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Climate change is one of the most complex challenges that pose serious threats to
livelihoods of poor people who rely heavily on agriculture and livestock particularly
in climate-sensitive developing countries of the world. The negative effects of water
scarcity, due to climate change, are not limited to productivity food crops but have
far-reaching consequences on livestock feed production systems. Selenium (Se) is
considered essential for animal health and has also been reported to counteract various
abiotic stresses in plants, however, understanding of Se regulated mechanisms for
improving nutritional status of fodder crops remains elusive. We report the effects
of exogenous selenium supply on physiological and biochemical processes that may
influence green fodder yield and quality of maize (Zea mays L.) under drought stress
conditions. The plants were grown in lysimeter tanks under natural conditions and
were subjected to normal (100% field capacity) and water stress (60% field capacity)
conditions. Foliar spray of Se was carried out before the start of tasseling stage (65 days
after sowing) and was repeated after 1 week, whereas, water spray was used as a
control. Drought stress markedly reduced the water status, pigments and green fodder
yield and resulted in low forage quality in water stressed maize plants. Nevertheless,
exogenous Se application at 40 mg L−1 resulted in less negative leaf water potential
(41%) and enhanced relative water contents (30%), total chlorophyll (53%), carotenoid
contents (60%), accumulation of total free amino acids (40%) and activities of superoxide
dismutase (53%), catalase (30%), peroxidase (27%), and ascorbate peroxidase (27%)
with respect to control under water deficit conditions. Consequently, Se regulated
processes improved fodder yield (15%) and increased crude protein (47%), fiber (10%),
nitrogen free extract (10%) and Se content (36%) but did not affect crude ash content
in water stressed maize plants. We propose that Se foliar spray (40 mg L−1) is a handy,
feasible and cost-effective approach to improve maize fodder yield and quality in arid
and semi-arid regions of the world facing acute shortage of water.
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INTRODUCTION

Livestock is a major livelihood for poor people in developing
countries fulfilling their social, economic and risk management
functions. Climate change has increased the vulnerability of
livestock systems, which may trigger a loss of livelihoods of poor
communities in arid and semi-arid regions of the world. Increase
in temperatures and changes in rainfall patterns would heighten
the risks of existing vector-borne diseases accompanied by the
emergence and spread of new diseases. Non-availability of water
would severely hamper the livestock feed production systems in
nomadic and desert regions of the world where people are solely
dependent on livestock sector for their survival.

Drought stress negatively influences the nutritive value of
forages by affecting sugar, crude fiber, protein, total ash contents
and nitrogen free extracts (Bibi et al., 2012; Küchenmeister
et al., 2013). Identification of an effective stress ameliorant for
improving yield and quality of fodder crops under water deficit
conditions is essential in today’s changing climates. Selenium (Se)
is not considered essential for plant growth but recent reports
indicate its beneficial role in plants exposed to various abiotic
stresses such as salinity (Abul-Soud and Abd-Elrahman, 2016),
high temperature (Balal et al., 2016), chilling injury (Hawrylak-
Nowak et al., 2010; Akladious, 2012), metals accumulation
(Li et al., 2016), UV-B induced oxidative damage (Yao et al.,
2011) and drought stress (Nawaz et al., 2015a,b). Se mediated
enhancement in plant resistance/tolerance to environmental
stresses is attributed to its positive role in several physiological
and biochemical mechanisms such as maintenance of water status
(Djanaguiraman et al., 2005), enhancement in pigments (Malik
et al., 2012), regulation of photosynthetic machinery (Balal et al.,
2016), accumulation of osmoprotectants (Akbulut and Çakir,
2010) and activation of antioxidant enzymes (Hasanuzzaman
et al., 2012; Ahmad et al., 2016). Moreover, it has also been
reported to improve yield of food crops like wheat (Broadley
et al., 2010; Nawaz et al., 2015b), barley (Ducsay et al., 2009), rice
(Wang et al., 2013), and maize (Chilimba et al., 2012). However,
the understanding of physiological and biochemical mechanisms
that underlie the positive effects of Se in improving yield and
quality of fodders under water deficit conditions remains elusive.

