et al., 2009). High Andean-
species of the genus Puya (Bromeliaceae) are concentrated in
the Northern Andes, a diversity reached after this area was col-
onized by high-elevation, central-Andean ancestors that crossed
the WAP (Jabaily and Sytsma, 2013) around 6–4 Ma (Givnish
et al., 2011, 2014). A smilar pattern was proposed for Solanum
sect. Petota, which diversified in the Northern Andes from central
Andean ancestors (Simon et al., 2011) during the Late Miocene
(Särkinen et al., 2013). The opposite route was inferred for the
genus Hedyosmum (Chloranthaceae), which colonized the cen-
tral Andes from northern Andean ancestors several times after
Andean uplift (Antonelli and Sanmartín, 2011a). For the genus
Festuca (Poaceae), Inda et al. (2008) suggested that Patagonian
species originated from North America through a North to
South migratory route along the Andes during the Late Miocene
- Early Pliocene (10–3.8 Ma). A similar dispersal pattern was
reported in Cleome (Cleomaceae), with a well-supported clade
(incl. Podandrogyne) originating in the Northern Andes during
the Late Miocene and a subsequent dispersal into and radiation
in the Central Andes (Feodorova et al., 2010).

In a study of Macrocarpaea (Gentianaceae), a genus of
montane forest species, an Andean origin around the Amotape-
Huancabamba zone, with radiations in both north- and south-
wards directions was postulated (Struwe et al., 2009). These
radiations correspond to two well-supported subclades dis-
tributed to the South and to the North of the Amotape cross,
within which allopatric speciation between adjacent zones of the
same mountain range were hypothesized (Struwe et al., 2009).
Migrations from the Southern Andes through the Amotape-
Huancabamba zone into the Northern Andes suggest that the
Amotape-Huancabamba zone was not a dispersal barrier for lin-
eages of mid-elevations. Although these authors did not provide
divergence time estimates, they suggest that these diversification

events occurred after the major phases of Andean uplift since
Miocene times.

In the genus Nolana (Solanaceae), with a center of diversity
in the Atacama and Peruvian Deserts, several events of disper-
sal between both these deserts were suggested to have taken
place along the Andes (Dillon et al., 2009). These events may
have taken place during the Late Pliocene and Pleistocene, as
shown by different molecular dating analyses (Dillon et al., 2009;
Särkinen et al., 2013). Andean exchanges may have been followed
by diversification in the coastal range. A very similar pattern of
distribution and dispersal can be observed in Malesherbia sect.
Malesherbia (Malesherbiaceae), where Gengler-Nowak (2002)
argued for Pleistocene or even Holocene floristic exchanges.
Phylogenetic and biogeographical analyses of the allied genera
Polyachyrus, Moscharia and Oxyphyllum (Asteraceae; Katinas and
Crisci, 2000; Katinas et al., 2008; Luebert et al., 2009) would also
suggest this pattern, with Pleistocene southwards colonizations
from the Central Andes to central Chile, but no dating analysis
is available for these groups.

2.4. THE ANDES AS PROMOTERS OF DIVERSIFICATION OUTSIDE THE
ANDES

Several studies have highlighted the possible effects of Andean
uplift on the diversification of lineages outside the Andean range.
The idea that Andean uplift is important in the diversification
of Neotropical lowland plant taxa has been mentioned in the
literature at least since Gentry (1982) and Kubitzki (1989).

