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Glycogen synthase kinase 3 (GSK-3) is an evolutionarily conserved multifaceted
ubiquitous enzyme. In the central nervous system (CNS), GSK-3 acts through an
intricate network of intracellular signaling pathways culminating in a highly divergent
cascade of phosphorylations that control neuronal function during development and
adulthood. Accumulated evidence indicates that altered levels of GSK-3 correlate with
maladaptive plasticity of neuronal circuitries in psychiatric disorders, addictive behaviors,
and neurodegenerative diseases, and pharmacological interventions known to limit
GSK-3 can counteract some of these deficits. Thus, targeting the GSK-3 cascade for
therapeutic interventions against this broad spectrum of brain diseases has raised
a tremendous interest. Yet, the multitude of GSK-3 downstream effectors poses a
substantial challenge in the development of selective and potent medications that could
efficiently block or modulate the activity of this enzyme. Although the full range of
GSK-3 molecular targets are far from resolved, exciting new evidence indicates that
ion channels regulating excitability, neurotransmitter release, and synaptic transmission,
which ultimately contribute to the mechanisms underling brain plasticity and higher level
cognitive and emotional processing, are new promising targets of this enzyme. Here, we
will revise this new emerging role of GSK-3 in controling the activity of voltage-gated Na+,
K+, Ca2+ channels and ligand-gated glutamate receptors with the goal of highlighting new
relevant endpoints of the neuronal GSK-3 cascade that could provide a platform for a better
understanding of the mechanisms underlying the dysfunction of this kinase in the CNS and
serve as a guidance for medication development against the broad range of GSK-3-linked
human diseases.
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INTRODUCTION
Glycogen synthase kinase 3 (GSK-3) is a highly evolutionarily
conserved multifaceted ubiquitous enzyme (Plyte et al., 1992;
Kaidanovich-Beilin and Woodgett, 2011), which was first iden-
tified as a regulator of glycogen metabolism through phospho-
rylation and inactivation of glycogen synthase in skeletal muscle
(Embi et al., 1980; Rylatt et al., 1980). Since then, GSK-3 has
been identified in a wide spectrum of cellular processes, such as
cell proliferation and differentiation (Frame and Cohen, 2001;
Grimes and Jope, 2001a), cell survival (Takashima et al., 1993;
Pap and Cooper, 1998), and cell motility (Wagner et al., 1997;
Lucas et al., 1998; Sanchez et al., 2000a,b). GSK-3 is a proline-
directed serine/threonine kinase, belonging to the CMCG [cyclin-
dependent kinases (CDKs), mitogen-activated protein kinases
(MAP kinases), CDK-like kinases and GSKs], that has been impli-
cated as either a downstream or upstream effector in a number
of intracellular signaling pathways and transcription factor activ-
ity, including but not limited to: Wnt/β-catenin (Dominguez
et al., 1995; Cadigan and Nusse, 1997; Patapoutian and Reichardt,

2000; Seidensticker and Behrens, 2000; Chen et al., 2006; Ataman
et al., 2008; Wan et al., 2012), brain-derived neurotrophic fac-
tor (BDNF) (Namekata et al., 2012), insulin (Garcia-Segura
et al., 2010) and Hedgehog signaling (Jia et al., 2002; Price
and Kalderon, 2002), and the translation initiation factor eIF-
2B (Coghlan et al., 2000; Frame and Cohen, 2001; Doble and
Woodgett, 2003).

The consensus sequence for GSK-3 kinase targets—at least
40 putative so far identified (Grimes and Jope, 2001b; Doble
and Woodgett, 2003; Jope and Johnson, 2004)—typically con-
sists of S/T-X-X-X-S/T in which the first S/T residue is the GSK-3
phosphorylation site and the downstream S/T residue is usually
phosphorylated by casein kinase I or casein kinase II (Fiol et al.,
1987). When phosphorylated, this downstream residue acts as a
“priming” site enhancing phosphorylation by GSK-3 at the active
site (Dajani et al., 2001). This unique property of GSK-3 suggests
the existence of a hierarchical regulation of this enzyme prone to
fine-tuning regulation of cell signaling through multiple kinase
pathways (Fiol et al., 1987; Roach, 1990). GSK-3 is constitutively
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active in cells (Grimes and Jope, 2001a; Doble and Woodgett,
2003) and negatively regulated by the PI-3K/Akt pathway through
phosphorylation of Ser-9 and Ser-21 (GSK-3β and GSK-3α,
respectively) located at the N-terminus (Plyte et al., 1992; Cross
et al., 1995; Grimes and Jope, 2001a). Conversely, phosphory-
lation at Tyr-216 (GSK-3β) or Tyr-279 (GSK-3α) serves as an
activator (Hughes et al., 1993), possibly through autophospho-
rylation (Frame and Cohen, 2001). These positive and negative
intramolecular mechanisms at the basis of the enzyme activity
have been resolved through crystal structure resolution (Dajani
et al., 2001) illustrated in Figure 1.

While GSK-3 is found in nearly all tissues (Woodgett,
1990), its highest expression and activity levels are in the
brain (Leroy and Brion, 1999). Interestingly, in animal mod-
els over-expression of GSK-3 induces increased vulnerability to
mood-related behavioral disturbances and impaired socializa-
tion behaviors (Mines et al., 2010; Polter et al., 2010), whereas
GSK-3β haploinsufficiency leads to anti-depressant-like behav-
ioral phenotypes (O’Brien et al., 2004; Kaidanovich-Beilin et al.,
2009; Kaidanovich-Beilin and Woodgett, 2011). Furthermore, in
clinical studies changes in the expression and activity of GSK-3
are found in schizophrenia (Kozlovsky et al., 2001, 2002; Jope,
2003; Lovestone et al., 2007; Emamian, 2012), mood disorders
(Eldar-Finkelman, 2002; Jope, 2011), addictive behaviors (Miller
et al., 2009, 2010) and Alzheimer’s disease (Balaraman et al., 2006;
Hooper et al., 2008; Kremer et al., 2011), indicating a promi-
nent role of this enzyme for higher level cognitive and emotional

