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Why antidepressants vary in terms of efficacy is currently unclear. Despite the leadership of
selective serotonin reuptake inhibitors (SSRIs) in the treatment of depression, the precise
neurobiological mechanisms involved in their therapeutic action are poorly understood.
A better knowledge of molecular interactions between monoaminergic system, pre- and
post-synaptic partners, brain neuronal circuits and regions involved may help to overcome
limitations of current treatments and identify new therapeutic targets. Intracerebral in vivo
microdialysis (ICM) already provided important information about the brain mechanism
of action of antidepressants first in anesthetized rats in the early 1990s, and since then
in conscious wild-type or knock-out mice. The principle of ICM is based on the balance
between release of neurotransmitters (e.g., monoamines) and reuptake by selective
transporters [e.g., serotonin transporter for serotonin 5-hydroxytryptamine (5-HT)]. Comple-
mentary to electrophysiology, this technique reflects pre-synaptic monoamines release and
intrasynaptic events corresponding to ≈80% of whole brain tissue content. The inhibitory
role of serotonergic autoreceptors infers that they limit somatodendritic and nerve terminal
5-HT release. It has been proposed that activation of 5-HT1A and 5-HT1B receptor sub-
types limits the antidepressant-like activity of SSRIs. This hypothesis is based partially on
results obtained in ICM experiments performed in naïve, non-stressed rodents.The present
review will first remind the principle and methodology of ICM performed in mice. The
crucial need of developing animal models that display anxiety and depression-like behaviors,
neurochemical and brain morphological phenotypes reminiscent of these mood disorders
in humans, will be underlined. Recently developed genetic mouse models have been
generated to independently manipulate 5-HT1A auto and heteroreceptors and ICM helped
to clarify the role of the pre-synaptic component, i.e., by measuring extracellular levels
of neurotransmitters in serotonergic nerve terminal regions and raphe nuclei. Finally, we
will summarize main advantages of using ICM in mice through recent examples obtained
in knock-outs (drug infusion through the ICM probe allows the search of a correlation
between changes in extracellular neurotransmitter levels and antidepressant-like activity)
or alternatives (infusion of a small-interfering RNA suppressing receptor functions in the
mouse brain). We will also focus this review on post-synaptic components such as brain-
derived neurotrophic factor in adult hippocampus that plays a crucial role in the neurogenic
and anxiolytic/antidepressant-like activity of chronic SSRI treatment. Limitations of ICM
will also be considered.
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INTRODUCTION
Most of the antidepressants such as selective serotonin reuptake
inhibitors (SSRIs) act as indirect agonists of monoamine recep-
tors. While SSRI drugs produce relatively rapid blockade of
serotonin [5-hydroxytryptamine (5-HT)] transporters (SERTs) in
vitro, the onset of clinical benefits usually takes several (4–6) weeks
to occur (Blier et al., 1987). This gap in timing between SSRI
near-immediate effect on neurotransmitter systems and the slow
symptomatic recovery is a paradox that has not been completely
solved yet. At pre-synaptic level, SSRI-induced blockade of SERT

results in a rapid suppression of the firing activity of 5-HT neurons
in the brainstem (Blier, 2001): these results have been obtained by
using an electrophysiological technique in anesthetized animals.

MICRODIALYSIS: PRINCIPLE AND METHODOLOGY IN MICE
The principle of microdialysis technique is based on the balance
between the release of neurotransmitters (e.g., 5-HT) and its reup-
take (e.g., by SERT). Usually, male 3- to 4-month-old wild-type
(WT) or mutant mice (25–30 g in body weight) are used for
microdialysis experiments.
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Conventional intracerebral in vivo microdialysis
Whole brain tissue measurements represent a mixture of the
intracellular (≈20%) and extracellular (≈80%) content. To obtain
a measurement more directly related to synaptic transmission,
it is interesting to sample specifically the content of the extra-
cellular space, which is the site of exchanges between neurons,
glial cells, and blood vessels (Zetterström et al., 1983). It contains
various monoamines, excitatory and inhibitory amino acids, neu-
ropeptides and their metabolites as well as precursors of these
neurotransmitters. In the mid-1980s, the development of very
sensitive analytical techniques such as liquid chromatography and
electrochemical detection (LC-ED) had made possible to perform
in vivo microdialysis first in anesthetized rodents, then in awake,
freely moving animals.