Se is an integral constituent of the glutathione peroxidase
family (GSH-Px) and is considered essential for humans (Leccia
et al., 1993) and animals (Hefnawy and Tórtora-Pérez, 2010)
due to its antioxidant, anticancer, and antivirus properties. It
stimulates growth and enhances resistance to diseases in animals,
being involved in the production of antibodies and in the
killing of microorganisms engulfed by macrophages (Khanal
and Knight, 2010). Se deficiency in livestock is associated with
reduced growth, appetite, muscular activity and reproductive
fertility (Fordyce, 2013), whereas excessive Se intake (>1–
5 mg Se kg−1 dry matter) may also result in hair loss, hoof
deformation, lack of vitality and respiratory failure (Dhillon and
Dhillon, 2003; White, 2016). Se intake by animals is directly
related to the amount of Se taken up by the plants (Fordyce,
2005), which is linked to Se phytoavailability in the soil (White,
2016). Biofortication of fodder crops with Se is essential for the
development of balanced mineral ration for livestock because

many pastures are naturally low in Se levels (Žáková, 2014)
particularly during spring season hence Se-fortified commercial
feed additives are used to maintain the physiological Se levels
in blood (Drahoňovský et al., 2016) for the prevention of Se
deficiency related diseases like white muscle and reproductive
infertility in cattle and sheep.

The information concerning the effects of exogenous Se supply
on Se accumulation and nutritive value of forages under drought
stress is limited. Here, we hypothesize that Se foliar spray
influences physiological and biochemical processes to improve
fodder yield and quality of maize under water deficit conditions.

MATERIALS AND METHODS

Crop Husbandry and Experimental
Layout
The experiments were carried out in 1 m deep lysimeter tanks
(3 m length × 3 m dia) separated by a buffer zone of 15 cm
thick-cemented wall on each side to prevent seepage losses.
The lysimeters were fitted with a manually operated moveable,
light transmissive rain-out shelter. Precision leveling was done
before sowing to ensure even distribution of water. The soil
samples arbitrarily collected from three different sites of each
tank were used to determine the physiochemical characteristics
of the soil according to the method of Jackson (1962) with
results as follows: soil texture = sandy loam; pH = 7.89;
saturation percentage = 32.11%; electrical conductivity = 0.97
dS m−1; soil organic matter = 0.87%; available phosphorous
(P)= 10.39 mg kg−1; potassium (K)= 68 mg kg−1 and nitrogen
(N) = 347 mg kg−1. Total Se content in the soil was determined
following the procedure described by Ramos et al. (2010) and was
found to be 0.074 mg kg−1. Plant nutrient requirements of N,
P, and K were met by the application of recommended doses of
urea (250 kg ha−1), diammonium phosphate (140 kg ha−1) and
sulfate of potash (150 kg ha−1). All P, K, and 1/8th N was mixed
the surface layer (0–15 cm) before sowing, whereas 1/5th N was
applied at V2 and the remaining N was broadcasted in two equal
splits at V12 and V14 growth stages of maize.

The seeds of indigenous maize cultivar (Zea mays L.
cv. Pak-Afghoi) were obtained from Regional Agricultural
Research Institute (RARI), Bahawalpur and were disinfected with
recommended doses of Topsin-M 70 WP (2–2.5 g kg−1 seed)
and Imidacloprid (4 g kg−1 seed) prior to sowing. The seeds
were hand drilled in rows of 0.80 m length keeping P × P and
R × R distance of 0.20 and 0.70 m, respectively when soil was at
field capacity (FC) condition. The weeds were uprooted manually
whenever found necessary. The experiment was laid out in a
2 × 2 factorial scheme and experimental setup consisted of four
treatments: normal irrigations with water spray (N), Se foliar
spray under normal conditions (Se), drought stress with water
spray (D) and Se foliar under drought stress conditions (D+Se)
with three repeats. The plants were harvested 1 week after the
second foliar treatment and the youngest, fully expanded fresh
leaves were collected before harvesting for the determination of
physiological and biochemical attributes in maize.
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Drought Stress and Se Treatments
Drought stress treatments, i.e., normal water supply (100% FC)
and water stress (60% FC) were allocated separately to each
tank in the lysimeter. The normal plants received approximately
790 mm tap water (an irrigation of 75–80 mm per week),
whereas water stressed plants received approximately 500 mm
irrigation water (about 48–50 mm irrigation applied per week)
till harvesting. A water meter fixed at the water supply equipment
was used to estimate the quantity of applied irrigations.