FIGURE 1 | Structure of Human GSK-3β. Secondary structure model of
human GSK-3β rainbow colored from the N-terminus (blue) to the
C-terminus (red). Courtesy of Dr. Lawrence Pearl.

processing. Yet, a complete picture of GSK-3 activity and of its
molecular targets in the CNS is still unresolved. Here, we will dis-
cuss the emerging role of GSK-3 in the regulation of neuronal
ion channel function and its implications for intrinsic excitability,
synaptic transmission, and neuronal plasticity as a step forward
to the comprehension of GSK-3 activity in the human brain.
We hope our effort will provide a new template to identify rel-
evant endpoints of the neuronal GSK-3 cascade that could help
elucidate disease mechanisms and serve as optimal targets for
drug development against the broad spectrum of neurological
and psychiatric disorders linked to GSK-3 dysfunction.

EXPRESSION OF GSK-3 IN THE BRAIN
Of the two mammalian GSK-3 isoforms, GSK-3α and GSK-3β

(Woodgett, 1990; Boyle et al., 1991), GSK-3β is the most abun-
dant in the brain. Recent studies indicate the existence of two
splice variants of GSK-3β, which generate a short form, GSK-3β1,
and a long form containing an additional 13 amino acids in the
catalytic domain, GSK-3β2 (Mukai et al., 2002). Both of these
isoforms are highly expressed in the CNS during development
and adulthood, but GSK-3β1 remains the dominant splice vari-
ant; GSK-3β2 is more abundant in the brain compared to other
tissues like liver, heart, and skeletal muscle, but is expressed at
lower levels than GSK-3β1, and its expression tends to decrease
after birth (Mukai et al., 2002). At the cellular level, the two differ-
ent splice variants of GSK-3β show a distinct pattern distribution
with GSK-3β1 predominantly in the cell body and processes and
GSK-3β2 primarily in the soma, possibly hinting at isoform-
specific functions (Mukai et al., 2002), though a more recent
study suggests that both splice variant are found in the soma and
processes (Wood-Kaczmar et al., 2009). Even so, the existence of
two splice variant of GSK-3β raises the question of the differential
functions. Lastly, mechanisms that control the expression levels of
GSK-3 itself are of great interest, as they could be part of home-
ostatic loops, which, if abrogated, could lead to the insurgence
of the psychiatric and neurological disorders discussed above.
Among potential mechanisms, activity-regulated Wnt signaling
is a strong candidate (Chen et al., 2006; Tang, 2007; Ataman et al.,
2008; Wan et al., 2012).

REGULATION OF VOLTAGE-GATED CHANNELS BY GSK-3
In the next section, we will review what is known about the direct
or indirect effects of GSK-3 on voltage-gated ion channels, and
discuss the potential implications of these findings for intrinsic
excitability and neurotransmitter release.

VOLTAGE-GATED SODIUM (Nav) CHANNELS
Nav channels are heteromeric transmembrane proteins consist-
ing of a pore-forming α-subunit (Nav1.1–Nav1.9 and Nax) and
accessory β-subunits (β1−β4) (Catterall et al., 2005). These chan-
nels are activated by membrane depolarization giving rise to
action potentials in neurons and other excitable cells, and thus
play a critical role in synaptic transmission, signal integration,
and neuronal plasticity. The intracellular portion of Nav channels
contains multiple phosphorylation motifs known to regulate the
channel biophysical properties, its subcellular distribution, and
trafficking (Shao et al., 2009; Baek et al., 2011). Some of the target
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kinases for these sites include protein kinase A (PKA) (Zhou et al.,
2002), protein kinase C (PKC) (Vijayaragavan et al., 2004), and
Ca2+/calmodulin kinase II (CaMKII) (Deschenes et al., 2002).

A series of studies on the Nav1.7 isoform indicate that the Nav
channel is regulated by GSK-3. In bovine adrenal chromaffin cells,
treatment with lithium, a therapeutic agent that inhibits GSK-3
activity (Beaulieu et al., 2009; Hernandez et al., 2009), increases
the cell surface [3H] saxitoxin binding of Nav1.7 and augments
veratridine-induced Na+ currents by a mechanism that is pre-
vented by more specific GSK-3 inhibitors such as SB216763 and
SB415286 (Coghlan et al., 2000; Yanagita et al., 2009), although
some additional GSK-3-independent mechanisms might also be
mediating the effects of lithium (Yanagita et al., 2007). Likewise,
stimulation of the insulin pathway, which is an upstream nega-
tive regulator of GSK-3, increases surface expression of Nav1.7
channels in the same cell type, supposedly through activation of
the PI-3K/Akt pathway and subsequent decrease in active GSK-
3 levels (Yamamoto et al., 1996; Nemoto et al., 2009). Overall,
these data suggest that both constitutive and regulated GSK-3
might exert control on the surface level expression of Nav chan-
nels (Yamamoto et al., 1996; Yanagita et al., 2009). Regulation
of the channel trafficking might be one underlying mechanism
of the GSK-3 pathway, but more global effects on the Nav α-
subunit mRNA expression level may also account for some of the
observed phenotypes (Wada et al., 2005; Yanagita et al., 2009), as
treatment with lithium or insulin increases Nav α-subunit mRNA
gene transcription (Yamamoto et al., 1996; Yanagita et al., 2009).
Whether these results are reproducible in the CNS and to what
extent they can be extended to other Nav channel isoforms should
be investigated.

