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When faced with visual uncertainty during motor performance, humans rely more on predic-
tive forward models and proprioception and attribute lesser importance to the ambiguous
visual feedback.Though disrupted predictive control is typical of patients with cerebellar dis-
ease, sensorimotor deficits associated with the involuntary and often unconscious nature
of L-DOPA-induced dyskinesias in Parkinson’s disease (PD) suggests dyskinetic subjects
may also demonstrate impaired predictive motor control.

Methods: We investigated the motor performance of 9 dyskinetic and 10 non-dyskinetic
PD subjects on and off L-DOPA, and of 10 age-matched control subjects, during a large-
amplitude, overlearned, visually guided tracking task. Ambiguous visual feedback was
introduced by adding “jitter” to a moving target that followed a Lissajous pattern. Root
mean square (RMS) tracking error was calculated, and ANOVA, robust multivariate linear
regression, and linear dynamical system analyses were used to determine the contribution
of speed and ambiguity to tracking performance.

Results: Increasing target ambiguity and speed contributed significantly more to the RMS
error of dyskinetic subjects off medication. L-DOPA improved the RMS tracking perfor-
mance of both PD groups. At higher speeds, controls and PDs without dyskinesia were
able to effectively de-weight ambiguous visual information.

Conclusion: PDs’ visually guided motor performance degrades with visual jitter and speed
of movement to a greater degree compared to age-matched controls. However, there are
fundamental differences in PDs with and without dyskinesia: subjects without dyskinesia
are generally slow, and less responsive to dynamic changes in motor task requirements,
but in PDs with dyskinesia, there was a trade-off between overall performance and inap-
propriate reliance on ambiguous visual feedback. This is likely associated with functional
changes in posterior parietal–ponto–cerebellar pathways.

Keywords: L-DOPA-induced dyskinesias, Parkinson’s disease, dynamical system models, visually guided tracking,
visual uncertainty

INTRODUCTION
Prediction is a fundamental component of motor control. For
instance, when catching a baseball it is necessary to predict where
the ball will be at a given instant and how much force its impact
will generate in order to prepare the hand for the catch. Central
to motor prediction is the forward model, which enables predic-
tion of the sensory effects of movement (1). Substantial evidence
indicates that humans use forward models to predict the sensory
consequences of their own actions (1–6), as well as to predict
the dynamics of objects in the external environment (4, 7–11).
Furthermore, forward models of object dynamics are necessary

to guide visuo-motor coordination tasks, and can even override
observed kinematic feedback (12, 13).

Predictive forward modeling becomes even more imperative
as the reliability of visual feedback is compromised, for exam-
ple in dim lighting, or disease states such as Parkinson’s disease
(PD) where the visual system may be affected (14). Normally,
human subjects account for the degree of sensory uncertainty
during motor performance by de-weighting their reliance on sen-
sory feedback when it is ambiguous (1, 6, 15–20), and instead
more heavily rely on predictive forward models (6, 18, 20). How-
ever, when subjects are unable to use predictive motor control, the
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motor response no longer anticipates sensory feedback but rather
reacts to it in an uncoordinated manner (21–24).

Motor performance in PD, at least in the early stages of the
disease, is greatly improved by pharmacotherapy, and l-DOPA
remains the gold standard of treatment in PD (25). However,
l-DOPA-induced dyskinesias (LIDs) – excessive choreoathetoid
involuntary movements – are a relatively common side effect of l-
DOPA of which peak-dose LIDs are the most common type (26).
Though LID pathophysiology remains unclear, behavioral stud-
ies suggest that rather than being a purely motor phenomenon,
LIDs may be associated with deficits in sensorimotor control (27–
29). For example, dyskinetic subjects have demonstrated increased
variation in tracking velocity during a visually guided tracking
task that was significantly reduced when visual feedback was with-
drawn, suggesting an exaggerated motor response to sensory input
(27). As dyskinetic subjects are often unaware of their involuntary
movements (30), and have been shown to underestimate the dis-
tance their limb has moved (28), a component of sensorimotor
deficits associated with LIDs may be attributed to impaired pre-
dictive motor control. For instance, a mismatch between predicted
movement and actual movement may drive dyskinetic subjects to
compensate for the sensory discrepancy with excessive movement.
Deficits in predictive motor control are typically seen in diseases
of the cerebellum (31–36), yet such deficits have also been demon-
strated in PD (37, 38). There is evidence to support cerebellar
involvement in LIDs (39), and altered activity and plasticity in the
prefrontal cortex in dyskinetic subjects (40, 41) may contribute to
altered sensorimotor control in LIDs.

If inadequate predictive motor control is an underlying fea-
ture of dyskinetic subjects’ motor performance, then a heightened
reliance on sensory feedback should be especially prominent in
conditions where healthy subjects rely more heavily on predictive
forward models, such as when confronted with ambiguous visual
feedback (6). Accordingly,we hypothesized that dyskinetic subjects
would demonstrate an impaired ability to de-weight ambiguous
visual feedback during a visually guided tracking task. We have
purposely chosen a motor adaptation task, whereby subjects had to
adapt to changing sensory information. We have recently demon-
strated that overall, PD subjects are susceptible to sensory uncer-
tainty during visually-guided tracking (42), but in that study we
did not dichotomize dyskinetic and non-dyskinetic subjects. We
have since recruited additional PD subjects while employing the
same tracking task to assess the reliance on uncertain visual feed-
back of dyskinetic and non-dyskinetic PD (NDPD) subjects. As
previous work has demonstrated linear dynamical system (LDS)
models to be a sensitive marker of motor performance in PD (42,
43), here we use LDS models in addition to quantifying tracking
error to assess tracking performance. By extracting the decay rate
parameter from the LDS models during ambiguous tracking, we
quantified subjects’ relative reliance on uncertain visual feedback.