In vivo microdialysis technique, in anesthetized or awake ani-
mals, was developed by the group of Delgado et al. (1972) in
monkeys and then improved in rats by the group of Unger-
stedt (Zetterström et al., 1983) in the early 1980s. It is based
on the law of passive diffusion of low molecular-weight com-
pounds through a porous membrane from the compartment
with the highest concentration of neurotransmitters (the synaptic
extracellular space) to the less concentrated compartment (i.e.,
the dialysis probe perfused with a buffer solution at physio-
logical pH that does not contain neurotransmitters; Figure 1).
This technique, now currently applied in our laboratory in
awake, freely moving WT control or knock-out (KO) adult mice,
allows the collection of samples (named “dialysates”) every 10
or 20 min with a flow rate from 0.5 to 1.5 μl/min depend-
ing on the experimental protocol and the brain region studied.
These samples contain, among other molecules, serotonin, its
major metabolite (5-HIAA) and norepinephrine (NE), dopamine
(DA), and their metabolites. These molecules are then quanti-
fied by using high-performance LC coupled to an amperometric
detector (e.g., 1049A, Hewlett-Packard, Les Ulis, France). The
limit of sensitivity for 5-HT is ∼0.5 fmol/sample (signal-to-noise
ratio = 2).

The concentrations of neurotransmitters reflect the physio-
logical balance between the calcium-dependent neurotransmitter
release and its reuptake by SERT located on the membrane of
pre-synaptic neurons. A comprehensive study of intracerebral
microdialysis has four phases: (1) surgical stereotaxic implanta-
tion of the probe under anesthesia, (2) the collection of dialysates
(first to measure baseline value of extracellular neurotransmitter
levels before and 2–3 h after drug treatment), (3) the collection of
brains for the accurate verification of the implantation site of the
microdialysis membrane, and (4) of chromatographic analysis of
dialysate samples (see Malagié et al., 2001; Guiard et al., 2004 for
details).

Drug administration by reverse microdialysis
A major advantage of the microdialysis technique is to infuse a
drug locally into the brain to confirm central effects on dialysates
first measured following a peripheral injection of the drug. Thus,
drugs with a high molecular weight can be dissolved in artificial
cerebrospinal fluid (aCSF) and administered locally, for example,
into the ventral hippocampus via a silica catheter glued to the
microdialysis probe (flow rate: 0.2 μl/min for 2 min), at the dose

FIGURE 1 | Principle of intracerebral microdialysis in awake, freely

moving mice.

of 10–100 ng (Guiard et al., 2007; Deltheil et al., 2008). For each
experiment, a control group must receive the appropriate vehicle.

Zero net flux method of quantitative* intracerebral microdialysis
The zero net flux method of quantitative microdialysis is used to
quantify basal extracellular neurotransmitter concentrations and
the extraction fraction (Ed) of this neurotransmitter, which pro-
vides an index of the functional status of the neurotransmitter
uptake in vivo. Usually, four samples are collected to determine
basal hippocampal 5-HT levels (as in David et al., 2004 in NK1
receptor KO mice), before local perfusion of increasing concen-
trations of 5-HT (0, 5, 10, and 20 nM). The dialysate 5-HT
concentrations (Cout) obtained during perfusion of the various
concentrations of 5-HT (Cin) are used to construct a linear regres-
sion curve for each animal (Guiard et al., 2008). The net change
in 5-HT (Cin-Cout) is plotted on the y-axis against Cin on the
x-axis. Extracellular 5-HT levels ([5-HT]ext) and the extraction
fraction of the probe (Ed) are determined as described by Parsons
et al. (1991). The concentration of 5-HT in the extracellular space
is estimated from the concentration at which Cin-Cout = 0 and
corresponds to a point at which there is no net diffusion of 5-HT
across the dialysis membrane. The extraction fraction (Ed) is the
slope of the linear regression curve and has been shown to pro-
vide an estimate of changes in transporter-mediated 5-HT uptake
(Parsons et al., 1991; Gardier et al., 2003).