Se foliar treatment of 40 mg Se L−1 was developed using
sodium selenate (Na2SeO4; MW = 188.95; purity ≥ 98.0%;
Sigma-Aldrich, St. Louis, MO, USA) and was later verified
analytically using atomic absorption spectrometry technique
(Krishnaiah et al., 2003). Se foliar spray, containing 0.1% Tween-
20, was carried out before the onset of tasseling stage (65 days
after sowing) and was repeated after 1 week. Water spray,
containing the same amount of Tween-20 (0.1%), was used as a
control. The spraying was performed with a compression layer
of 1 L capacity and was carried out early in the morning (between
06:00 and 08:00 a.m.). The plants were harvested at late vegetative
stage (V16-17) to determine green fodder yield (only first cutting
yield was taken).

Measurement of Leaf Water Status
The fully expanded youngest, fresh leaf collected for each
treatment was used for the estimation of leaf water potential (Ψw)
using “Scholander” type pressure chamber Model 1000 (PMS,
Oregon-USA). The same leaf was weighed immediately afterward
to record fresh weight (FW) and then dipped in distilled water
for 24 h at 4◦C. The leaves were then taken out, wiped with
a tissue paper and the turgid weight (TW) was recorded. For
dry weight (DW) determination, the samples were kept in an
oven at 65◦C for 72 h. Leaf relative water contents (RWCs) were
calculated according to the following formula reported by Mayak
et al. (2004).

RWC = [(FW− DW)/(TW− DW)] × 100.

The excised leaf water loss (ELWL) was also estimated on
youngest leaves, which were excised and weighed immediately to
record FW. The leaves were then incubated for 6 h at 28◦C and
50% relative humidity to record incubation weight (IW) and later
put in an oven at 65◦C for 72 h to estimate DW. The following
formula proposed by Clarke and McCaig (1982) was used to
calculate ELWL.

ELWL = (FW− IW)/(FW− DW) × 100.

For the determination of excised leaf water retention (ELWR),
the youngest leaves collected for each treatment were weighed
to record FW, kept at room temperature (25◦C) for 6 h and
reweighed (WL). ELWR was calculated using the following
formula suggested by Lonbani and Arzani (2011).

ELWR = (FW−WL)/FW × 100.

Estimation of Pigments
Fresh leaf material (1.0 g) collected for each treatment
was chopped into 0.5 cm segments and later extracted in

10 mL acetone (80%) at 4◦C over-night for the estimation of
chlorophyll (Chl) and carotenoid (Car) contents according to
the methods of Arnon (1949) and Davies (1976). Following
formulae were used to calculate Chla, Chlb, total Chl and CAR
contents after measuring the absorbance of supernatant on
a spectrophotometer (Hitachi, U-2800) at 645, 652, 663, and
480 nm.

Chla (mg g−1 FW) = [12.7 (OD663) − 2.69 (OD645)]

x V/1000 x W

Chlb (mg g−1FW) = [22.9 (OD 645) − 4.68 (OD 663)]

x V/1000 x W

Chlt (mg g−1FW) = [20.2 (OD 645) + 8.02 (OD 663)]

x V/100 x W

CAR (µg g−1 FW) = Acar/Emx
100.

Where V is the volume of sample extract and W is the weight
of the sample and Acar

= (OD480) + 0.114 (OD663)–0.638
(OD645); Emax

100 cm= 2500.