Interestingly, although these studies suggest Nav channel regu-
lation by GSK-3, to the best of our knowledge, no consensus sites
for GSK-3 have been reported for any Nav α subunits or β acces-
sory subunits (Berendt et al., 2010; Scheuer, 2011), suggesting
indirect Nav channel regulation by GSK-3. The protein–protein
interaction network that composes the macromolecular complex
of Nav channels in the CNS is rich in key determinants for Nav
channel function and excitability (Shao et al., 2009).The intra-
cellular fibroblast growth factor 14 (FGF14), a member of the
intracellular FGF family (iFGF) (Itoh and Ornitz, 2008), is a
critical accessory protein of the Nav channel that binds to the
intracellular C-tail of the Nav α subunit in an Nav-isoform spe-
cific manner, and controls biophysical properties and channel
sub-cellular targeting to the axonal initial segment (AIS) (Laezza
et al., 2007, 2009; Shavkunov et al., 2012). Loss of FGF14 function
down-regulates Na+ currents, reduces expression of Nav chan-
nels at the AIS, and impairs excitability in the hippocampus and
cerebellum (Goldfarb et al., 2007; Laezza et al., 2007), indicat-
ing that, under normal conditions, FGF14 is required for proper
activity of Nav channels acting as a multivalent stimulator of
excitability. Through a chemical screening of kinase inhibitors, we
recently identified the FGF14:Nav1.6 C-tail complex as a potential
new GSK-3 target (Laezza et al., 2011). In these studies, GSK-3
inhibitors reduce the association of the FGF14:Nav1.6 C-tail
complex in heterologous cells, (Laezza et al., 2011). If this mech-
anism occurs in neurons, then by controling the assembly of the
FGF14 with Nav channels, active GSK-3 might stimulate intrinsic

excitability. Notably, the primary pharmacotherapeutic strategy
in bipolar disorder consists of limiting neuronal hyperexcitabil-
ity by blocking Nav channels with anticonvulsants and reducing
the activity of GSK-3 with lithium (Rogawski and Loscher, 2004;
Rowe et al., 2007). Whether the Nav channel macromolecular
complex is a relevant end point of the GSK-3 cascade and a
common molecular target of mood stabilizers (Harwood and
Agam, 2003; Bazinet, 2009) would be an attractive hypothesis
to test.

VOLTAGE-GATED POTASSIUM (Kv) CHANNELS
The Kv channel family includes the most heterogeneous and
abundant group of ion channels in excitable cells, comprising
more than 40 subunit genes divided into separate families based
on structural and functional properties (Gutman et al., 2003). A
functional channel typically requires association of four α sub-
units, usually within the same family, and may include β subunits
or other accessory proteins that regulate channel trafficking and
biophysical properties (Norris et al., 2010; Vacher and Trimmer,
2011). Kv channels are critical players in the repolarization
phase of the action potential, controling neuronal firing patterns
(Pongs, 1999), and setting the resting membrane potential. These
channels also contribute to the action potential back-propagation
with broad implications for dendritic signal integration and
synaptic plasticity (Johnston et al., 2003; Thompson, 2007). Kv
channels and their accessory proteins are directly phosphorylated
by a number of kinases which affect the channel biophysical prop-
erties, trafficking, and subcellular targeting (Cerda and Trimmer,
2010; Baek et al., 2011; Cerda et al., 2011; Cerda and Trimmer,
2011).

Interestingly, of all different Kv channel subtypes, the Kv chan-
nel encoded by the gene KCNQ2 (Singh et al., 1998), which
corresponds to Kv7.2 (Cooper, 2010), is the only one so far
identified as a GSK-3β substrate (though GSK-3α cannot be dis-
counted). KCNQ2 mediates M-currents (Jentsch, 2000), which
exert an overall dampening effect on excitability by promoting
firing accommodation (Otto et al., 2006; Kapfhamer et al., 2010).
Loss-of function or dominant negative mutations in the KCNQ2
gene are found in epilepsy and bipolar disorder (Singh et al.,
1998; Cooper et al., 2000; Mulley et al., 2003), and inhibition of
M-channel activity has been linked to schizophrenia (Fedorenko
et al., 2008), suggesting that neuronal hyperexcitability resulting
from impaired M-channel function may be a common denom-
inator in a number of neurological and psychiatric illnesses in
which GSK-3 activity is dysfunctional (Li et al., 2002). Recent
studies have shown that both the KCNQ2 channel mutants—
associated with bipolar disorder—and wild-type KCNQ2 chan-
nels are phosphorylated by GSK-3β in vitro, at a site that requires
PKA priming and is dephosphorylated by protein phosphatase
2A (PP2A; also known as calcineurin) (Borsotto et al., 2007).
Phosphorylation of the KCNQ2 channel typically results in inhi-
bition of the channel activity (Schroeder et al., 1998; Hoshi
et al., 2003) and expression of PP2A increases KCNQ2-mediated
current (Borsotto et al., 2007), suggesting that GSK-3 might
be part of a regulatory mechanism that suppress M-currents.
At cellular level, GSK-3β and KCNQ2 colocalize in the apical
dendrites of pyramidal neurons in the medial prefrontal cortex
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(mPFC) (Kapfhamer et al., 2010). Furthermore, pharmacolog-
ical inhibition of GSK-3 in the mPFC mimics and occludes
the effect of the M-channel inhibitor linopirdine, resulting in
sensorimotor disinhibition (measured by prepulse inhibition),
reduced M-type-dependent firing accommodation, and an over-
all increase in excitability (Kapfhamer et al., 2010). In both
bipolar disorder and schizophrenia sensorimotor gating is often
impaired (Braff et al., 1995), and inhibition of KCNQ2 channels
induced by GSK-3-dependent phosphorylation might be a poten-
tial mechanism underlying hyperexcitability and circuit dysfunc-
tion that accompany some of the clinical symptoms observed in
these psychiatric disorders (Sharp and Hendren, 2007). Given
the high degree of homology between different Kv channels and
their complex and heterogeneous role in excitability, determining
whether other Kv channels are GSK-3 targets should be a priority.