As an example of the relevance of the zero net flux method
of quantitative microdialysis, we have recently shown the criti-
cal impact of a neuropeptide, brain-derived neurotrophic factor
(BDNF) on serotonergic neurotransmission under basal condi-
tions and following SSRI treatment. In a series of experiments,
we examined the consequences of either a constitutive decrease
(Guiard et al., 2008) or increase in brain BDNF protein levels
(Benmansour et al., 2008; Deltheil et al., 2008, 2009) on hippocam-
pal extracellular levels of 5-HT in conscious mice. The no net
flux method allows unveiling differences in basal extracellular
5-HT levels in heterozygous BDNF+/− mice (Guiard et al., 2008).
Indeed, this neurotrophic factor is known to play a role in mood
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disorders and the mechanism of action of antidepressant drugs.
However, the relationship between BDNF and serotonergic signal-
ing is poorly understood. BDNF+/− mice were used to investigate
the influence of BDNF on the 5-HT system and the activity of
SERT in the hippocampus. The zero net flux method revealed
that these mutants have increased basal extracellular 5-HT levels
in the hippocampus and decreased 5-HT reuptake capacity. These
results are coherent with the lack of effect of paroxetine to increase
hippocampal 5-HText levels in BDNF+/− mice, while it produced
robust effects in WT littermates. As expected, in vitro autoradio-
graphy and synaptosome techniques in BDNF+/− mice revealed
a significant decrease in [3H]citalopram-binding-site density in
the CA3 subregion of the ventral hippocampus and a significant
reduction in [3H]5-HT uptake in hippocampal synaptosomes.
Taken together, these results provide evidence that constitutive
reductions in BDNF modulate SERT function reuptake in the
hippocampus.

Statistical analysis and expression of results of microdialysis
experiments in KO mice
Usually, microdialysis data are reported as means ± SEM. For
conventional microdialysis experiments, we used to perform sta-
tistical analyses on areas under the curve (AUC) values for the
amount of 5-HT outflow collected during the 0–120 min post-
treatment period. To compare different AUC values in each group
of mice, a two-way ANOVA with genotype factor and treatment
factor is performed. We used to present microdialysis data as his-
tograms because statistical analysis on AUC values better reflects
the pharmacological properties of a compound than the kinetics.
We strongly believe that the interpretation of these data is more
appropriate when performed on AUC values in dialysate 5-HT
levels (Guilloux et al., 2011; Nguyen et al., 2013) as well as for DA
levels (Maskos et al., 2005; Reperant et al., 2010) when changes
induced by drugs are compared between WT versus KO mice.

Using intracerebral microdialysis in the hippocampus and cor-
tex in mice, measuring statistically significant changes in dialysate
5-HT levels induced, for example, by a given drug between t30 min
and t45 min offers little interest. We feel that these information
make the message more difficult to interpret and do not fun-
damentally improve the study. These time courses are strongly
dependent on the experimental conditions and consequently not
reproducible between laboratories. By contrast, our experience
reveals that comparable results from distinct laboratories can be
obtained from the analysis of AUC values. The inclusion of the data
showing the time course for the microdialysis is often superfluous.
Microdialysis is a neurochemical technique, not sensitive enough
to explore precisely (i.e., sample-by-sample) the time course of
drug effects.

However, in some cases, it is interesting to show the time course
analysis of the microdialysis data:

(1) when we need to express time course data in microdial-
ysis experiments as concentrations (in fmol/sample, not as %
changes) because the baseline dialysate levels of the neurotrans-
mitter are statistically different between two groups of mice,
i.e., in Table 1 and Figures 2 and 3 in Guiard et al. (2008):
heterozygous BDNF+/− mice had a higher basal 5-HText lev-
els in the hippocampus compared to WT mice. See also in

Table 1 and Figure 6 in Guilloux et al. (2011), in which dou-
ble 5-HT1A/1B−/− mice display a higher basal 5-HText levels in
the frontal cortex and dorsal raphe nucleus (DRN) compared to
WT mice.

(2) when it is sometimes important to collect some pharma-
cokinetic information about the short-term or long-lasting effect
of a new drug in rodents. The AUC analysis of microdialysis data
disregards information about differences in Cmax and duration of
the drug effects.

(3) when a gray line (Figure 3 in Guilloux et al., 2006; Figures 1
and 2 in Nguyen et al., 2013) indicates the duration time of the
forced swim test (FST, i.e., 6 min), which was performed, in a
separate group of animal, at the maximum effect of the antidepres-
sant on cortical extracellular 5-HT levels in mice. It emphasizes
that microdialysis and behavioral experiments were carried out by
using the same experimental protocol.

INTRACEREBRAL IN VIVO MICRODIALYSIS IN RODENTS
Another technique has provided complementary information
about the mechanism of action of SSRIs: intracerebral in vivo
microdialysis (ICM) performed in awake, freely moving animals
(first in rats, now in mice). Information included in this chap-
ter was drawn from our own experience in this field and relevant
publications from other investigators.