Detection of Total Free Amino Acids and
Antioxidant Enzymes Activities
Fresh leaf material (1.0 g) was used to estimate total free amino
acids (TFA) following the reports of Hamilton and Van Slyke
(1943).

The activities of peroxidase (POX), superoxide dismutase
(SOD), catalase (CAT), and ascorbate peroxidase (APX) were
determined spectrophotometrically. Fresh leaf material (1 g) was
homogenized in 50 mM phosphate buffer with 7.0 pH and 1 mM
dithiothreitol (DTT) as described by Dixit et al. (2001). The
procedure published by Zhang et al. (2012) was used to determine
CAT and POX activities, whereas APX and SOD activities were
measured according to the methods of Cakmak (1994) and
Giannopolitis and Ries (1997), respectively.

Determination of Shoot Se Content and
Fodder Quality Attributes
The dried ground material (1 g) of above ground plant tissues
(shoot and leaves) was homogenized to estimate Se accumulation
in shoot using ICP-OES (Optima 2100-DV Perkin-Elmer)
according to the method published in our early report (Nawaz
et al., 2015b).

For fodder quality attributes, dry feeds were sampled once
during each period, dried under shade for 4–5 days and milled
through a 2 mm screen in a hammer mill (POLYMIX(R) PX-
MFC Kinematica AG Germany). Sub-samples of all feeds were
analyzed for DM (Association of Official Analytical Chemists
(AOAC, 1984; method 7.003), ash (525◦C for 6 h; AOAC, 1984;
method 923.03), CP (AOAC, 1984; method 7.015) and crude fiber
(Weende method). The nitrogen free extract was calculated as
%NFE = 100 – (%crude protein + %crude fat + %crude fiber
+ %moisture+ %ash).
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Statistical Analysis
Analysis of variance (ANOVA) technique was used to statistically
analyze data on STATISTIX Computer Program (Version 8.1).
The significant differences among treatments’ means were
compared using post hoc Tukey test at P ≤ 0.05.

RESULTS

Leaf Water Status
Drought stress (60% FC) markedly (P < 0.05) reduced the leaf
water status of maize plants (Table 1). The plants supplemented
with Se exhibited non-significant difference for Ψw under
normal conditions (100% FC), however, Se foliar spray markedly
enhanced Ψw by 41% with respect to no Se supply (control)
under drought stress conditions (Figure 1A). Similar trend was
noted for leaf RWC and ELWL as Se supplementation increased
RWC by 30% (Figure 1B), whereas, it reduced ELWL by 44%
(Figure 1C) in water stressed maize plants. Foliar Se spray also
increased ELWR by 8% (Figure 1D) however, the interactive
effects of Se×D were found to be non-significant for this variable
(Table 1).

Pigments
The exposure to drought stress significantly (P < 0.05) reduced
leaf photosynthetic pigments such as Chla, Chlb, Chlt and CAR
contents by 75, 60, 71, and 84%, respectively compared to the
control (100% FC). However, maize plants supplemented with
Se exhibited an increase of 54, 86, 53, and 60% in leaf Chla
(Figure 2A), Chlb (Figure 2B), Chlt (Figure 2C) and CAR
contents (Figure 2D), respectively than those sprayed with water
(control) under drought stress conditions.

TFA and Antioxidant Enzymes
The normal plants supplemented with Se at 100% FC did not
exhibit significant difference (P > 0.05) for the accumulation
of TFA (Table 2), however, a marked increase (40%) in TFA
content was noted by foliar Se spray in water stressed (60%
FC) maize plants (Figure 3A). Similarly, exogenous Se supply
did not significantly influence the activities of antioxidant
enzymes under normal conditions. However, at 60% FC, foliar Se
supplementation increased the activities of SOD, CAT, POX, and
APX by 53% (Figure 3B), 30% (Figure 3C), 27% (Figure 3D),
and 27% (Figure 3E), respectively with respect to control (water
spray).