VOLTAGE-GATED CALCIUM (Cav) CHANNELS
Cav channels are composed of four or five distinct subunits,
which are encoded by multiple genes (Catterall, 2000). These
include the Cav1 subfamily (Cav1.1–1.4), which mediates L-type
Ca2+ currents, the Cav2 subfamily (Cav2.1–2.3), which mediates
P/Q-, N-, and R-type Ca2+currents, respectively, and the Cav3
subfamily (Cav3.1–Cav3.3), which mediates T-type Ca2+ cur-
rents (Carr et al., 2003). Found in all excitable cells, Cav channels
are closed at resting membrane potential and opened by depolar-
izing potentials, allowing Ca2+ influx into the cell, which serves
as a potent and highly versatile intracellular signaling molecule
both pre- and postsynaptically (Catterall, 2011). Cav channels
are highly regulated by phosphorylation (Jiang et al., 2008) both
directly and indirectly through their associated multiprotein com-
plexes (Catterall, 2010). Ca2+ flux through Cav channels regulates
neurotransmitter release presynaptically (Sudhof, 2012), signal
transduction (Xie, 2004), and contribute to the induction of
synaptic plasticity (Kochlamazashvili et al., 2010).

Evidence exists in the hippocampus for direct GSK-3β phos-
phorylation of the intracellular loop-connecting domains II and
III (LII−III) of the P/Q-type Ca2+ channels at a threonine site
(predicted Thr915 residue) of the synprint site (Zhu et al., 2010).
The synprint site on the P/Q and N-type channels mediates the
binding to the soluble N-ethylmaleimide-sensitive factor attach-
ment protein (SNAP) receptor (SNARE) complex, a protein com-
plex required for neurotransmitter release (Kim and Catterall,
1997). Neurotransmitter release occurs through a series of steps
including: (1) binding of the synprint sites on N-type or P/Q-
type Ca2+ channels with the presynaptic membrane proteins
synaptotagmin and t-SNARE (i.e., SNAP25 and syntaxin); (2)
dissociation of synaptobrevin (Syb) (also called VAMP2, vesi-
cle associated membrane protein 2), a vesicular SNARE protein
responsible for synaptic vesicle fusion, from synaptophysin I
(SypI); (3) association of Syb with t-SNARE (Pennuto et al.,
2003). All of these molecular events are tightly regulated by
intracellular Ca2+ concentration ([Ca2+]i) and by the phos-
phorylation of the synprint sites on N-type and P/Q-type Cav
channels (Yokoyama et al., 1997). By phosphorylation of the syn-
print site, GSK-3 decreases Ca2+ currents and Ca2+ influx in
hippocampal neurons (Zhu et al., 2010), preventing the chan-
nel’s association with SNAP25, syntaxin (Kim and Catterall,

1997; Yokoyama et al., 1997, 2005), and synaptotagmin block-
ing presynaptic vesicle release (Zhu et al., 2010). This effect is
remarkably similar to previously reported Cdk5/p25-dependent
phosphorylation of the same II and III (LII−III) loop of P/Q-type
Cav channels, which also resulted in inhibition of the interaction
of the channel with the SNARE complex required for neurotrans-
mitter release (Tomizawa et al., 2002). Whether competition or
convergence exist between these two kinases on Cav channels
remains to be determined.

In addition to the effects on Cav channels, a number of reports
have indicated a role of GSK-3 in presynaptic vesicle recycling and
in the regulation of the expression of other relevant presynaptic
proteins (Smillie and Cousin, 2011). GSK-3β phosphorylation of
Ser-774 at the C-terminal proline-rich domain (PRD) of dynamin
I (Clayton et al., 2010), a protein involved in vesicle endocyto-
sis (Newton et al., 2006; Clayton et al., 2009; Zhu et al., 2009),
is required during activity-dependent bulk endocytosis (ADBE)
(Clayton et al., 2008, 2010). Furthermore, in hippocampal neu-
rons activation of GSK-3β decreases presynaptic glutamate release
following high-frequency stimulation and diminishes the expres-
sion of synapsin I (SynI) (Zhu et al., 2007), another critical
component of the SNARE complex that regulates synaptic vesi-
cle mobilization (Nichols et al., 1992; Rosahl et al., 1995; Terada
et al., 1999; Chi et al., 2001), and is upregulated during long-
term potentiation (LTP) (Sato et al., 2000). Pre-treatment with
lithium or other GSK-3 inhibitors opposes this effect (Welch et al.,
2007). The cadherin/β-catenin complex also has been shown to
play a role in the clustering of synaptic vesicles at synapses (Bamji
et al., 2003) and β-catenin itself is a phosphorylation substrate
of GSK-3β (Hinoi et al., 2000; Liu et al., 2002). Thus, through a
concerted modulation of protein–protein interactions at the level
of Cav channels and SNARE complex, the GSK-3 signaling path-
way controls presynaptic transmitter release exerting an overall
suppressive effect on synaptic vesicle fusion and neurotransmitter
release.