MATERIALS AND METHODS
SUBJECTS
The Ethics Board of the University of British Columbia approved
the study and all subjects gave written, informed consent. We
recruited 19 patients with probable PD according to diagnostic
criteria (44) and 10 age-matched control subjects without active

neurological disorders. Exclusion criteria included known PD with
dementia. PD subjects were Hoehn and Yahr stage 1–3 (45), and
9 subjects were dyskinetic PD (DPD) subjects and 10 were NDPD
subjects. We did not screen subjects for the presence of depression
or anxiety, however we excluded PD subjects with dementia and
all subjects were cognitively able to follow the instructions and
complete the tasks. Subject characteristics are shown in Table 1.
All patients had overnight withdrawal of medications before the
study for at least 12 h for l-DOPA and 18 h for dopamine ago-
nists. We calculated the converted l-DOPA daily dosage as 100 mg
l-DOPA= 125 mg of controlled-release l-DOPA, which was then
added to the equivalents of dopamine agonists to give the l-DOPA
equivalent daily dosage (LEDD), where 100 mg of l-DOPA= 1 mg
of pramipexole, 6 mg of ropinirole, 10 mg of bromocriptine, 75 mg
of l-DOPA plus entacapone. The presence of peak-dose LIDs
was assessed up to 1.5 h after the l-DOPA challenge, where sub-
jects received the equivalent of their morning l-DOPA dose given
in the immediate release form. Peak-dose LIDs were defined by
the presence of involuntary choreiform movements in any of
the head/neck, trunk, and upper limbs of variable duration and
in some cases were accompanied by dystonia. LID severity was
assessed according to the Goetz Dyskinesia Rating Scale (46), and
all DPD subjects had mild LID that were of minimal severity and
did not interfere with voluntary motor acts (Goetz score= 1).
Disease severity was assessed according to the Unified Parkinson’s
Disease Rating Scale (UPDRS) motor score in the off medication
state.

STUDY PARADIGM
The large-amplitude tracking task used here has been previously
described (42). Briefly, a Lissajous figure was presented on a screen
measuring 1.62 m× 1.22 m with a red circular target (12 cm in
diameter) in the center of the screen. Subjects stood approximately
55 cm in front of the screen, and tracked the moving target with
their index finger, requiring movement about the wrist, elbow,
and shoulder joints. We tested subjects in the standing position in
order to facilitate larger amplitude movements more representa-
tive of everyday life that are often precluded in imaging studies.
Additionally, evidence suggests LIDs may be of greater amplitude
in the standing compared to the sitting position (47). In the base-
line trials the target smoothly followed the Lissajous path, either
at a slow tracking speed (average speed of 56.2 cm/s) or a fast
tracking speed (average speed of 78.3 cm/s). In subsequent visu-
ally ambiguous conditions, the target jittered about the path while
maintaining the path’s overall trajectory. In the ambiguous track-
ing conditions, subjects were instructed to attempt not to chase the
jitter, but rather to attempt to track the desired target’s position,
which maintained the overall Lissajous trajectory. Four levels of
visual ambiguity were tested (0, 0.03, 0.05, 0.07) – representing the
jitter root mean square (RMS) amplitude with respect to screen
height (0, 0.0191, 0.0318, and 0.0445°), at two speeds, giving a
total of eight conditions. The jitter was obtained by first starting
with random Gaussian noise sampled at the frame rate of 60 Hz.
Because we did not want excessive discontinuities in the visual pat-
tern caused by high-frequencies, we then low-passed the random
series at 20 Hz. Each condition was tested in three different tri-
als, where a trial consisted of 30 s of tracking, a 12 s rest, followed
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Table 1 | Subjects’ characteristics.

Subject Age Disease

duration

Motor exam

UPDRS

Converted

daily L-DOPA

dosage (mg)

Other Parkinson’s

medications

Type of LID chorea (C)

dystonia (D)

L-DOPA equivalent

daily dose (mg)

DPD

D1 65 22 65 650 Rop, amant C, D 750

D2 64 7 42 880 Entac, amant C 1173.3

D3 68 13 51 660 Entac C 880

D4 65 15 57 720 Entac C, D 960

D5 66 5 45 1020 None C 1020

D6 64 4 22 1280 Pram C 1580

D7 51 7 37 800 Bromo C, D 1000

D8 55 13 40 640 Pram, amant C, D 665

D9 75 8 47 600 None C 600

DPD (mean±SD) 63.7±7 10.44±5.8 45.11±12.3 805.56±223.33 958.7±296.27

NDPD

ND1 63 5 8 320 Pram None 620

ND2 68 4 19 400 None None 400

ND3 64 9 69 860 None None 860

ND4 59 9 14 740 None None 740

ND5 45 4 11 780 None None 780

ND6 65 9 51 640 Entac, pram None 1003.3

ND7 63 10 54 800 Pram None 1000

ND8 66 7 22 640 Rop None 673.3

ND9 62 5 31 400 None None 400

ND10 59 12 47 400 Pram None 775

NDPD (mean±SD) 61.4±6.4 7.4±2.8 32.6±21.2 598±200.3 725.2±211.3

Control (mean±SD) 61.6±7.9

p Value 0.75 0.16 0.14 0.047 0.062

Rop, ropinirole; pram, pramipexole; amant, amantadine; bromo, bromocriptine; entac, entacapone.

by 30 s of tracking. The order of the trials began with the slow
non-ambiguous condition followed by the fast non-ambiguous
condition. The order of the remaining six ambiguous conditions
was randomly selected. This same trial order of all eight tracking
conditions was then repeated for the second and third trials. The
trial order was the same for every subject. Subject DPD 9 was an
exception and completed two trials of each condition due to com-
plaints of fatigue. PD subjects performed this motor task in the
morning when in the “off” medication state, and after a break for
lunch subsequently repeated the task in the “on” medication state
that same day.