Fodder Quality Attributes
A marked reduction of 47, 16, 23, 38, and 15% was recorded
in CP, CF, CA, MC, and NFE, respectively under water deficit
conditions. However, foliar Se spray significantly enhanced the
quality attributes of fodder maize and increased CP, CF, MC, and
NFE by 47% (Figure 4A), 10% (Figure 4B), 15% (Figure 4D), and
10% (Figure 4E), respectively but did not significantly affect CA
contents (Figure 4C). The interactive effects (Se × D) were also
found to be non-significant for fodder quality attributes (Table 3).

GFY and Shoot Se Content
Drought exposure (60% FC) significantly reduced the GFY
of maize plants by 23% and markedly influenced the shoot
Se content compared to the control (100% FC). Foliar Se
supplementation was found to be effective in increasing GFY
(15%) in water stressed maize plants only and did not
significantly influence it under normal conditions (Figure 5A).
Moreover, exogenous Se supply resulted in 36% higher Se
contents in water stressed than normal maize plants (Figure 5B).

DISCUSSION

Maintenance of turgor through accumulation of solutes is one
of the key defense mechanisms in plants to withstand the
negative effects of environmental stresses particularly drought
stress (Shabbir et al., 2016). The exposure to limited water supply
(60% FC) markedly reduced the water status of maize plants
and resulted in more negative Ψw because the maintenance of
favorable water relations is considered prime defense strategy of
plants to tolerate drought stress (Kaldenhoff et al., 2008; Hussain
et al., 2016). It was noticed that Se foliar spray resulted in less
negative leaf Ψw (Table 1), which is in agreement with the
reports on potato (Germ et al., 2007), wheat (Nawaz et al., 2015a)
and maize (Qiang-yun et al., 2008; Sajedi et al., 2011). The Se
mediated increase in Ψw might be due to its positive role in
osmotic balance and ion homeostasis to increase water uptake
(Kuznetsov et al., 2003) and reduce transpiration under drought
stress conditions (Yao et al., 2009). The results of present study
suggest that Se regulates the net accumulation of osmolytes or
simple passive concentration of solutes to maintain water status
in water stressed plants (Nawaz et al., 2015b). The reduction in
ELWL by Se supplementation might be attributed to less negative
Ψw resulting in low residual transpiration (Balal et al., 2016) in
under water deficit conditions. The exposure to drought stress
disturbs the osmotic balance of plants that reduces turgidity

TABLE 1 | Summary of the ANOVA for leaf water potential (WP), relative water contents (RWCs), excised leaf water loss (ELWL) and excised leaf water
retention (ELWR), chlorophyll a (Chla), chlorophyll b (Chlb), total chlorophyll (Chlt), and carotenoid (CAR) contents in Zea mays.

SOV Ψw (−MPa) RWC (%) ELWL (%) ELWR (%) Chla (mg g−1 FW) Chlb (mg g−1 FW) Chlt (mg g−1 FW) CAR (µg g−1 FW)

Selenium (Se) ∗∗ ∗∗ ∗ ∗ ∗∗∗ ∗∗ ∗∗∗ ∗∗∗

Drought (D) ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗

Se × D ∗ ∗ ∗∗ NS NS NS NS ∗∗

CV 10.03 5.04 11.44 3.59 5.27 12.34 4.21 2.65

Significant differences are indicated by an asterisk (∗); ∗P ≤ 0.05, ∗∗P ≤ 0.01, ∗∗∗P ≤ 0.001; NS, non-significant; SOV, source of variation; CV, coefficient of variation.
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FIGURE 1 | Effect of Se foliar spray on leaf water status, (A) water potential (Ψw) (B) relative water contents (RWC) (C) excised leaf water loss (ELWL)
(D) excised leaf water retention (ELWR) of Zea mays exposed to drought stress. Values represent mean ± SE. Different letters represent significant
differences at P ≤ 0.05, after applying post hoc Tukey’s test.