Presynaptic Cav channels include also the N-type (Cav2.2)
which similarly to the P/Q channels impact transmitter release
(Sudhof, 2012) through phosphorylation-dependent binding to
the SNARE complex (Yokoyama et al., 1997). A novel component
of the Cav2.2 macromolecular complex is the collapsin response
mediator protein 2 (CRMP-2), a member of a family of five
proteins implicated in signal transduction, axonal growth, and
guidance (Goshima et al., 1999; Uchida et al., 2005). Cav2.2 asso-
ciates with CRMP-2 at both the I–II intracellular loop and the
distal C-terminus in the presynaptic terminals of dorsal root gan-
glion (DRG) and hippocampal neurons (Brittain et al., 2009; Chi
et al., 2009; Wang et al., 2010). Functional coupling of synaptic
CRMP-2 with Cav2.2 is enhanced by depolarization and over-
expression of CRMP-2 increases surface expression of Cav2.2,
leading to up-regulation of presynaptic Ca2+ flux, augmented
glutamate release, and increase in synapse size (Chi et al., 2009;
Wang et al., 2010). The molecular machinery leading to these
phenotypes includes the interaction of CRMP-2 with the tubulin-
heterodimer and stimulation of microtubule assembly (Fukata
et al., 2002; Schmidt and Strittmatter, 2007). Upon extracellular
activation of the semaphorin3A/Neuropilin-1/PlexinA receptors
pathway, CRMP-2 is sequentially phosphorylated by Cdk5 and
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GSK-3 (Uchida et al., 2005). Phosphorylated CRMPs have a
reduced affinity for tubulin and, as such, they lose their stimu-
latory effect on axon elongation, promoting growth cone collapse
(Arimura et al., 2000, 2005). Although it is still unclear whether
Cav2.2 binds to the phosphorylated or non-phosphorylated state
of CRMP-2, one might speculate that, like tubulin, Cav2.2 binds
to the non-phosphorylated, active form of CRMP-2 (Wang et al.,
2010). A potential working model could be that GSK-3 phos-
phorylation of CRMP-2 through the semaphoring 3A signaling
could serve as a detector of presynaptic inactivity (reduction
in Ca2+ flux and presynaptic release) leading to suppression
of axonal growth with critical implications for plasticity, Wnt-
dependent control of neuronal polarity (Kim and Snider, 2011;
Nishiyama et al., 2011; Shelly et al., 2011; Yang and Luo, 2011;
Yamashita et al., 2012; Yamashita and Goshima, 2012), with func-
tional consequences for schizophrenia (Singh et al., 2011) and
neurodegeneration (Williamson et al., 2011). A simple working
model of the role of GSK-3 at presynaptic terminals is depicted in
Figure 2.

Interesting results indicate that α1C-subunit of Cav1.2b chan-
nels, which mediate L-type currents, associates with and is a
substrate of GSK-3β in colonic smooth muscle cells (Li and
Sarna, 2011). This complex is downstream of the norepinephrine-
mediated signaling pathway. Stimulation of norepinephrine
inactivates GSK-3β via the PI-3K/Akt pathway, decreasing phos-
phorylation of the α1C-subunit, and concurrently enhances
α1C-protein translation and blocks its polyubiquitination and
proteasomal degradation (Li and Sarna, 2011). Whether these data
are applicable to the L-type channels in the CNS it remains to be
determined. Finally, modulation of T- and R-type calcium chan-
nels either directly or indirectly by GSK-3 remains unknown and
presently to the best of our knowledge, an unexplored possibility.

REGULATION OF LIGAND-GATED CHANNELS BY GSK-3
Glutamate receptors, broadly divided into two ionotropic and
metabotropic families, mediate fast and slow G-protein coupled
mediated signaling, respectively. Ionotropic glutamate receptors
are the most abundant ligand-gated ion channels in the CNS,
mediate virtually all excitatory neuronal transmission and play
critical roles for induction and expression of activity-dependent
synaptic remodeling and neuronal plasticity. Here, we will dis-
cuss what is currently known on GSK-3 phosphorylation of
ligand-gated glutamate receptors.

AMPA RECEPTORS
The α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate
(AMPA) receptors are heterotetramers formed by the heterol-
ogous combination of GluA1-GluA4 subunits. These subunits
determine ionic permeability and contribute to the biophysical
properties of the channel (Nakagawa, 2010; Traynelis et al., 2010),
its trafficking routes (Henley et al., 2011), and dictate its roles in
induction and expression of synaptic plasticity (Shi et al., 2001).
Upon binding to glutamate, Na+ and/or Ca2+ permeability of the
AMPA receptors increases, leading to an excitatory postsynaptic
potential. If AMPA receptors are GluA2-lacking, the channels
are permeable to Ca2+ and can participate in the induction of
LTP and long-term depression (LTD) in both principal cells
(Plant et al., 2006; Rozov et al., 2012) and interneurons (Laezza
et al., 1999; Laezza and Dingledine, 2004, 2011). In hippocampal
pyramidal neurons most of the functional AMPA receptors,
though, contain the GluA2 subunit, either combined with GluA1
or in a small percentage associated with GluA3 (Lu et al., 2009).
In CA1 pyramidal neurons evidence exists, although controver-
sial (Adesnik and Nicoll, 2007), for a GluA1 homomeric species
that appears to be inserted into the membrane following LTP

FIGURE 2 | Regulation of presynaptic Cav channels by GSK-3. Under low
GSK-3 conditions the interaction of P/Q Cav channels with the SNARE
complex is favored and Ca2+ flux and neurotransmitter release are enhanced;

likewise, N-type Cav channel interaction with CPMP-2 is stabilized and axonal
growth is stimulated. Opposite effects are expected upon high levels of GSK-3
induced, for example, by stimulation of semaphorin 3A signaling pathway.
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induction (Plant et al., 2006). The GluA1/GluA2 receptors are
delivered and inserted into the plasma membrane by activity-
dependent mechanisms that require protein-protein interactions
at the GluA1 C-terminus, whereas the GluA3/GluA2 heterodimer
is part of a constitutive pathway controlled by proteins binding to
the C-terminus of GluA2 (Shi et al., 2001). Extensive studies have
addressed the role of these different heterodimers or of GluA1
homomers (Plant et al., 2006) in the expression mechanisms of
LTP and LTD (Adesnik and Nicoll, 2007; Shepherd and Huganir,
2007; Kessels and Malinow, 2009).

Early studies showed that in vivo chronic treatment with
lithium decreased surface expression of GluA1 in the rat hip-
pocampus (Du et al., 2004). The mechanism appears mediated
by a decrease in GluR1 phosphorylation at a specific PKA site
(GluR1p845), which is responsible for GluA1 insertion into the
plasma membrane (Lee et al., 2000; Malinow and Malenka,
2002) and controls the channel open probability (Banke et al.,
2000). More recent studies have shown that active GSK-3 forms
a complex with both GluA1 and GluA2 subunits in the CA1
region of the hippocampus, as determined by reciprocal co-
immunoprecipitation and that this interaction is relevant for
synaptic plasticity (Peineau et al., 2007; Bradley et al., 2012). In
these studies the activity of GSK-3 was enhanced during LTD
via activation of PP1. Conversely, following chemically-induced
LTP (Lu et al., 2001; Man et al., 2003) the association of AMPA
receptors (GluA1 and GluA2) with GSK-3 is reduced (Peineau
et al., 2007; Bradley et al., 2012), suggesting a GSK-3-dependent
pathway that controls AMPA receptor surface levels during LTD
(Peineau et al., 2008; Bradley et al., 2012).