QUANTIFICATION OF MANUAL TRACKING
We used a Polhemus Fastrak (Polhemus, Colchester, VT, USA)
six-degrees-of-freedom electromagnetic tracking system to record
subject tracking. A stylus sensor was held in the palm of the sub-
jects’ dominant hand and secured with tape. The tip of the stylus
was aligned with the tip of the index finger in order to record
subjects’ index finger position. A time series for displacement was
recorded in the x, y, and z directions, and data was recorded at
10 Hz. We performed a robust linear regression analysis on the
x and y sensor data during non-ambiguous tracking to deter-
mine the optimum affine transformation to map the sensor data
coordinates to the Lissajous figure coordinates. We subsequently

applied the same transformation to the ambiguous conditions on
a subject-by-subject basis.

QUANTIFICATION OF TRACKING PERFORMANCE
Root mean square tracking error was calculated by subtracting the
processed x and y sensor data of the index finger from the x and
y target position along the baseline track, squaring the result for
each time point, taking the mean for the squared values for each
trial, and computing the square root of the result.

Analysis of motor performance using LDS models is being
increasingly utilized in sensorimotor studies (16, 48–51) and has
been previously used to rigorously characterize tracking perfor-
mance in PD (42, 43). We computed LDS models of subjects’
tracking using system identification techniques (52) and extracted
the decay rate parameter, which describes how quickly tracking
performance returns to equilibrium after a perturbation. Intu-
itively, a higher decay rate can be considered akin to the tighter
suspension of a sports car: tighter turning on a good road may be
desirable, but when an uneven gravel (noisy) road is encountered,
the ability to smooth out the bumps (i.e., de-weight the noise) is
diminished. Thus during ambiguous tracking, higher decay rates
can intuitively be interpreted as a greater response to ambiguous
visual feedback (see Figure S1 in Supplementary Material). The
natural logarithm of the decay rates were used to make the results
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FIGURE 1 |Training effect. All groups demonstrated a significant decrease
in RMS error between trial 1 and trial 2 except for the DPD ON group
(where the decrease was not significant), and the RMS error subsequently
stabilized for all groups between trials 2 and 3. We therefore omitted trial 1
data in all subsequent calculations. Error bars represent the standard error.

more Gaussian distributed and this was subsequently used in all
statistical analyses.

STATISTICAL ANALYSES
MatLab (The MathWorks Inc., MA, USA) was used for all sta-
tistical analyses. In order to control for a training effect between
tracking trials, we first performed paired t -tests on the pooled
RMS error of all groups (DPD and NDPD off and on medication
and control) between trial sets 1 and 2 and trial sets 2 and 3. We
observed a training effect between trial set 1 and 2 that stabilized
between trial set 2 and 3 (Figure 1), and trial 1 data were therefore
omitted from all subsequent data analysis to ensure we were not
examining motor learning in our visually guided tracking task but
rather the effect of visual uncertainty after learning had occurred
and stabilized.

We used mixed-model analysis of variance (ANOVA) to assess
different effects on both overall RMS error as well as decay rate.
In the first instance, we examined the effect of ambiguity, tracking
speed, and drug status (i.e., ON or OFF l-DOPA), PD group (i.e.,
DPD or NDPD), and subject number as factors in the ANOVA.
Since the same PD subjects were assessed before and after l-DOPA,
ambiguity, tracking speed, and drug status were considered within
subject factors and subject number was nested within the PD group
factor.

To compare the PD subjects with Normal subjects, we also used
a mixed-model analysis of variance (ANOVA), where ambiguity,
tracking speed, group (i.e., N, DPD ON or OFF l-DOPA, or NDPD
ON or OFF l-DOPA) and subject number were used as factors in
the ANOVA. As before, ambiguity and tracking speed were consid-
ered within subject factors and subject number was nested within
the group factor. We then repeated the above two ANOVA analyses
with log(decay rate) instead of RMS error.

In order to examine the relationship between UPDRS and
the effect of ambiguity on tracking performance, we calculated

FIGURE 2 |The decomposition of the finger movement vector into
different constituent vectors. The blue arrow represents the finger
velocity [ EF (t)], the green arrow the cursor velocity [ EC(t)], the red arrow the
desired velocity [ ED(t)], the green dotted arrow from the finger position to
the cursor [ EFC (t )], and the red dotted arrow represents the vector from the
finger to the desired point [ EFD(t )].

Spearman’s rank correlation coefficients between UPDRS and the
difference in RMS error between the non-ambiguous and maxi-
mum ambiguous tracking conditions for each PD group, as well as
between UPDRS and decay rate in each of the ambiguous tracking
conditions. In order to better visualize the results of the ANOVA, a
robust multivariate regression analysis was also performed, using
RMS error or log(decay rate) as the dependent variable, and speed
and ambiguity as the independent variables. Regression coeffi-
cients were obtained to indicate the portion of dependent variable
explained by speed and ambiguity amplitude. Quality of LDS
models’ was assessed by the Akaike information criterion (AIC)
with a model quality score based on a trade-off between matching
the data well and penalizing the use of an excessive number of
model parameters. Significance for all comparisons was declared
at p < 0.05. We estimated the stability of the regression coeffi-
cients and the group-wise RMS and log(decay rate) values by
leave-one-out validation.