and cell elongation (Shabbir et al., 2016). Previous reports have
demonstrated that decrease in Ψw causes a parallel reduction
in RWC (Živčák et al., 2009; Raza et al., 2012; Nawaz et al.,
2015a). We found that Se supplementation significantly increased

the RWC of only water stressed maize plants (Figure 1B). The
positive effects of Se supply on leaf RWC were also described
by Wang (2011) and Hajiboland et al. (2014) in water stressed
Triticum aestivum and Trifolium repens plants, respectively.
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FIGURE 2 | Effect of Se foliar spray on leaf photosynthetic pigments, (A) chlorophyll a (Chla) (B) chlorophyll b (Chlb) (C) total chlorophyll (Chlt) (D)
carotenoid contents (CAR) of Zea mays exposed to drought stress. Values represent mean ± SE. Different letters represent significant differences at P ≤ 0.05,
after applying post hoc Tukey’s test.

Contrary to our results, Habibi (2013) recorded the highest RWC
in Se supplemented Hordeum vulgare plants grown under normal
conditions. The stimulating effect of exogenous Se supply may be
due to increase in membrane integrity (Nawaz et al., 2015a) or
decrease in photo-oxidation (Seppänen et al., 2003).

Exogenous Se supply minimizes the damage to the
chloroplasts and helps to maintain photosynthetic pigments
under environmental stress conditions (Zahedi et al., 2013; Khan
et al., 2015; Abd-Allah et al., 2016; Balal et al., 2016). In present
study, we noticed similar results in maize plants foliar applied
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TABLE 2 | Summary of the ANOVA for total free amino acids (TFA), superoxidase dismutase (SOD), catalase (CAT), peroxidase (POX), ascorbate
peroxidase (APX), green fodder yield (GFY), and shoot Se content in Zea mays.

SOV TFA (µmol
g−1 FW)

SOD (Units
min−1 g−1 FW)

CAT (Units min−1

g−1 FW)
POX (Units min−1

g−1 FW)
APX (ABA digested

g−1 FW h−1)
GFY (t ha−1) Se contents (µg

kg−1 DW)

Selenium (Se) ∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗ ∗∗∗

Drought (D) ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ NS

Se × D ∗ ∗∗∗ ∗∗ ∗∗∗ ∗∗∗ ∗ NS

CV 11.91 4.08 5.01 5.23 5.15 2.60 11.70

Significant differences are indicated by an asterisk (∗); ∗P ≤ 0.05, ∗∗P ≤ 0.01, ∗∗∗P ≤ 0.001; NS, non-significant; SOV, source of variation; CV, coefficient of variation.

with Se under drought stress (60% FC) conditions. Reduction
in photosynthetic pigments in water stressed maize plants could
have been due to chlorophyll disintegration by over production of
ROS (Khayatnezhad et al., 2011). Exogenous Se supplementation
influences the activities of antioxidant enzymes such as CAT,
POX, APX, and SOD (also noted in present study), which help
to prevent lipid peroxidation for efficient photosynthetic activity
under various abiotic stresses (Habibi, 2013; Balal et al., 2016).
Djanaguiraman et al. (2005) found that low Se concentrations
alter chlorophyll biosynthetic pathway to increase pigments
in plants. As described by Chu et al. (2010) in wheat seedlings
subjected to cold stress, we found that foliar Se spray significantly
enhanced the CAR contents (Figure 2D) in Zea mays exposed
to water deficit conditions. Reports on Lycium chinense (Dong
et al., 2013) and Sorghum bicolor (Abbas, 2012) suggest that Se
supplementation enhances photosynthetic pigments at low doses
but causes a marked reduction at high doses due to negative effect
on the production of porphobilinogen synthetase (Padmaja et al.,
1995) or replacement of sulfur (S) atoms by Se in S-containing
amino acids, cysteine and methionine (Terry et al., 2000).
However, Hawrylak-Nowak (2009) observed non-significant
effect of Se supplementation on CAR contents of cucumber
plants. Se mediated increase in CAR pigments further supports
the theory that CAR pigments are involved in scavenging of
free radicals and maintenance of membrane integrity (Peng and
Zhou, 2009).