Rapid diversification in the genus Inga (Fabaceae) is a classical
example. This genus is particularly diverse on the eastern Andean
foothills and in the Amazonian basin. Rapid diversification of
Inga in this area was suggested to have been promoted by the later
phases of Andean orogeny (Richardson et al., 2001). In the mostly
extra-Andean tribe Bignonieae (Bignoniaceae), Lohmann et al.
(2013) suggested that the Andean orogeny played an important
role in the diversification of some lineages in the Amazon basin
and eastern South America. In the tribe Cinchoneae (Rubiaceae),
the Andean orogeny was suggested to have played a role in diver-
sification in lowland Amazonia (Antonelli et al., 2009). These
authors argue that the connection between the Andean uplift
and the demise of Lake Pebas during the Late Miocene is consis-
tent with colonizations by eastern Andean ancestors into lowland
Amazonia from the Late Miocene onwards. Miocene diversifi-
cation of the rain forest genus Renealmia (Zingiberaceae) also
gives support to the idea that its diversification was influenced
by the rise of the Andes (Särkinen et al., 2007), similar to what
was proposed to several genera of the Annonaceae with Miocene
diversifications (Pirie et al., 2006)

Diversification of the tribe Protieae (Burseraceae) in the west-
ern Amazon was suggested to be associated with the creation
of new edaphic habitats during the uplift of the Andes (Fine
et al., 2005). However, divergence times for this group (∼40 Ma;
Becerra et al., 2012) seem to predate Andean uplift. In the fam-
ily Chrysobalanaceae, the lowland Amazon genera Hirtella and
Couepia diversified during the Middle Miocene (∼12 Ma; Bardon
et al., 2013), but their diversification was probably not causally
linked to Andean uplift. In fact Amazonian lowland taxa in
general are a mixture of old and young lineages, with ages rang-
ing from 40 to 5.6 Ma in the analysis of Hoorn et al. (2010)
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and the data currently available do not paint a clear picture
as to the overall importance of Andean uplift for Amazonian
diversifications.

Luebert and Wen (2008) and Luebert et al. (2011b) pro-
posed the Middle Miocene as the minimum age for the origin
of Heliotropium sect. Cochranea (Heliotropiaceae). The diversi-
fication of this group in the Atacama Desert during the Pliocene,
isolated on the western slope of the Andes, was probably facili-
tated by Andean uplift and the subsequent development of aridity
(Sepulchre et al., 2009). This scenario was also suggested for the
origin of monotypic Gypothamnium (Asteraceae) in the Atacama
Desert (Luebert et al., 2009) and for Plectocephalus in South
America (Asteraceae; Susanna et al., 2011). On the south-eastern
side of the Andes, the onset of diversification of Heliotropium sect.
Heliotrophytum around 8.5 Ma has also been related to increas-
ing aridity as a consequence of Andean orogeny (Luebert et al.,
2011b).

2.5. BIOGEOGRAPHICAL RELATIONSHIPS OF THE ANDEAN FLORA
Many of the aforementioned phylogenetic studies included lin-
eages that also occur outside of the Andes and therefore provide
insights into the biogeographical relationships between the Andes
and other regions.

One of the most obvious patterns is the connection between
Central America, and especially the central American Cordillera,
and the Andes. Floristic interchange in both directions is doc-
umented in Gesneriaceae (Perret et al., 2013). In Gloxinieae
a colonization event Andes to Central America occurred dur-
ing the early Miocene and at least one more after the Late
Miocene. Episcieae dispersed from Central America to the Andes
several times from the Late Miocene onwards. The closing of
the Panama Isthmus may have facilitated northward dispersals
of South American lowland lineages into Central America, as
inferred for Joosia and Isertia (Rubiaceae) (Antonelli et al., 2009).
The same route and time frame was suggested for Pitcairnia and
Tillandsia (Bromeliaceae; Givnish et al., 2014), which reached
Central America from Andean ancestors independently around
5 Ma (Givnish et al., 2011). In Peperomia subg. Tildenia, Central
American taxa originated from central Andean ancestors around
15 Ma (Symmank et al., 2011). These authors suggest a north-
ern Andean track and subsequent extinction of the group
in the Northern Andes, since the current northern limit of
Peperomia subg. Tildenia in the Andes is around the Amotape-
Huancabamba zone. The separation of Central American and
Andean lineages in Ruprechtia (Polygonaceae) occurred ca. 6 Ma,
but their respective diversifications did not start until 4–3 Ma
(Pennington et al., 2004). All these time estimates indicate a dis-
persal across the Panama Isthmus before it closed ca. 3.5 Ma.
This has also been suggested for Inga (Richardson et al., 2001).
On the other hand, Coursetia (Fabaceae) colonized the Andes
from Central America before its diversification started ca. 7 Ma
(Pennington et al., 2004). Costus (Costaceae) dispersed from
Central America into the Andean region between ca. 1–6 Ma
(Kay et al., 2005). In Halenia, the colonization of the South
American Andes from Central America occurred more recently
(∼1 Ma), according to the estimates of von Hagen and Kadereit
(2003). Similar timing and direction were estimated for Lupinus