The molecular mechanisms underlying GSK-3-dependent
trafficking of AMPA receptors have been addressed in other
studies. Pharmacological inhibition or knockdown of GSK-3
in cortical neurons decrease AMPA receptor-mediated mEPSC
amplitude and occlude the effect of insulin, a known upstream
negative effector of GSK-3, through an effect on AMPA receptor
trafficking (Wei et al., 2010). The decrease in mEPSCs ampli-
tude that accompanies GSK-3 inhibition correlates with a loss
of surface GluA1 and GluA2 resulting in a marked decrease
in the number and size of PSD95 positive synaptic clusters
(Wei et al., 2010). The molecular machinery underlying GSK-
3-dependent trafficking of AMPA receptor includes the guanyl
nucleotide dissociation inhibitor (GDI):Rab5 complex (Zerial
and McBride, 2001; Huang et al., 2004). If GSK-3 phosphory-
lation at S45 is impaired, GDI loses its affinity for Rab5, one
of the small GTPase that controls receptor trafficking from the
plasma membrane to early endosomes (Brown et al., 2005). When
free from GDI, Rab5 can recruit surface GluA1/GluA2 complexes
into early endosomes, promoting AMPA receptor internaliza-
tion and leading to decreased amplitude of mEPSCs (Wei et al.,
2010), as illustrated in Figure 3. Stimulation of AMPA recep-
tors by bath application of agonists attenuates GSK-3 activity
(Nishimoto et al., 2008) in cortical neurons, suggesting that
GSK-3 might be part of a regulatory loop that controls inter-
nalization of AMPA receptors in response to synaptic activ-
ity. Overall, these results indicate the role of both constitutive
and regulated (insulin) GSK-3 activity in the maintenance of
synaptic AMPA receptors (Wei et al., 2010). Given that the

complex endocytic machinery regulating AMPA receptor traf-
ficking is one of the key postsynaptic mechanisms underlying
activity-dependent synaptic plasticity (Carroll et al., 1999, 2001;
Luscher et al., 1999; Beattie et al., 2000), these studies open new
avenues and broaden the role of this kinase to critical postsynaptic
functions.

NMDA RECEPTORS
N-methyl-D-aspartate (NMDA) receptors are ligand-gated glu-
tamate receptors that mediate fast synaptic transmission in the
brain. The NMDA receptor’s unique properties as a ligand-gated
and voltage-sensitive receptor modulated by extracellular Mg2+
enables the channel to act as a coincidence detector of high-
frequency signals that trigger plasticity at glutamatergic synapses
in development and during adulthood (Seeburg et al., 1995).
NMDA receptors are formed by the assembly of different sub-
units including GluN1 subunit, four different GluN2 subunits
(GluN2A–D), and two GluN3 subunits (GluN3A, B) (Traynelis
et al., 2010). A functional NMDA receptor requires two GluN1
subunits and two GluN2 subunits, which are activated by simul-
taneous binding of glycine and glutamate to GluN1 and GluN2
subunits (Hedegaard et al., 2011). The four GluN2 subunits
play different roles during neuronal development and in synap-
tic plasticity (Liu et al., 2004; Yang et al., 2011). For example,
the GluN2A-containing NMDA receptors mediate Ca2+ cur-
rents leading to LTP, while GluN2B-containing receptors are
prominently expressed during development and critical for LTD
induction (Liu et al., 2004).

The earliest studies indicating a role of GSK-3 in regulat-
ing NMDA receptors showed that pharmacological inhibition or
silencing of GSK-3 causes a long-lasting reduction of NMDA
receptor-mediated ionic synaptic current in cortical pyramidal
neurons with no effects on the receptor desensitization (Chen
et al., 2007). In the same studies GSK-3 inhibitors were shown
to mimic and occlude the effect of insulin, indicating that both
constitutive and regulated GSK-3 activity controls NMDA recep-
tor (Chen et al., 2007). Silencing of GSK-3 in neuronal cultures
reduces NMDA receptor currents and prevents its regulation by
GSK-3 inhibitors (Chen et al., 2007).

Similarly to AMPA receptors, the down-regulation of NMDA
receptor-mediated currents is mediated by increased Rab5-
dependent internalization (Chen et al., 2007) through a mech-
anism that requires disruption of GluN2B interaction with the
scaffolding PDZ (Luscher et al., 2000) domain protein PSD95 and
depends upon clathrin/dynamin-dependent endocytosis (Chen
et al., 2007). Inhibition of dynamin (the GTPase responsible for
“pinching” the vesicle off of the plasma membrane) prevents
endocytosis and occludes the effect of GSK-3 inhibitors on surface
NMDA receptors (Chen et al., 2007). The effect of GSK-3 appears
specific for GluN1/GluN2B versus GluN1/GluN2A receptors, and
does not involve any other intracellular transport mechanisms
that are involved in NMDA receptor trafficking, including the
ones mediated by kinesins (Setou et al., 2000; Morfini et al., 2002),
microtubules (Yuen et al., 2005a,b; Zhou and Snider, 2005) or by
F-actin (Eickholt et al., 2002), suggesting that GSK-3 regulates
fairly specific pools of NMDA receptors (Chen et al., 2007). A
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FIGURE 3 | Regulation of AMPA and NMDA receptors by GSK-3. Under
low levels of GSK-3, internalization of AMPA and GluN2B-containing NMDA
receptors through clathrin-mediated endocytosis is facilitated.
GSK-3-dependent AMPA receptor internalization requires dissociation of the
GDI:Rab5 complex, induced by GSK-3 phosphorylation of GDI at S45;

GSK-3-dependent NMDA receptor internalization is limited to GluN2B
containing receptors and requires dissociation of PSD-95 from the GluN2B
C-terminal tail through a series of steps that are induced by GSK-3 inhibitors.
Conversely, under high levels of GSK-3, AMPA and NMDA receptors are highly
expressed at the plasma membrane, and receptor internalization is prevented.

simple scheme of the role of GSK-3 in regulating NMDA receptors
is shown in Figure 3.