FIRST IN RATS
When it was first used in rat brain in the mid-1980s, this tech-
nique measured, for example, extracellular concentrations of
monoamines such as serotonin (5-HText), which reflect pre-
synaptic release of 5-HT and intrasynaptic events. With its
coupling to very sensitive analytical techniques, it has provided
much information regarding changes in the local pre-synaptic
release of monoamines following acute drug administration. Thus,
it has been possible to obtain two major arguments supporting the
hypothesis that somatodendritic 5-HT1A autoreceptors located in
the raphe nuclei play an important role in the mechanism of action
of SSRIs in rats (Gardier et al., 1996). At first, we have learned that
a single administration of SSRIs at low doses comparable to those
used therapeutically increased 5-HText in the vicinity of the cell
body and the dendrites of serotoninergic neurones of the DRN
(Malagié et al., 1995). This effect was more pronounced than that
observed in regions rich in nerve endings (frontal cortex, ventral
hippocampus; Malagié et al., 1996), probably due to a higher SERT
density (Hrdina et al., 1990). Hence, the magnitude of the activa-
tion of the serotonergic neurotransmission depends on the brain
area studied and the dose of the SSRIs administered to rats. This
difference has been attributed to the activation of somatodendritic
5-HT1A autoreceptors by endogenous 5-HT in the raphe nuclei,
thereby limiting the corticofrontal effects of the antidepressant.
Microdialysis technique demonstrated that despite SSRI-induced
5-HT reuptake inhibition also taking place at nerve terminals,
there is a decrease in 5-HT release via activation of 5-HT1A (soma-
todendritic) or 5-HT1B (nerve terminal) autoreceptors (Rutter
et al., 1995). Thus, depending on the terminal 5-HT brain area,
only a small increase or no change at all in the synaptic availability
of 5-HT occurs (Malagié et al., 1996; Romero et al., 1996). These
microdialysis results obtained in rats have then been extended to
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measure SSRI-induced changes in DRN 5-HText in awake, freely
moving KO mice (Bortolozzi et al., 2004; Guiard et al., 2004).

Next, we have learned from microdialysis performed in rats
that SSRIs cause a larger increase in 5-HText at nerve endings fol-
lowing an acute treatment versus a chronic one. As the treatment is
prolonged, a robust and time-dependent downregulation of SERT
was observed (Pineyro et al., 1994; Benmansour et al., 2002), while
5-HT1A autoreceptors gradually desensitize leading to a progres-
sive recovery to normal of the firing rate of 5-HT neurons (Blier
et al., 1986; Chaput et al., 1986; El Mansari et al., 2005). However,
these molecular events seem to depend on 5-HT1A autoreceptor
internalization (Popa et al., 2010). Indeed, we studied the func-
tion of the 5-HT system in the raphe nuclei and hippocampus
by using repeated in vivo microdialysis sessions in awake, freely
moving mice. We assessed the degree of 5-HT1A autoreceptor
desensitization by using a local infusion of the 5-HT1A receptor
antagonist, WAY 100635, in the raphe via reverse microdialysis.
We found that the anxiolytic-like effects of fluoxetine correlate
in time and amplitude with 5-HT1A autoreceptor desensitization,
but neither with the basal extracellular levels of 5-HT in the raphe
nuclei, nor in the hippocampus. These results suggests that the
beneficial anxiolytic/antidepressant-like effects of chronic SSRI
treatment depend on 5-HT1A autoreceptor internalization, but
do not require a sustained increase in extracellular 5-HT levels
in a territory of 5-HT projection such as hippocampus. Several
studies of patients with depression appear to confirm these exper-
imental results, suggesting that co-administration of a 5-HT1A

autoreceptor antagonist (pindolol) and an SSRI accelerated the
onset of the antidepressant effect (Portella et al., 2011). How-
ever, given the complex pharmacology of pindolol, new drug
developments may help to discover either selective and silent
5-HT1A receptor antagonists to be prescribed in combination with
SSRIs, or dual action agents (SSRI + 5-HT1A receptor antagonists;
Artigas et al., 2006).