by Drummond (2008). Overall, these estimates would be in agree-
ment with the ideas of Simpson (1983), who argued that coloniza-
tions of the Andean flora by Nearctic elements occurred gradually
since the Middle Miocene, and the closing of the Panama gap had
little effect on it. In the case of alpine Lupinus and Halenia, dis-
persal must have been from mountain range to mountain range,
and the presence or absence of the Isthmus can not conceiv-
ably have had an effect—the taxa can not have migrated via the
lowland Daríen, whether covered by water or not. A generally
limited importance of the Panama Isthmus is supported by var-
ious dated molecular phylogenies showing dispersal across the
region older than the closing of the Panama Isthmus (Cody et al.,
2010). However, as pointed out by Antunes Carvalho and Renner
(2012), the colonization of South America by Caricaceae during
the Early Miocene may have also been favored by a first closing of
the Panama Isthmus ca. 24 Ma (Farris et al., 2011), an earlier date
than generally accepted.

Relationships between the northern and the Central Andes
and the Brazilian highlands have been suggested for Tibouchina
(Melastomataceae; Michelangeli et al., 2013), a connection
also retrieved in phylogenetic studies on Elapghoglossum
(Dryopteridaceae; Vasco et al., 2009), Sinningia (Gesneriaceae;
Perret et al., 2006), Macrocarpaea (Gesneriaceae; Struwe et al.,
2009), and Bromelioideae (Bromeliaceae; Givnish et al., 2014).
The latter is the only dated dispersal scenario available (∼8 Ma;
Givnish et al., 2011). Ecotopical similarity rather than geograph-
ical proximity may have played a role in the origin an floristic
connections of those regions (Simpson, 1983). A similar ratio-
nale must necessarily explain the relationships between the Andes
and the Guiana Shield, demonstrated for taxa such as Chaetolepis
(Melastomataceae; Michelangeli et al., 2013), since they were
never connected.

In a recent review, Luebert (2011) showed direct relationships
between the Atacama Desert and the Central and Southern Andes
in many genera with phylogenetic studies. Among the groups
with relationships between the Central Andes and the Atacama
Desert are Bomarea (Alstroemeriaceae), Cleome (Cleomaceae),
Croton (Euphorbiaceae), Eremocharis (Apiaceae), Gypothamnium
(Asteraceae), Krameria (Krameriaceae), Malesherbia sect.
Malesherbia (Malesherbiaceae), Nasa (Loasaceae), Oxalis
(Oxalidaceae), Oziroë (Asparagaceae), Prosopis ser. Cavernicarpae
(Fabaceae), Solanum sect. Lycopersicon (Solanaceae), and
Tarasa (Malvaceae), Vasconcellea (Caricaceae). Among the
groups with relationships between the Atacama Desert and
the Southern Andes are Asteriscium (Apiaceae), Chaetanthera
(Asteraceae), Conanthera (Tecophilaeaceae) Montiopsis subg.
Montiopsis (Montiaceae), Oxyphyllum (Asteraceae), Schizanthus
(Solanaceae), Schizopetalon (Brassicaceae), Tropaeolum sect.
Chilensia (Tropaeolaceae) (see references in Luebert, 2011).
However, only few of them have been dated at the crown
node of that relationship: Bomarea (∼5 Ma; Chacón et al., 2012),
Asteriscium and Eremocharis (both ∼11 Ma; Nicolas and Plunkett,
2014), Oxalis (∼20 Ma; Heibl and Renner, 2012), Prosopis
(∼1 Ma; Catalano et al., 2008), Solanum sect. Lycopersicon
(∼2 Ma; Särkinen et al., 2013), Vasconcellea (∼10 Ma;
Antunes Carvalho and Renner, 2012), Alstroemeria (∼18 Ma;
Chacón et al., 2012), Chaetanthera (∼10 Ma; Hershkovitz et al.,
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2006), Schizanthus (∼24 Ma; Särkinen et al., 2013). Floristic
interchange between the Andes and the Atacama Desert has
therefore been taking place continuously since Miocene times.