In order to further evaluate what features in visual input influ-
enced finger movement, we decomposed finger velocity into its
projection along different vectors. As shown in Figure 2, we looked
at Finger velocity EF(t ) [i.e., the vector from FP(t ) to FP(t + 1)],
depicted as a Blue arrow; the cursor movement on the screen EC(t ):
green arrow, the desired velocity along the Lissajous path, ED(t ); the

path from finger point to cursor point,
−→
FC(t ) green dotted arrow;

and
−→
FD(t ) the path from the finger to the desired point: red dotted

arrow. We used the “robustfit” function of MatLab to estimate the
coefficients of a multivariate linear regression equation:

Fx (1)

Fy (1)

Fx (2)

Fy (2)

. . .

 = Fo+


FCx (1) FDx (1) Cx (1) Dx (1)

FCy (1) FDy (1) Cy (1) Dy (1)

FCx (2) FDx (2) Cx (2) Dx (2)

FCy (2) FDy (2) Cy (2) Dy (2)

. . . . . . . . . . . .



β1

β2

β3

β4

+ ∈
We then compared DPD subjects before medication and after

medication (i.e., D-pre vs. D-post), NDPD before and after med-
ication (ND-pre vs. ND-post), as well as the difference in finger
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Table 2 | Mixed-model analysis of variance (ANOVA) table to assess different effects on overall RMS error in PD subjects.

RMS: dyskinetic vs. non-dyskinetic PD

Source Sum sq. df Mean sq. F Prob > F

Ambiguity 1764.544 1 1764.544 246.2379 1.5×10−11

Speed 125.1352 1 125.1352 76.27172 2.9×10−11

L-DOPA 10.50281 1 10.50281 2.544744 0.12

PD group 2.378259 1 2.378259 0.841198 0.37

Subject (PD group) 48.0629 17 2.827229 0.588631 0.87

Ambiguity× speed 18.34189 1 18.34189 19.12748 1.8×10−05

Ambiguity× L-DOPA 28.59159 1 28.59159 29.81618 1.2×10−07

Ambiguity×PD group 39.13004 1 39.13004 5.460503 0.03

Ambiguity× subject (PD group) 121.8222 17 7.166014 7.472938 1.6×10−14

Speed× L-DOPA 3.5044 1 3.5044 3.654495 0.057

Speed×PD group 0.791581 1 0.791581 0.257766 0.62

Speed× subject (PD group) 52.20574 17 3.070926 3.202455 3.7×10−05

L-DOPA×PD group 0.15373 1 0.15373 0.014268 0.90

L-DOPA× subject (PD group) 183.1669 17 10.77452 11.236 6.7×10−22

Error 215.7589 225 0.958929

Total 4069.522 303

Root mean square error was taken as the dependent variable and the effect of ambiguity, tracking speed, and drug status (i.e., ON or OFF L-DOPA), PD group (i.e.,

DPD or NDPD), and subject number were used as factors in the ANOVA. Subject number was nested within the PD group factor, since the same PD subjects

were assessed before and after L-DOPA. RMS, root mean square; Sum sq., sum of squares; df, degrees of freedom; Mean sq., mean squares; F, F statistic; Prob,

probability.

Table 3 | Mixed-model analysis of variance (ANOVA) table to assess different effects on overall RMS error in all subjects.

RMS: all subjects

Source Sum sq. df Mean sq. F Prob > F

Ambiguity 1975.723 1 1975.723 451.6872 1.9×10−24

Speed 152.2342 1 152.2342 149.8938 1.0×10−23

Group 21.47974 4 5.369934 3.660012 0.01

Subject (group) 63.08918 43 1.46719 1.445266 0.058

Ambiguity× speed 18.13801 1 18.13801 25.40773 9.1×10−7

Ambiguity×group 99.69423 4 24.92356 5.69799 9.0×10−4

Ambiguity× subject (group) 188.0861 43 4.374096 6.127235 1.1×10−20

Speed×group 10.30256 4 2.57564 1.562198 0.20

Speed× subject (group) 70.89532 43 1.648728 2.309539 3.7×10−5

Error 170.6168 239 0.713878

Total 4707.803 383

Root mean square error was the dependent variable and ambiguity, tracking speed, group (i.e., N, DPD ON or OFF L-DOPA, or NDPD ON or OFF L-DOPA), and subject

number were used as factors in the ANOVA, with subject number nested within the group factor. RMS, root mean square; Sum sq., sum of squares; df, degrees of

freedom; Mean sq., mean squares; F, F statistic; Prob, probability.

movement trajectories with and without noise for all groups of
patients.

RESULTS
Subjects’ characteristics are shown in Table 1. There were no sig-
nificant differences between age, UPDRS, disease duration, and
LEDD (p > 0.05), though converted daily l-DOPA dosage was
significantly higher for the DPD group. Analysis of RMS error
between trials revealed that there was a significant decrease in the

pooled RMS error between trial set 1 and trial set 2 (p < 0.00001)
that stabilized between trial sets 2 and 3 (p= 0.7). The individual
groups’ RMS error by trial is shown in Figure 1.

The results of the mixed-model ANOVA tests on RMS error
are shown in Tables 2 and 3. When comparing DPD and NDPD
subjects, ambiguity and tracking speed were significant indepen-
dent factors on RMS error, as well as the interaction terms between
ambiguity and tracking speed, PD group and drug status. When
normal subjects were included in the analysis (Table 3), ambiguity,
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Table 4 | Mixed-model analysis of variance (ANOVA) table to assess different effects on overall log(decay rate) in PD subjects.