NEXT IN WILD-TYPE AND KNOCK-OUT MICE
The use of pharmacological tools in mice
Changes in the amount of neurotransmitters (mainly monoamines
such as 5-HT, NE, and DA) in synapses can be viewed as near-
immediate effects of SSRI on brain neurotransmitter systems.
In vivo brain microdialysis allows to measure basal extracellular
levels of these neurotransmitters giving an idea of neurochemi-
cal events occurring at nerve terminals in brain regions of awake,
freely moving rodents. In our laboratory, we extensively applied
this technique in genetic and pharmacological studies aimed
at investigating the relationship between neurotransmitters and
brain regions, or between neurochemical changes and animal
behaviors (see examples below). Among the main interests of
microdialysis application is the infusion of drugs through the
microdialysis probe (reverse dialysis) in conscious KO mice as well
as in WT mice used as controls in these pharmacological experi-
ments (e.g., intra-raphe perfusion of substance P in Guiard et al.,
2007; BDNF in Deltheil et al., 2009).

As already mentioned, most prescribed serotonergic antide-
pressants show limited efficacy and delayed onset of action, partly
due to the activation of somatodendritic 5-HT1A autoreceptors
by the excess extracellular 5-HT produced by SSRI in the raphe

nuclei. A group of scientists in Spain recently addressed this
problem using an original strategy. Bortolozzi et al. (2012)
administered a small-interfering RNA (siRNA) to suppress acutely
5-HT1A autoreceptor-mediated negative feedback mechanisms in
the mouse brain. They developed a conjugated siRNA (C-1A-
siRNA) by covalently binding siRNA targeting 5-HT1A receptor
mRNA with the SSRI sertraline in order to concentrate it in
serotonin axons, rich in SERT sites. The intracerebroventricular
(I.C.V.) infusion of C-1A-siRNA to mice resulted in its selec-
tive accumulation in serotonin neurons. This was associated with
antidepressant-like effects in the forced swim and tail suspension
tests, but did not affect anxiety-like behaviors in the elevated
plus-maze. In addition, C-1A-siRNA administration markedly
decreased 5-HT1A autoreceptor expression and suppressed 8-
OH-DPAT [7-(dipropylamino)-5,6,7,8-tetrahydronaphthalen-1-
ol]-induced hypothermia (a pre-synaptic 5-HT1A receptor effect
in mice) without affecting post-synaptic 5-HT1A receptor expres-
sion in the hippocampus and prefrontal cortex. Moreover, I.C.V.
C-1A-siRNA infusion augmented the increase in cortical dialysate
5-HT levels induced by fluoxetine to the level measured in 5-HT1A

receptor KO mice. Hence, C-1A-siRNA represents a new approach
to treat mood disorders as monotherapy or in combination with
SSRI.

To learn whether or not the in vitro affinity of SSRIs toward
monoamine transporters can predict in vivo microdialysis data,
we studied whether a single administration of a range of doses
[1, 4, and 8 mg/kg, given intraperitoneally (i.p.)] of parox-
etine, citalopram, or venlafaxine may simultaneously increase
dialysate 5-HText and norepinephrine (NEext) by using in vivo
microdialysis in the frontal cortex of awake, freely moving mice
(David et al., 2003). We found that citalopram and paroxetine
have the highest potency to increase cortical 5-HText and NEext,
respectively. In addition, the rank of order of efficacy of these
antidepressant drugs to increase cortical 5-HText in vivo in mice
was as follows: venlafaxine > citalopram > paroxetine, while
the efficacy to increase cortical NEext in mice of paroxetine
and citalopram is similar, and greater than that of venlafaxine.
Thus, the highest doses of the very selective SSRI citalopram
and the very potent SSRI paroxetine were able to increase cor-
tical NEext. Surprisingly, the serotonin-norepinephrine reuptake
inhibitor (SNRI) venlafaxine increased cortical 5-HText to a
greater extent rather than NEext in the range of doses studied in
mice.

We recently confirmed these data with escitalopram, the S(+)-
enantiomer of citalopram. To analyze the mechanisms by which
SSRIs activate noradrenergic transmission in the brain, we com-
pared the effects of escitalopram on both 5-HText and NEext
in the frontal cortex of WT versus mutant mice lacking the 5-
HT transporter (SERT−/−; Nguyen et al., 2013). In particular,
the possibilities that escitalopram enhances NEext either by a
direct mechanism involving the inhibition of the low- or high-
affinity NE transporters or by an indirect mechanism promoted
by 5-HText elevation were explored. The FST was used to inves-
tigate whether enhancing cortical 5-HText and/or NEext affected
the antidepressant-like activity of escitalopram. As expected, a
single systemic administration of escitalopram increased cortical
5-HText and NEext in WT mice. However, escitalopram failed to
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increase cortical 5-HText in SERT−/− mice, whereas its neuro-
chemical effects on NEext persisted in these mutants. In WT mice,
these neurochemical changes induced by escitalopram were asso-
ciated with increased swimming parameter in the FST. Finally,
escitalopram, at relevant concentrations, failed to inhibit corti-
cal NE and 5-HT uptake mediated by low-affinity monoamine
transporters (i.e., organic cation transporters such as OCT1, 2,
or 3). These experiments suggest that escitalopram enhances,
although moderately, cortical NEext in vivo by a direct mecha-
nism involving the inhibition of the high-affinity NE transporter
(NET). Such in vivo effects of SSRIs could not be predicted by
measuring the in vitro affinity of SSRIs toward SERT and NET in
brain synaptosomes.