Surprisingly, fewer studies have shown the connection between
the Andes and the immediately adjacent areas of eastern South
America (incl. Amazon basin). Examples can be found in
Brunfelsia, which made its way from eastern South America into
the Andes around ca. 10 Ma (Filipowicz and Renner, 2012), and
the tribe Cinchoneae, whose Amazonian representatives origi-
nated from Andean ancestors during the late Miocene (Antonelli
et al., 2009). Conversely, an eastern South American origin for
Andean taxa in Chuquiraga for Andean taxa was inferred by
Gruenstaeudl et al. (2009). Simpson et al. (2009) suggest that the
geographical origin of the Andean lineages in Perezia is in the low-
lands of Patagonia. Finally, in Oxalis subg. Trifidus, distributed
in the Altiplano and temperate Chile, Heibl and Renner (2012)
estimated a Middle Miocene split between its two component
species.

Direct relationships between the Andean region and North
America can be inferred for Urtica (Farag et al., 2013; Henning
et al., 2014). American Urtica gracilis can be shown to be sister
to an Australasian clade, U. gracilis then splits up into temper-
ate North American subsp. gracilis as sister to the remaining
subspecies, and western North American subsp. holosericea in
turn sister to three subspecies distributed in Mexico/Guatemala,
Peru and Chile/Argentina, respectively, with at likely two disper-
sal events from North America into South America along the
American Cordillera. Conversely, the other group in American
Urtica is sister to a Macaronesian clade, but also seems to have had
at least two dispersal events between South and Central America,
with a minor diversification in Mexico and a major diversification
in the Andes. Timing has not been investigated for Urtica. On
the other hand, colonization from North America to the north-
ern Andes by Festuca took place ca. 4 Ma (Inda et al., 2008). The
same biogeographical connection but more recent origin was sug-
gested for Gentianella (von Hagen and Kadereit, 2001). Weigend
et al. (2010) show that Lithospermum arrived from Southern
North America initially to the Central Andes, and then migrated
northwards and diversified in the Amotape-Huancabamba zone.
According to Bell and Donoghue (2005), “Valerianaceae arrived
in South America, most likely via long-distance dispersal. . .when
the northwestern Andes were not at their current elevations.”
Dispersal from the north-temperate zone and especially the North
American Cordillera into the Andes and subsequent diversifica-
tion seems to be a fairly common pattern, although few detailed
phylogenies are available. A clear Andes-North America direction
was shown for the bulb-bearing Oxalis (Gardner et al., 2012). The
dispersal of that group into North America may have occurred
after its Middle Miocene origin (Heibl and Renner, 2012) by long
distance dispersal.

More geographically distant relationships between the Andean
Prumnopitys (Podocarpaceae) and its close relatives in Oceania
(Knopf et al., 2012) date back to the Paleocene (Biffin et al., 2011),
while in Nothofagus s. str. this separation seems to be more recent
(∼42 Ma, Middle Eocene; Sauquet et al., 2012). In Cunoniaceae,
Bradford (2002) showed phylogenetic relationships between
Andean Weinmannia, and W. tinctoria from the Mascarenes.