In other studies treatment of cortical neurons with AMPA
was shown to decrease cell surface NMDA receptors in a GSK-
3 activity-dependent manner, and to reduce glutamate-induced
intracellular Ca2+ influx (Nishimoto et al., 2009), suggesting a
functional cross talk between AMPA and NMDA receptor activity
through GSK-3. This mechanism may contribute to neuroprotec-
tion in cortical and in cerebellar granule cells and explain some
of the neuroprotective effects of therapeutic dosages of lithium
(Nonaka et al., 1998). In addition, data in cortical neurons sug-
gests that NMDA receptor activation, key for LTP induction,
increases the levels of active phospho-Akt, a negative regulator of
GSK-3 (Sutton and Chandler, 2002), providing further evidence
for a role of the GSK-3 pathway in NMDA dependent synaptic
remodeling. At present there are no existing data as to the effects
of GSK-3 on metabotropic glutamate receptors (mGluRs), but
scaffolding proteins such as Shank and Homer might function-
ally link mGluRs to the NMDA receptors (Berridge et al., 2003)
and provide a molecular basis for a reciprocal cross-talk between
these two receptors (Liu et al., 2005).

Extensive studies have explored the functional interaction
between dopaminergic signaling and NMDA receptors (Wang

and Goldman-Rakic, 2004; Cepeda and Levine, 2006) and inves-
tigated the role of GSK-3 in this context. In the mPFC, for
example, high concentration of dopamine activates dopamine
2 (D2) receptors and induces NMDA-mediated EPSCs down-
regulation through activation of GSK-3 (Li et al., 2009) via its
upstream regulator PP2A (Beaulieu et al., 2009). D2-dependent
activation of GSK-3 stimulates two separate pathways. One trig-
gers endocytosis of surface NMDA receptors through increased
phosphorylation of GluN2B at S1480; the other one promotes
phosphorylation of β-catenin (Ser33/37/Tyr41) and its subse-
quent degradation, leading to inhibition of GluN2B gene tran-
scription (Li et al., 2009). The overall result is a decrease in both
surface and intracellular pools of NMDA receptors via a rapid
cytosolic mechanism and gene transcription. The mechanism that
triggers phosphorylation of GluN2B at Ser1480 depends upon
dynamin and is independent from Gq11 or PLC (phospholi-
pase C) (Li et al., 2009). In the same study it was shown that
inhibition of GSK-3 in hyperdopamine conditions reverses inter-
nalization of cortical GluN2B thereby restoring NMDA receptor-
mediated EPSCs (Li et al., 2009). As a further support of the role
of GSK-3 in regulating NMDA receptors, the use of wortman-
nin, an inhibitor of the PI-3K/Akt pathway was shown to cause
a significant decrease in surface expression of both GluN2A and
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GluN2B in the hippocampus, which GSK-3 inhibitors such as
lithium or SB216763, are able to restore to control levels (Zhu
et al., 2007). Overall, there appear to be a common control mech-
anism for AMPA and NMDA receptors by GSK-3 (Figure 3) that
has potential critical implications for synaptic maintenance of
glutamate receptors and for dopamine receptor-mediated psy-
chostimulant effects and hyperdopamine-dependent behaviors in
the brain (Beaulieu, 2012).

NEURONAL PLASTICITY
Changes in pre- and postsynaptic function are critical com-
ponents of neuronal plasticity underlying memory formation
(Hernandez et al., 2002; Hooper et al., 2007; Zhu et al., 2007;
Dewachter et al., 2009; Lee et al., 2010). Compelling evidence
indicates that modulation of constitutively active and/or regu-
lated GSK-3 has a direct impact on the induction and expression
of neuronal plasticity (Lucas et al., 1998; Kelly and Lynch, 2000;
Lin et al., 2001; Daw et al., 2002; Sanna et al., 2002; Liu et al.,
2003; Peineau et al., 2007; Kimura et al., 2008; Peineau et al.,
2008; Bradley et al., 2012) and that, conversely, synaptic stim-
uli that induce plasticity, affect GSK-3 activity (Szatmari et al.,
2005; Peineau et al., 2007, 2008). Furthermore, evidence indi-
cates a role of GSK-3 in setting the threshold for the induction
of LTP and LTD, a phenomenon called metaplasticity (Abraham
and Tate, 1997; Peineau et al., 2007; Bradley et al., 2012). The
roles of GSK-3 in regulating pre- and postsynaptic ion channels,
discussed above, might provide new molecular insights into the
mechanisms underlying neuronal plasticity and metaplasticity.
The internalization of AMPA and NMDA receptors induced by
GSK-3 inhibition (Chen et al., 2007; Wei et al., 2010), for example,
might contribute to the mechanisms underling LTD expression
(Oliet et al., 1996; Beattie et al., 2000). Furthermore, structural
proteins that comprise the postsynaptic density (PSD) decrease
upon GSK-3 stimulation opposing the effect of high-frequency
LTP-inducing stimuli (Zhu et al., 2007). At the presynaptic site,
GSK-3 has been shown to prevent the expression of Syn1 asso-
ciated with LTP induction (Rosahl et al., 1995; Terada et al.,
1999; Sato et al., 2000; Zhu et al., 2007) and together with a sup-
pressing effect on presynaptic Cav channels, the GSK-3 pathway
might decode signals that oppose LTP expression, suppressing the
probability of neurotransmitter release.