Log(decay rate): dyskinetic vs. non-dyskinetic PD

Source Sum sq. df Mean sq. F Prob > F

Ambiguity 8.197592 1 8.197592 109.5405 0

Speed 0.483603 1 0.483603 6.462162 0.01

L-DOPA 0.14046 1 0.14046 1.876896 0.17

PD group 0.062757 1 0.062757 0.365946 0.56

Subject (PD group) 18.32016 17 1.077656 14.40021 0

Ambiguity× speed 0.084005 1 0.084005 1.122517 0.29

Ambiguity× L-DOPA 0.107382 1 0.107382 1.434896 0.23

Ambiguity×PD group 0.422255 1 0.422255 5.642388 0.01

Speed× L-DOPA 0.052067 1 0.052067 0.695753 0.40

L-DOPA×PD group 1.581883 1 1.581883 21.13796 7.5×10−6

Error 15.04207 201 0.074836

Total 61.64793 227

The factors used were identical to that ofTable 2, only log(decay rate) was used as opposed to overall RMS error as the dependent variable. Sum sq., sum of squares;

df, degrees of freedom; Mean sq., mean squares; F, F statistic; Prob, probability.

Table 5 | Mixed-model analysis of variance (ANOVA) table to assess different effects on overall log(decay rate) in all subjects.

Log(decay rate): all subjects

Source Sum sq. df Mean sq. F Prob > F

Ambiguity 168.2415 1 168.2415 652.8348 0

Speed 0.644047 1 0.644047 4.313921 0.03

Group 2.767405 4 0.691851 3.262799 0.02

Subject (group) 9.117819 43 0.212042 1.420009 0.05

Ambiguity× speed 1.165972 1 1.165972 6.882016 9.2×10−3

Ambiguity×group 5.921167 4 1.480292 5.74404 8.5×10−4

Ambiguity× subject (group) 11.08149 43 0.257709 1.521099 0.027

Speed×group 0.573569 4 0.143392 1.339341 0.270

Speed× subject (group) 4.603654 43 0.107062 0.631919 0.964

Error 40.4921 239 0.169423

Total 275.5562 383

The factors used were identical to that ofTable 3, only log(decay rate) was used as opposed to overall RMS error as the dependent variable. Sum sq., sum of squares;

df, degrees of freedom; Mean sq., mean squares; F, F statistic; Prob, probability.

tracking speed, and group were all significant factors, as well as the
interaction terms between ambiguity, speed, group, and subject.
Similarly, when determining the effects on log(decay rate), ambi-
guity and speed were significant when comparing DPD and NDPD
(Table 4), as well as the interaction between l-DOPA and PD group
(Table 4). When control subjects were included in the analysis, sig-
nificances were seen in the main effects of ambiguity, speed, and
group, as well as the interaction effects of ambiguity and speed
and group (Table 5).

The differences in RMS error between non-ambiguous and
maximum ambiguous tracking conditions were not significantly
correlated with UPDRS scores at either tracking speed for either
dyskinetic subjects or for non-dyskinetic subjects and p > 0.05.

The overall effect of increasing ambiguity and speed on over-
all tracking performance, and the l-DOPA effect, is illustrated in
Figure 3. As expected, there were increases in RMS error with both

speed and visual ambiguity. DPD subjects had the highest error,
which was partially ameliorated by l-DOPA. In NDPD subjects,
after medication, the tracking error approached that of control
subjects.

The effect of visual ambiguity on the log of decay rate is shown
in Figure 4. At slow speeds and higher levels of ambiguity, NDPD
subjects had lower log(decay rates) than controls (left panel). How-
ever, at higher tracking speeds the NDPD subjects had similar or
higher log(decay rates) as controls. In contrast, DPD subjects had
higher values for log(decay rate) at high ambiguity levels at both
speeds, a situation not ameliorated by medication.

The regression analysis illustrates the relative contribution of
increasing ambiguity and speed to RMS error (Figure 5) and
log(decay rate) (Figure S1 in Supplementary Material) by group.
The speed and ambiguity regression coefficients captured by the
model were highly significant for all groups (p < 10–5), and the
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Stevenson et al. Visual sensitivity in dyskinesias

FIGURE 3 | Root mean square error as a function of visual ambiguity and tracking speed. Differences in RMS error in the low tracking speed condition (left
panel) and high tracking speed condition (right panel) are shown. Error bars were estimated by leave-one-out-validation.

FIGURE 4 | Log(decay rate) as a function of visual ambiguity and tracking speed. Differences in RMS error in the low tracking speed condition (left panel)
and high tracking speed condition (right panel) are shown. Error bars were estimated by leave-one-out-validation.
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Stevenson et al. Visual sensitivity in dyskinesias

FIGURE 5 | Regression analysis – RMS. The relative contribution of
increasing target ambiguity and speed to RMS error is demonstrated. The
design matrix for the regression included tracking speed, ambiguity
columns, as well as nuisance covariates corresponding to individual subject
and overall mean. The units can be considered arbitrary. The vertical and
horizontal radii of the ellipses represent the standard error of the regression
coefficients as estimated by leave-one-out validation. The arrows are from
the same PD subjects OFF medication to ON medication, and thus show
the effects of L-DOPA medication.

between group differences in both speed and ambiguity regres-
sion coefficients were also highly significant (p < 10–5). Figure 5
demonstrates that increasing tracking speed and ambiguity con-
tributed to the RMS error of DPD OFF subjects significantly more
than for all other groups. Additionally, the susceptibility to speed
and visual ambiguity is not normalized with medication for DPD
ON subjects, but is roughly normalized for NDPD ON subjects.
Figure S1 in Supplementary Material suggests that log(decay rate)
is significantly affected by visual ambiguity in PD, but especially so
for DPD subjects. l-DOPA had less of an effect on the sensitivity
of log(decay rate) to tracking speed in DPD compared to NDPD
subjects.