These results are not surprising. Indeed, experimental condi-
tions (rat versus mice; whole brain versus cortical membranes;
cell bodies versus nerve terminal regions; etc.) highly influence
the values of binding parameters of ligands to neurotransmitter
receptors or transporters measured in vitro (Bmax, KD, GTP-
gammaS binding, etc.). The potency and selectivity of SSRIs
as determined in vitro do not take into account noradrenergic
projections and others, which obviously interfere in vivo, but
not in vitro. Thus, function of monoamines transporters are
much more complex than previously thought. In vivo experiments
help to depict this complexity when it is possible to mea-
sure correlation between neurochemical parameters and behavior
paradigms.

The use of mutated mice
The mouse genome can be specifically manipulated to produce the
targeted deletion, replacement of genes, or down-/over-expression
of related proteins in the brain (Sotnikova and Gainetdinov, 2007).
This was first obtained in embryonic stem (ES) cells, but more
recently, temporal and spatial controls of gene expression were
possible in adult mice. In the field of anxiety and depression, pre-
clinical studies such as those described above, have been mostly
performed in healthy, “not depressed” animals. In the mid-1990s,
genetically manipulated mice became available. It complicated the
experimental protocol because it was necessary to include litter-
mates as WT control mice. Great hopes were placed in mutant
lines, some of them being considered as putative animal models of
anxiety or depression. Several lines of transgenic (Tg) mice (carry-
ing a human gene) or KO mice (i.e., homozygous mice lacking the
two copies of a gene coding for a receptor or transporter of neu-
rotransmitter or neuropeptide) were generated between 1994 and
1998. The first KO mice were generated by homologous recom-
bination in the laboratory of S. Tonegawa at MIT (Silva et al.,
1992).

The mouse is a model organism of choice in the field of neu-
rosciences because (i) numerous genes have a human equivalent,
(ii) many biological and biochemical functions of the mouse are
similar to those of humans, and (iii) the genome mouse is eas-
ily manipulated by homologous recombination. This technique
allowed the creation of animal-related patterns of human brain
pathologies. The genetic background is a fundamental parameter
for analyzing the phenotype of KO mice. Historically, the mutant
mice were established using ES line 129/Sv. However, creating new
lines of mutant mice on a genetic background C57BL/6 is now

preferred, although there are limits on the use of this strain in
some behavioral tests (see Gardier, 2009 for a review).

At that time, the procedure of ICM needed to be quickly
adapted to perform experiments in an animal model having a
smaller brain size than rats. Microdialysis experiments were first
performed in tyrosine hydroxylase Tg mice by Nakahara et al.
(1993). Then, it was applied to 5-HT1B receptor KO mice (Saudou
et al., 1994; Trillat et al., 1997), to DA transporter (DAT) KO mice
(Gainetdinov et al., 1997), and so on. Of course, at the end of
the experiments, the precise location of the microdialysis probe
must be macroscopically verified according to the stereotaxic coor-
dinates given by the mouse brain atlas (Paxinos and Franklin,
2001).