Although a comprehensive model of the role of GSK-3 in
synaptic plasticity is still lacking, high levels of active GSK-3 in
response to neuronal activity might predispose synapses to LTD,
repress LTP, and/or shift the threshold of LTP induction, shaping
the mechanisms of memory acquisition, formation, and retention
(Peineau et al., 2007, 2008; Bradley et al., 2012) through a con-
certed activity on pre- and postsynaptic ion channel trafficking.

DISCUSSION
Collectively these results indicate an emerging and significant
role of the GSK-3 pathway in regulating neuronal voltage-gated
and ligand-gated ion channels (Figure 4), revealing novel mecha-
nisms underlying the complex effects of this kinase pathway in the
brain. One of the most remarkable features emerging from these
studies is the great deal of diversity in GSK-3 signaling, despite
the high degree of target specificity and the precise functional

outcome resulting from targeted phosphorylation. Some of the
factors that might contribute to target specificity in the GSK-
3 signaling pathway are the stringent consensus sequence for
primary phosphorylation and the requirement for priming phos-
phorylation by other kinases (Frame et al., 2001). Priming phos-
phorylation events may act through combinatorial mechanisms,
either sequentially or concurrently, and, as such, serve as power-
ful converging points of multiple intracellular signaling cascades,
increasing the level of signal specificity. Other post-translational
modifications may also play a role in target specificity. For exam-
ple, O-glycosylation (Butkinaree et al., 2010), nitrosylation, or
palmitoylation (Salaun et al., 2010) could compete with or facil-
itate phosphorylation and may provide additional fine-tuning,
increasing signal specificity. At the broader cellular level, tran-
sient and stable interactions of GSK-3 with macromolecular
scaffolds can provide a mechanism for subcellular compartmen-
talization of this kinase allowing spatial and temporal segregation
of signaling (Frame et al., 2001).

GSK-3 specificity in the presynaptic regulation of P/Q and
N-type Cav channels is achieved within distinct functional do-
mains. As illustrated in Figure 2, phosphorylation of P/Q Cav
channels by GSK-3 inhibits the channel interaction with the
SNARE complex, suppresses Ca2+ currents and blocks presynap-
tic release. Through a separate indirect mechanism, induced by
semaphorin 3A signaling, GSK-3 might decrease the affinity of
CRMP-2, an accessory protein of N-type Cav channels, presum-
ably inhibiting Cav channels insertion to the cell membrane. Signal
specificity and conservation coexist for AMPA and NMDA recep-
tors. GSK-3 regulation of these receptors is mediated in both cases
throughthesmallGTPaseRab-5,clathrinand dynamin-dependent
endocytosis, and involves either the dissociation of the GDI:Rab-
5 complex (for AMPA receptors) or the weakening of GluN2B
interaction with the scaffolding protein PSD95 (Figure 3).

Thus far it seems that GSK-3 has both direct and indi-
rect effects on voltage-gated ion channels. GSK-3 acts by either
directly phosphorylating the channel as in the cases of the Kv7.2
and P/Q-type Cav channels or indirectly in the case of the Nav
and N-type Cav channels through modulation of protein–protein
interactions of the channel macromolecular complex. Both direct
and indirect mechanisms can result in the same outcome—
inhibition—as in the case of Cav channels, or opposite outcomes.
For example, GSK-3 through indirect means is critical for Nav
channel functionality, while direct phosphorylation inhibits Kv7.2
function. These complex bi-directional regulations allow a very
fine-tune modulation of ion channel function by the GSK-3
signaling that could serve as a point of cross-talk with other trans-
duction systems, such as G-protein receptors (Beaulieu et al.,
2011). The net effect of these functional interactions will ulti-
mately be the result of signal integration from multiple signaling
modalities with GSK-3 being the master player.

In the ligand-gated receptors examined to-date, it appears that
GSK-3 promotes internalization of AMPA and NMDA receptors
at the postsynaptic sites through indirect means, which is in keep-
ing with its role in LTD (Peineau et al., 2007). From these exam-
ples, it emerges that GSK-3 signaling might be part of a network
of globally conserved, yet targeted regulation of the presynaptic
and postsynaptic function that converges on either presynaptic
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FIGURE 4 | Summary of ion channel targets of the GSK-3 pathway.

The activity of GSK-3 is controlled by activation of insulin, TrK, and Wnt
signaling through a cascade of positive downstream effectors including
phosphatidylinositol 3-kinase (PI-3K), phosphatidylinositol (3,4,5)-triphosphate
(PIP3), and 3-phosphoinositide-dependent protein kinase (PDK1).

This cascade activates the major GKS-3 negative regulator, Akt. Activation of
Akt results in inhibition of GSK-3 by phosphorylation at S9 (for GSK-3β).
On the side, a summary table shows relevant ion channels, endo- and
exocytotic proteins and channel associated proteins that have been identified
as GSK-3 targets.

FIGURE 5 | Conservation and functional relevance of the GSK-3 signaling. High and low-levels of GSK-3 correlate with bidirectional changes in synaptic
strength (LTP and LTD) through a concerted effect on channel trafficking and internalization at both pre- and postsynaptic locations.
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suppression and postsynaptic maintenance of synaptic transmis-
sion (Figure 5). Furthermore, given the extensive evidence for
dysfunctional GSK-3 signaling in psychiatric disorders, neurode-
generative diseases, and addictive behaviors (Grimes and Jope,
2001b; Kozlovsky et al., 2001, 2002; Eldar-Finkelman, 2002; Li
et al., 2002; Hooper et al., 2007; Lovestone et al., 2007; Kremer
et al., 2011; Emamian, 2012), any new molecular discoveries
that could link GSK-3 with synaptic function and/or neuronal
excitability are likely to provide useful platforms for elucidating
the mechanisms underlying cognitive and emotional processing

in the human brain and for developing a more targeted thera-
peutic approach against this multifaceted, divergent intracellular
pathway.
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