The Akaike’s final prediction error (FPE) and AIC used to assess
the LDS models from ambiguous tracking conditions revealed
robust tracking models. The means and standard deviations of
the estimated LDS models’ FPE and AIC scores were ≤3.1± 2.0
and ≤1.8± 0.4 respectively, for all groups across all conditions,
which is indicative of high model quality/fit. Furthermore, there
were few outliers in the FPE and AIC values indicating validity of
the modeling framework across subject groups.

In order to get an intuitive interpretation of the significantly
different decay rates, we interrogated typical models from each
group (i.e., models with eigenvalues close to the mean for each
group) with one-dimensional sinusoidal inputs and additive noise
similar to the experiment to determine the predicted tracking per-
formance. Ideal tracking performance would occur in systems that
ignore the noisy input and faithfully maintain sinusoidal tracking.
Consistent with the RMS error results, the sinusoidal tracking
improved with post-medication models in both dyskinetic and

non-dyskinetic subjects. However, consistent with the statistical
results, the dyskinetic model had an impaired ability to ignore the
noisy visual cue, and was excessively reliant on noisy ambiguous
visual feedback (Figure 6).

We observed the significant differences in the decomposition of
the finger tracking data, depending upon whether or not jitter was
present (Figure S2 in Supplementary Material). For only the DPD

(D-pre and D-post) group, we found that contribution of
−→
FD(t ) –

the vector from finger position to the desired position – increased
(p= 0.036 and p= 0.026), while the contribution of ED(t ) – the
desired trajectory – decreased when jitter was present (p= 0.002
and p= 0.005).

DISCUSSION
We examined the ability of 9 dyskinetic and 10 NDPD subjects, as
well as that of 10 age-matched control subjects, to de-weight uncer-
tain sensory feedback and instead rely more heavily on predictive
motor control during visually guided tracking. The relative contri-
butions of increasing target ambiguity and speed (examined inde-
pendently) to the RMS tracking error were the greatest for DPD
subjects off medication (Figure 3). As expected, l-DOPA medica-
tion improved overall tracking performance for both PD groups,
as evidenced by reduced RMS error with medication (Figure 3).

Dyskinetic subjects’ gross motor performance was worse in the
Parkinsonian state than in the “on” medication state despite the
presence of LIDs. This is consistent with the presence of mild
LIDs experienced by DPD subjects that did not interfere with
the completion of motor tasks, and the increased movement in
the on-state compared to the Parkinsonian state that enabled
improved overall motor performance. However in dyskinetic sub-
jects, improved overall tracking performance came at a price: they
were also more responsive to and reliant on non-informative visual
cueing (Figure 6, right lower panel). We interpret our results
in the context of established performance trade-offs in control
theory, in which controllers that produce exceptionally fast, high-
performance tracking under ideal circumstances are also extremely
poor at disturbance rejection (that is, they experience high sensi-
tivity to external or un-modeled noise processes). In a biological
context, this is indicative of a system that relies more heavily on
ambiguous sensory feedback and less on predictive motor control.
This interpretation is further supported by the decomposition of
the finger velocity EF(t ). For DPD group only (i.e., D-pre and D-
post), the contribution of the desired trajectory ED(t ), to finger
velocity, EF(t ), was significantly reduced during jitter cases, imply-
ing that finger movement velocity was significantly degraded by
jitter in these subjects. Interestingly, FD(t ), i.e., where their finger
was to where it should have been, significantly increased in the
DPD group only, possibly reflecting an compensatory corrective
motor movement after the realization that they had been misled
by the jitter. The trends we observed in the LDS are consistent
with the trends we observed through the regression analysis. The
LDS model separates the contribution of the output due to the
desired trajectory from the contribution of the output due to the
additive jitter. The decreased reliance on ED(t ) in DPD subjects
is consistent with the increased decay rate in the LDS – that is,
the subjects are following the noise more than they were in the
no-noise case.
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Stevenson et al. Visual sensitivity in dyskinesias

FIGURE 6 | Linear dynamical system model simulation results. Left panel:
tracking input is a combination of a smooth sinusoidal reference trajectory
and bandpass filtered white noise. Right panel: subjects modeled tracking
output in a smooth non-ambiguous tracking condition (upper box ) and in a
“noisy” ambiguous tracking condition (lower box ). In the upper box, the
modeled tracking output of a representative subject from each group is

shown. The subjects’ output in non-ambiguous conditions is similar across
groups. In the lower box, the effect of “noisy” ambiguous input on modeled
output of a dyskinetic and a non-dyskinetic subject is shown. The increased
decay rate of dyskinetic subjects on medication leads them to attempt to
track the noise more significantly. The noisy visual signal is reduced to 15% of
the actual magnitude for visualization purposes.

It is important to note that the LDS models utilized here are
deterministic. The numerical algorithm used to identify the LDS
model, in fact, minimizes the residual between the actual output
and the predicted output, in essence capturing as much informa-
tion as possible from the input–output relationship and leaving
only white noise. What would we see if the only differences between
DPD and NDPD were that the DPD subjects had the same track-
ing performance but superimposed dyskinesias that were truly
random fluctuating movements? The parameters of the models
would be the same, but the residuals of the model, which reflect the
part of the movement not accurately captured by the deterministic
model, would be much higher in the DPD case. Yet we observed the
opposite: the model residuals were not significantly higher in the
DPD subjects (as reflected by the lack of significant differences in
their model scores) and the parameters of the model were appre-
ciably different. In fact, this raises an important issue, that a key
interpretation of our findings is that LIDs may not be “random” at
all as is normally assumed, but a deterministic response to various
endogenous and exogenous stimuli that is normally appropriately
de-weighted. This may explain why increasing sensitivity to stim-
uli such as that seen in anxiety (53), or increased vigilance due to
cognitive or motor load (54) may increase dyskinesias.