Regarding the pharmacological knowledge of antidepressants,
the choice of KO mice as experimental models of anxiety–
depression was remarkably appropriate because it is now well
recognized that major depressive disorders result from a combina-
tion of genetic and environmental factors. In addition, knowing
that anxiety and depression have a high co-morbidity (Gorman
and Coplan, 1996; Leonardo and Hen, 2006), it is critical for
basic research to develop animal models that present behavioral,
neurochemical, and brain morphological phenotypes reminiscent
of depression and anxiety. Some “serotonergic” KO mice display
important changes in their basal phenotype. For example, consti-
tutive 5-HT1A receptor KO mice were simultaneously described by
three different laboratories as an animal model of anxiety-related
disorder (Heisler et al., 1998; Parks et al., 1998; Ramboz et al.,
1998). They display decreased exploratory activity and increased
fear of aversive environments and exhibited a decreased immobil-
ity in the FST, an effect commonly associated with antidepressant
treatment. Brain microdialysis performed in 5-HT1A receptor
KO mice have proven to be a valuable technique to address key
questions regarding the mechanism of action of antidepressants.
One of the most interesting applications of microdialysis is to
allow the study of basal extracellular levels of neurotransmitters,
for example, in 5-HT1A receptor KO mice. While conventional
microdialysis does not allow reliable measurements of these basal
levels (see Conventional Intracerebral In Vivo Microdialysis) the
no net flux (or zero net flux) method of quantitative microdial-
ysis in mutants allows the direct and accurate determination of
basal extracellular levels of neurotransmitters (see Zero Net Flux
Method of Quantitative* Intracerebral Microdialysis) The DRN
is a brain region where 5-HText is known to regulate seroton-
ergic transmission through activation of 5-HT1A autoreceptors.
When microdialysis was performed in the DRN, it was found that
baseline DRN 5-HText did not differ between WT control and KO
mice. This result suggests a lack of tonic control of 5-HT1A autore-
ceptors on DR 5-HT release (Bortolozzi et al., 2004; Guilloux et al.,
2006).

Furthermore, microdialysis helped to decipher the brain
region-dependent effects of antidepressants. Both a saline injec-
tion and handling for 3 min increased DRN 5-HText in 5-HT1A

receptor KO mice, but not in control mice. Fluoxetine, a sero-
tonergic antidepressant, induced a dose-dependent increase in
DRN 5-HText in both genotypes, but this effect was markedly
more pronounced in 5-HT1A KO mice. These results suggest that
the increased responsiveness of dialysate 5-HText in the DRN of
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5-HT1A receptor KO mice at least in part explain the anxious phe-
notype of these mutants. Such information can help to define a
better treatment of anxiety-related disorders.

The inhibitory 5-HT1A receptor exists in two separate pop-
ulations with distinct effects on serotonergic signaling, i.e., an
autoreceptor that limits 5-HT release throughout the brain and
a heteroreceptor that mediates inhibitory responses to release
5-HT. Traditional pharmacologic and Tg strategies have tried
to separate the distinct roles of these two receptor populations.
Recently, Richardson-Jones et al. (2010) developed a new strategy
to manipulate pre-synaptic 5-HT1A autoreceptors in serotonergic
raphe neurons without affecting 5-HT1A heteroreceptors, gener-
ating mice with higher (1A-High) or lower (1A-Low) autoreceptor
levels. In this latter line, it was thus possible to examine the brain
5-HT system by partially turning off 5-HT1A autoreceptors at a
specific time point and to study correlations between changes in
5-HT transmission and antidepressant-like activity of SSRIs in
various behavioral tests. This strategy robustly affects raphe firing
rates, but has no effect on either basal extracellular 5-HT levels
as measured by in vivo microdialysis in the frontal cortex and
ventral hippocampus. Interestingly, following 8 days of fluoxetine
treatment, a difference in 5-HT levels was found in the hippocam-
pus, with higher levels in the 1A-Low mice. In addition, 1A-Low
mice displayed a larger increase in 5-HT in response to an acute
challenge of fluoxetine in both brain regions. Together with elec-
trophysiology data showing an increased spontaneous neuronal
activity in the dorsal raphe of 1A-Low mice under stressful condi-
tions, the microdialysis results were consistent with an increased
serotonergic tone in these animals in response to an SSRI. Com-
pared to 1A-Low mice, 1A-High mice show a blunted physiological
response to acute stress, increased behavioral despair, and no
behavioral response to antidepressant, thus modeling what we can
find in patients with the 5-HT1A risk allele. Indeed, human studies
implicate a polymorphism in the promoter of the 5-HT1A receptor
gene in increased susceptibility to depression and decreased treat-
ment response (Lemonde et al., 2003). These mice may thus, be
conceived as a human equivalent to SSRI response (1A-Low) and
resistance (1A-High; Blier, 2010). These results establish a causal
relationship between 5-HT1A autoreceptor levels and response to
antidepressants.

The same group of researchers used a recently developed
genetic mouse system to independently manipulate 5-HT1A

autoreceptor and heteroreceptor populations. They found that
5-HT1A autoreceptors affect anxiety-like behavior, while 5-HT1A

heteroreceptors affect responses to forced swim stress, with-
out effects on anxiety-like behavior (Richardson-Jones et al.,
2011). These results establish distinct roles for the two receptors’
populations, providing evidence that signaling through endoge-
nous 5-HT1A autoreceptors is necessary and sufficient for the
establishment of normal anxiety-like behavior.