Foliar Se spray significantly increased the accumulation of
osmotically active molecules like TFA (Figure 3A), which helped
drought stressed maize plants to maintain water status. It
can be inferred from the results that Se stimulates amylase
activity to increase starch decomposition under water deficit
conditions. Early reports on Glycine max, Solanum tuberosum,
Brassica napus, and Zizyphus jujube (Djanaguiraman et al., 2004;
Turakainen et al., 2004; Hajiboland and Keivanfar, 2012; Zhao
et al., 2013) are concordant with our results suggesting that
exposure to environmental stresses like drought results in the
breakdown of structural proteins to promote biosynthesis and
accumulation of amino acids (Hsu et al., 2003), which actively
take part in osmotic adjustment under drought stress conditions
(Good and Zaplachinski, 1994). Djanaguiraman et al. (2004) were
of the view that Se supplementation disturbs the amino acid
metabolism, which increases soluble protein content and nitrate
reductase activity in water stressed plants. The increased activities
of antioxidant enzymes indicate excessive ROS production under
drought stress conditions (Cartes et al., 2010; Hasanuzzaman

and Fujita, 2011). These enzymes serve as highly efficient
machinery for detoxification of O2

− and H2O2 and help to
prevent the formation of highly toxic HO− (Mittler et al., 2004).
A marked increase in SOD, CAT, POX, and APX production by
Se supplementation provides further evidence that Se regulates
the spontaneous dismutation of O2

− into H2O2 (Hartikainen
et al., 2000; Cartes et al., 2010) or may be directly involved in
quenching of O2

− and OH− in cells (Xu et al., 2007). Previous
studies in wheat (Yao et al., 2009; Nawaz et al., 2015a), barley
(Habibi, 2013), tomato (Balal et al., 2016), and rice (Xu and Hu,
2004) also reported an increase in the activity of antioxidant
machinery in Se supplemented plants exposed to a wide range
of abiotic stresses. It is crucial to maintain balance between SOD
and other ROS scavenging enzymes to determine the steady-state
level of O2

− and H2O2 in cells (Mittler et al., 2004) hence the
exogenous application of appropriate doses of Se is involved in
the reactivation of ROS quenchers like SOD, POX, and GSH-Px
to reduce H2O2 levels in plants exposed to stressful environments
(Filek et al., 2009; Kumar et al., 2012). Earlier, Sajedi et al. (2011)
reported increased antioxidant activity in Se supplemented maize
plants and suggested that single but not the combined use of Se or
micronutrients mitigates drought stress in plants. However, the
excessive Se doses not only reduce the POX activities (Nowak
et al., 2004) but also cause damage to plant tissues (Marschner,
1995; Nawaz et al., 2013).