Normally, forward models are used to predict sensory feedback,
and the predicted feedback is subsequently compared to actual
feedback when it becomes available after an inherent delay (55,
56). The difference between the actual and predicted sensory feed-
back is known as the sensory discrepancy or error, which is then
used to update the forward model and in turn improve motor
performance (1, 56). In fact, the concept of forward modeling
has been extended from predicting the sensory consequences of
movement to predicting the external environment (4, 7–13). For
example, evidence indicates that human subjects utilize forward
models of visual cues (11), of target motion during interception
tasks (12, 13), and of the physical laws of gravitational accelera-
tion (4, 9, 15). We quantified RMS tracking error as the difference
between the subjects’ index finger position and the target position
along the smooth Lissajous path at any given time point. During
the non-ambiguous conditions of our tracking task, the sensory
discrepancy is likely minimal as the predicted sensory feedback
relating the subjects’ index finger position and the target position
would be congruent, which is supported by the lack of differences
in RMS tracking error between the groups in the baseline condi-
tions (Figure 3). However, in the ambiguous tracking conditions
the sensory discrepancy would be large due to the ambiguous
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jitter of the target. Human subjects have been shown to reliably
predict the mean perturbation delivered from a variable distribu-
tion in reaching tasks (50, 57), and to do so according to Bayesian
inference (17).

Though we did not explicitly test the use of Bayesian statis-
tics in this study, the strategy of more heavily weighting the mean
jitter amplitude and de-weighting the instantaneous uncertain jit-
tering position of the target in order to predict the desired tracking
position, corresponds to the optimal motor response in our task
that minimizes RMS tracking error.

As expected, in our study,normal controls had the lowest overall
tracking error of all groups (Figure 3). However, Figure 4 provides
interesting insight into how this is achieved. During slow tracking
and in high ambiguous situations, NDPD subjects had even lower
decay rates than controls, suggesting that they were robust to the
ambiguity – so much so that they excessively de-weighted the (still
partially meaningful) visual information. However, in the high
speed tracking condition, it becomes more critical to de-weight
the visual information and the originally sluggish approach of the
NDPD becomes the appropriate response – this is why NDPD
patients ON medication and controls had essentially the same
decay rates. These observations are consistent with other studies
demonstrating that NDPD subjects do not overly respond to visual
feedback (58), and that healthy human subjects internally account
for sensory uncertainty and de-weight uncertain feedback dur-
ing motor performance (1, 18, 20). In contrast, in both slow and
fast tracking conditions, the DPD subjects demonstrated exces-
sively high decay rates (Figure 4), implying faster dynamics, even
though this resulted in excessive overall tracking error (Figure 2).

Thus, the inability of DPD subjects to de-weight ambiguous
visual data that we observed may be based on excessive sensi-
tivity to discrepancies between a (accurate) forward model and
sensory feedback and/or an impaired forward model. The effect
of l-DOPA medication may provide insight on this. In addition
to reducing overall tracking error (Figure 3), l-DOPA medica-
tion made overall tracking error less susceptible to tracking speed
and visual ambiguity (Figure 5), but had minimal effect on the
log(decay rate)’s sensitivity to tracking speed and visual ambi-
guity (Figure S1 in Supplementary Material). If we assume that
decay rate is related to corrective sub-movements and hence
responses to discrepancy between models, this would imply that
l-DOPA largely improves forward model accuracy (and hence
reduced RMS error’s sensitivity to visual ambiguity and speed)
while having minimal effect on the dynamics of the response
to the errors between the forward model and sensory estimates
(Figure 5).

A possible functional neuroanatomical correlate of the inability
of DPD subjects to de-weight ambiguous visual feedback demon-
strated in the present study is inadequate predictive cerebellar
forward modeling. There is growing evidence of functional cere-
bellar changes occurring in PD (59–64) and in DPD (39) that
supports this possibility. Furthermore, the cerebellum is known to
have an integral role in predictive motor control, and predictive
deficits that lead subjects to excessively respond to feedback are
typically seen in cerebellar disease (21, 24, 31–34). Extensive evi-
dence supports the use of forward models in human subjects (2–6),
and neuroimaging, electrophysiology, and transcranial magnetic

stimulation (TMS) studies provide strong evidence for the role
of the cerebellum in forward modeling (31, 65–75). Interestingly,
evidence from neuroimaging studies demonstrates significantly
increased cerebellar activity in conditions of mismatch between
predicted and actual feedback (66), and the degree of mismatch
imposed by temporal delays has been correlated with cerebellar
activity (76). Further evidence indicates that the cerebellar climb-
ing fiber-Purkinje cell synapse may signal the error between the
predicted and actual sensory feedback (71, 72, 77–80).