Since the position of W. trichosperma, from southern South
American temperate forests, was resolved as sister to the tropi-
cal Andes—Mascarene clade, this author argued that exchanges
between tropical America and the Indian Ocean occurred more
recently than between temperate and tropical America. Although
Bradford (2002) indicated that these results await confirma-
tion, no study has challenged them so far. The diversification
of Weinmannia occurred during Oligocene–Miocene transition
(Heibl and Renner, 2012).

3. DISCUSSION
The exact timing and process of Andean uplift has been repeatedly
invoked to explain Neotropical diversifications in plants, shap-
ing the diversity of both Andean and extra-Andean groups (see
reviews in Hoorn et al., 2010; Graham, 2011a; Särkinen et al.,
2011; Madriñán et al., 2013). When the available evidence is ana-
lyzed, we only find partial support for that explanation. There
is a trend in high-Andean lineages to be of more recent origin
in the northern than in the Central Andes and in the central
than in the Southern Andes (Figure 2), which agrees with the
assumption that the Andean uplift progressed from South to
North (see above). Plant groups inhabiting mid-elevation envi-
ronments (such as Brunfelsia, Fuchsia, Fabaceae, Generiaceae,
Hedyosmum, Oxalis tuberosa Alliance, Rubiaceae, Vasconcellea, see
Figure 2) also tend to be older than high-Andean groups, which
also agrees with progression of uplift. These trends are fairly sta-
ble and independent of the conflicting views on the exact timing
of Andean uplift. However, these trends do not fit all studied plant
groups. Some high-Andean lineages (Valeriana, several groups in
Geraniales) are older than the presumed timing of the Andean
uplift, while most are younger, especially in the Northern Andes
(Figure 2).

For the latter, ecological opportunities to colonize high-
Andean environments may have differed between lineages, so
that the speed of the diversification of life histories or other
adaptive traits necessary to survive in extreme environments are
lineage-specific. This may be the reason for a delayed evolu-
tionary response in some lineages, explaining the evident lag
times in diversification with respect to the formation of high-
elevation habitats. However, such an explanation lacks power,
since this can be argued for any young group whose diversifica-
tion started after the uplift of the Andes regardless of cause-effect
links. Moreover, Late Miocene increases in Andean uplift rate
coincides with a global cooling trend (Zachos et al., 2001, 2008),
which can also be seen as a possible trigger of plant diversi-
fications. Regarding the role of the Andes as vicariant barrier,
the available data tend to be more consistent with the timing of
the Andean orogeny. The separation of western South American
Drimys (∼14 Ma) and Fuchsia (∼13 Ma) are consistent with the
uplift times proposed for the Southern Andes (Figure 3). Groups
distributed West and East of the Central and Northern Andes are
younger (∼11–7 Ma) with the exception of Poissonia (∼13 Ma). A
narrower range of ages (∼12–3 Ma) is shown for putatively vicari-
ant lineages distributed in the inner-Andean valleys (Figure 3).
All groups for which the Andes have likely acted as a corri-
dor for latitudinal dispersal diversified after the Andes reached
their present elevation (∼3–5 Ma, see Figure 3). An alternative
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explanation for younger lineages is proposed by Rull (2011a,b),
partially in response to the general assumption that Andean uplift
has driven Neotropical biotic diversification. This author argues
that Pleistocene climatic fluctuations are at least co-responsible
of present Neotropical diversity, since most speciation events
occurred during this period, which fits the data available so far.
This explanation, however, has the same inherent problems of
power mentioned above. Moreover, current lineage diversity is
always overestimated in phylogenetic studies compared to his-
torical diversity, because newer lineages have had less time to go
extinct than ancient lineages (Harvey et al., 1994). In this line,
Hoorn et al. (2011) argued that crown node ages of clades “lead
to more robust age estimation of deeper nodes even when many
species are missing.” However, disentangling the relative effects of
different events that overlap in time may prove impossible using
dated phylogenies (Pennington and Dick, 2010).