Drought induced reduction in maize fodder yield and quality
corresponds to the reports in sorghum-sudan grass (Bibi et al.,
2012) and ryegrass (Abraha et al., 2015). Positive effects of Se
on yield of food crops are well-documented (Ducsay et al.,
2009; Chilimba et al., 2012; Wang et al., 2013; Nawaz et al.,
2015b), however, reports regarding role of Se in improving
forages yield are scanty. Availability, of high soil moisture
content is one of most critical factors influencing the yield
of forages in water-limited environment (Staniak and Kocoń,
2015). Presumably, Se mediated increase in maize fodder yield
is related to the maintenance of turgor and enhancement in
photosynthetic pigments that helped plants to produce more
biomass under water deficit conditions. Foliar Se application
significantly increased the fodder quality attributes such as CP,
CF, and NFE which might be attributed to improved water
status and increased activity of antioxidant machinery that
would have stimulated uptake of minerals and translocation
of assimilates to shoot which enhanced fodder quality. Our
results are concordant with the reports of Pii et al. (2015) who
were of the view that physiological processes and biochemical
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FIGURE 3 | Effect of Se foliar spray on osmoprotectants accumulation and activities of antioxidant enzymes, (A) total free amino acids (TFA) (B)
superoxide dismutase (SOD) (C) catalase (CAT) (D) peroxidase (POX) (E) ascorbate peroxidase (APX) of Zea mays exposed to drought stress. Values
represent mean ± SE. Different letters represent significant differences at P ≤ 0.05, after applying post hoc Tukey’s test.
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FIGURE 4 | Effect of Se foliar spray on fodder quality, (A) crude protein (CP) (B) crude fiber (CF) (C) crude ash (CA) (D) moisture contents (MC) (E)
nitrogen free extract (NFE) of Zea mays exposed to drought stress. Values represent mean ± SE. Different letters represent significant differences at P ≤ 0.05,
after applying post hoc Tukey’s test.
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activities including enzyme activation control the elemental
uptake that defines the nutritional status of plants. However,
interactions between Se and other elements are also well-
reported in literature for example; Yao et al. (2013) documented
that exogenous Se supply significantly enhanced the uptake
of Fe, K and Zn in wheat, whereas, Pazurkiewicz-Kocot
et al. (2008) noticed that Se supplementation increased the
K contents in maize grains but inhibited the accumulation
of Ca and Mg in roots. Recently, Drahoňovský et al. (2016)
observed marked increase in Ca contents of Se supplemented
Chaerophyllum temulum and Veronica chamaedrys, hence,
further targeted research is necessary to investigate the relation
between Se supply and nutrients uptake and its association
with fodder quality attributes. Increased Se content in maize
plants supports our hypothesis that foliar Se supply can be
utilized as an effective strategy for the biofortification of fodder
crops (Drahoňovský et al., 2016) to prepare balanced mineral
ration for livestock in areas with low Se levels in pastures
(Žáková, 2014). Higher Se contents in water stressed plants
might be due to enhanced activities of antioxidant enzymes
with respect to control (Hartikainen et al., 2000). Cartes et al.
(2005) documented that a positive correlation exists between
shoot Se concentration and GSH-Px activity, which might be
responsible for increased shoot Se content under water deficit
conditions. Our results further support the notion that soil
moisture influences Se availability and accumulation, as it is

TABLE 3 | Summary of the ANOVA for crude protein (CP), crude fiber (CF),
crude ash (CA), moisture contents (MC), and nitrogen free extract (NFE) in
Zea mays.

SOV CP (%) CF (%) CA (%) MC (%) NFE (%)

Selenium (Se) ∗ ∗ NS ∗ ∗∗

Drought (D) ∗∗∗ ∗∗ ∗∗ ∗∗∗ ∗∗∗

Se × D NS NS NS NS NS

CV 9.96 4.61 8.07 6.88 3.69

Significant differences are indicated by an asterisk (∗); ∗P ≤ 0.05, ∗∗P ≤ 0.01,
∗∗∗P ≤ 0.001; NS, non-significant; SOV, source of variation; CV, coefficient of
variation.

more available under limited water environment (Zhao et al.,
2007).

CONCLUSION

To the best of our knowledge, the present study is one of the few
reports on the effects of exogenous Se supply on maize fodder
yield and quality under water deficit conditions. Positive effects
of Se supplementation on fodder yield and quality were found
to be associated with Se-mediated regulation of physiological
and biochemical processes such as maintenance of turgor due
to accumulation of osmolytes like TFA, increased chlorophyll
and carotenoid contents and activation of antioxidant machinery

FIGURE 5 | Effect of Se foliar spray on (A) green fodder yield (GFY) and (B) shoot Se content of Zea mays exposed to drought stress. Values represent
mean ± SE. Different letters represent significant differences at P ≤ 0.05, after applying post hoc Tukey’s test.
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in water stressed maize plants. Moreover, foliar Se supply also
increased Se content in shoot, which may be exploited as a viable
and effective approach to increase Se concentration in fodders for
the development of balanced livestock ration particularly in areas
with low Se levels in soils.
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