In addition to the cerebellum, the posterior parietal cortex
(PPC) is believed to have an important role in predictive motor
control (65). The role of the PPC in making on-line corrections (a
process that requires forward models) during movement has been
demonstrated in patients with lesions to this area and through
the use of TMS (81, 82). TMS applied to the PPC of healthy
human subjects prevented them from making fast on-line cor-
rective movements to a target perturbation in a reaching task
when vision of their arm was occluded, and they instead con-
tinued to reach to the initial target (81). As DPD subjects in our
study were found to be overly responsive to the ambiguous visual
feedback (as opposed to unresponsive PPC subjects), this may
argue against altered PPC function explaining our results. More-
over, PPC stimulation has been related to motor awareness (83),
and interestingly DPD patients can be unaware of their involun-
tary movements (30). Nonetheless it is possible that altered PPC
activity contributed to the impaired predictive motor control of
dyskinetic subjects, and as the PPC and cerebellum have recip-
rocal neuroanatomical connections (84, 85), it is likely that these
two structures work together in using forward models to guide
motor performance. Given that frontal “executive” dysfunction is
well described in PD (86), it is tempting to speculate whether or
not impaired frontal lobe dysfunction may contribute to the our
observation of impaired forward models in PD. While this may
explain, at least in part, the differences between PD subjects as a
whole and controls, we do not believe that it could explain the
differences between NDPD and DPD subjects we observed.

There is increasing evidence that although dyskinesias are
present when DPD subjects are on medications, changes in motor
function persist off medication (42). For example, Figure 3
demonstrates that DPD subjects OFF medication were signifi-
cantly worse in overall tracking compared to NDPD subjects OFF
medication. Animal models of PD suggest that unnatural pulsatile
stimulation of dopaminergic receptors, occurring with intermit-
tent dosing of l-DOPA, may induce plastic changes that contribute
to the development of LIDs (87,88). Interestingly,younger patients
are more prone to developing LIDs (89), and this may be related
to a greater degree of plasticity occurring in the younger brain.
Additionally, neurochemical changes related to LIDs (90) are not
limited to the basal ganglia. Nimura and colleagues (91) demon-
strated that the binding potential of the cerebellar sigma receptors
was positively correlated with LID scores but not with disease
severity of PD patients undergoing pallidotomies; while Koch and
colleagues (39) have demonstrated altered cerebellar plasticity in
DPD subjects using TMS. Furthermore, we have found behav-
ioral differences that differentiate dyskinetic from non-dyskinetic
subjects in the off medication state that may be related to altered
cerebellar functioning (42). Thus, the dyskinetic brain may exhibit
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altered cerebellar plasticity that manifests functionally as inade-
quate predictive motor control. Direct neuroanatomical pathways
connecting the basal ganglia and the cerebellum have been found
in primates (92,93),providing a direct route for the administration
of l-DOPA to interact with altered cerebellar structures.

There are a number of potential limitations to our study. First,
there was a trend toward greater disease severity of dyskinetic
than NDPD subjects, though the difference was non-significant
(Table 1). Nonetheless, in order to fully address this, we exam-
ined the relationship between UPDRS and the increase in RMS
between the non-ambiguous and maximum ambiguous track-
ing conditions, and no significant correlation for either DPD or
NPDP subjects was found. Thus, the worsening of motor perfor-
mance with increasing visual ambiguity was not associated with
disease severity. Furthermore, UPDRS was not significantly corre-
lated with decay rate for either PD groups, except for in the slow
tracking condition (ambiguity level= 0.03), which was the only
ambiguous tracking condition that lacked significant differences
in mean decay rate between groups. Second, in addition to testing
while on medication, we also tested PD subjects in the practically
defined off medication state with 12 h of l-DOPA withdrawal and
18 h for dopamine agonists, and subjects were symptomatic upon
study commencement. We note that this method of examining the
practically defined off medication state in PD is universally uti-
lized (94, 95), though we acknowledge that this may not reflect a
truly depleted dopaminergic state. Furthermore, non-motor com-
plications can occur with the off medication state (96), as well
as pain that can be experienced by DPD patients (97), and such
non-motor complications were not accounted for in this study.
However, none of the subjects complained of pain and none of the
subjects experienced non-motor complications requiring them to
stop the study. Third, dyskinetic subjects can experience postural
instability while on medication and experiencing LIDs (98), and
we did not quantify postural instability between groups. However
none of the subjects from either PD group complained of pos-
tural problems, and the lack of difference in overall accuracy in
the baseline tracking condition of our task indicates that PD sub-
jects were able to perform the task while standing equally well as
healthy control subjects, and suggests any potential differences in
postural instability did not significantly affect motor performance.
Fourth, we did not examine potential differences in visual acuity
between dyskinetic, non-dyskinetic, and control subjects. How-
ever, once again a lack of difference in RMS error in the baseline
non-ambiguous conditions of the task suggests that any differ-
ences in visual acuity were not great enough to impact baseline
motor performance. Fifth, it is theoretically possible that l-DOPA
affected DPD and NDPD subjects with respect to eye movements.
However, we note that (99) we found no changes in smooth pur-
suit gain during dose-related on–off fluctuations, so believe that
this was not a factor here.

In conclusion, we demonstrate that DPD subjects are signifi-
cantly more susceptible to visually ambiguous sensory input dur-
ing a visually guided tracking task, and that the improvement in
overall tracking performance with l-DOPA medication comes at a
price for DPD subjects: an increased reliance on ambiguous visual
feedback. The results indicate inadequate weighting of predictive
motor control in DPD, which may be a significant contributor

to pathophysiology of LIDs. We discuss possible cerebellar dys-
function in DPD as a neuroanatomical substrate of inadequate
weighting of predictive motor control.

SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found online
at http://www.frontiersin.org/Journal/10.3389/fneur.2014.00008/
abstract

Figure S1 | Regression analysis – log(decay rate). The regression was the
same as for Figure 4, only the dependent variable used in the regression was
log(decay rate).

Figure S2 | Regression weights of the vector decomposition in Figure 2,
comparing the situations with and without “jitter.”
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