Older-than-uplift lineages also require an explanation. One
possibility would be accepting an older origin of the high-Andes
as suggested by Ehlers and Poulsen (2009). This would imply
that most of the studied groups diversified with considerable lag
times with respect to Andean uplift. On the other hand, these
lineages could have initially diversified at lower elevations before
the Andean uplift, with later colonization of the high elevation
environments as they were forming. Since the global climates
during the Middle Miocene were considerably warmer (the Mid-
Midocene Climatic optimum has been dated around 14–16 Ma,
see Zachos et al., 2008), initially diverging species should have
had more tolerance to higher temperatures than they have now.
In Valeriana that is more likely because many species related
to the Páramo clade are found out of high-elevation habitats
(Bell and Donoghue, 2005). Palazzesi et al. (2012) argue for a
northward displacement of an originally south-temperate floris-
tic element with climatic cooling, eastern Patagonian aridization
and Andean uplift and this could explain various “too old” lin-
eages nowadays restricted to Andean habitats in groups such as
Ranunculaceae, Geraniales, Apiaceae. This argument is also in
line with the relatively common phenomenon of south-to-north
diversifications in the high Andes and along the Andean slopes,
as shown for, e.g., Malesherbia (Gengler-Nowak, 2002). Overall,
the detailed spatial patterns of Andean diversifications are still
very incompletely understood, not least because most phylogenies
use a rough “geographical subdivision” pattern for interpreting
historical biogeography instead of analysing explicit distribution
data.

The range of ages obtained for Andean lineages (∼20-1 Ma)
are similar to those reported for several lineages on the Qinghai-
Tibetan Plateau (QTP; Wen et al., 2014). This may be due to
the fact that the Andes and the QTP are of similar age (Favre
et al., 2014). However, the relatively high frequency of Miocene
or younger Angiosperm diversifications revealed by molecular
phylogenies in relation to older ones suggests that a further possi-
bility must also be taken into account: These diversifications may
respond to the age constraints given by the origin of Angiosperms
in time. This origin has been dated to the Early Jurassic the old-
est (Magallón, 2010; Magallón et al., 2013). This time constraint
imposes a boundary for diversification of modern lineages within
the Angiosperms.

A range of published papers highlight the strong biogeograph-
ical connections between the Andean region and neighboring
areas of Central America, eastern and western South America, as
well as with more distant regions, such as North America, Oceania
and Mascarenes. Biogeographical connections between the Andes
and different areas of the Neotropics shown in molecular phyloge-
nies confirm the long recognized mixed character of the Andean
flora (Katinas et al., 1999). All connections with neighboring areas
seem to have originated in Miocene times, or later. In particular,
the closing of the Panama Isthmus might have been an important
event for many lineages, which experienced floristic exchanges
with Central America since Miocene times. The importance of
the closing of the Panama Isthmus has long been claimed in
Neotropical biogeography (e.g., Graham, 2011b). However, the
closing of the Panama Isthmus must have occurred before the
Pliocene in order to explain plant interchanges between Central
and South America (Cody et al., 2010). Older ages for the closing
of the Panama Isthmus have indeed been recently proposed by
Farris et al. (2011), which has begun to be acknowledged by bio-
geographers (e.g., Antunes Carvalho and Renner, 2012; Hughes
et al., 2013). However, few explicit analyses have included altitudi-
nal species/lineage distributions in the discussion and a role of the
closing of the Panama Isthmus in the exchange between montane
and alpine biota is very implausible.

In summary, the data available in the literature confirm a
temporal time-frame for most Neotropical diversifications which
roughly agrees with Andean uplift, but also point to a complex
history of the Andean flora (Antonelli and Sanmartín, 2011b;
Rull, 2011a). As long as there are controversial models of uplift
history, rigorous hypothesis testing must wait and each taxo-
nomic group tends to have independent histories. There can be
little doubt that diversification was driven by a range of processes,
some directly linked to Andean uplift, such as climate changes
and new ecological niches, others rather based in biotic responses
such as polyploidization, morphological and physiological adap-
tations, and shifts in plant-pollinators interactions. Evaluation of
the relative importance of these drivers is still a pending task in
Neotropical biogeography.
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