Taken together, these data obtained in KO mice brought a lot
of information about the pathophysiology of psychiatric disorders
and their treatments.

Thus, in 2012, we have at our disposal a large number of genet-
ically engineered mice, some of them being interesting animal
models of anxiety and depression. These mice are very helpful to
discover the underlying pathological mechanisms that limit the

effects of current treatments of major depressive episodes and to
identify the nature of the molecular cascades leading to the instal-
lation of disorders such as anxiety and depression. In addition, KO
mice help to study the effects of acute and chronic treatment with
antidepressants.

Recent advances in experimental approaches using genetically
manipulated mice have already been summarized in the literature
(Sotnikova and Gainetdinov, 2007). Knowing the large number of
KO mice generated to date, it is not possible to detail the findings
of each putative model interesting in the anxiety and depression
field of research (SERT−/− mice, Bengel et al., 1998; NK1 recep-
tor KO mice, Froger et al., 2001; Guiard et al., 2004; β-arrestin 2
KO mice, Beaulieu et al., 2008). Therefore, the remainder of the
present chapter will only describe some examples, which explain
these statements.

ADVANTAGES AND LIMITATIONS OF USING
MICRODIALYSIS IN KO MICE
Depressive disorders result from a combination of genetic and
environmental factors. To date, several genes appear to have in
humans and animals, a greater influence than the other and
emerge from the literature. Among them, the presence of a poly-
morphism of either SERT (Bengel et al., 1998; Kuzelova et al.,
2010), 5-HT1A receptor (Lemonde et al., 2003), the tryptophan
hydroxylase type 2 (TPH-2; Invernizzi, 2007), or BDNF (Chen
et al., 2006) is associated with the occurrence of depression related
to stress, or to a response to behavioral tests predictive of the
antidepressant-like activity of a molecule (Porsolt et al., 1977;
Steru et al., 1985).

ADVANTAGES
In these KO mice, we can measure, for example, the paradigms
of stress to predict the antidepressant potential of a molecule and
the selectivity of behavioral responses in comparison with non-
mutated control animals: if these responses are diminished or
absent in KO mice deprived of a gene encoding a neurotrans-
mitter receptor, we may conclude that this receptor plays a major
part either in the antidepressant-like effect and/or of the molecule.
Regarding microdialysis, changes in dialysate levels of neurotrans-
mitters following acute (Malagié et al., 2001) or chronic (Gardier
et al., 2003) SSRI treatment can highlight the mechanism of action
of these drugs.

Thus, we combined KO mice and receptor antagonist strategies
to investigate the contribution of the 5-HT1B receptor subtype
in mediating the effects of an SSRI, paroxetine in mice (Malagié
et al., 2001). Using microdialysis, we found that a single systemic
administration of paroxetine (1 or 5 mg/kg by the i.p. route)
increased 5-HText in the ventral hippocampus and frontal cortex
of WT control and mutant mice. However, in the ventral hip-
pocampus, the SSRI induced a larger increase in dialysate 5-HT
levels in KO 5-HT1B mice than in control mice. In addition, either
the absence of the 5-HT1B receptor (in KO 5-HT1B mice) or its
pharmacological blockade with the mixed 5-HT1B/1D receptor
antagonist, GR 127935 (in WT mice) potentiated the effect of a
single administration of paroxetine on extracellular 5-HT levels
in the ventral hippocampus. Thus, these data underline several
points:
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(a) complementary results were obtained by combining KO mice
and receptor antagonist strategies.

(b) there were already in vitro studies showing the role of ter-
minal 5-HT1B autoreceptors in vivo to control 5-HT release
and reuptake (in slices; Pineyro et al., 1995). Our microdial-
ysis data in KO 5-HT1B mice brought additional information
by suggesting that 5-HT1B autoreceptors limit the effects of
SSRIs on dialysate 5-HT levels at serotonergic nerve terminals
and revealed the importance of a particular brain region, the
ventral hippocampus. It is interesting to notice that recently,
many experimental arguments have accumulated to suggest
that antidepressants exert their behavioral activity in adult
rodents, at least in part, by inducing of cellular and molecular
changes in the adult hippocampus (David et al., 2010).

By using microdialysis, we can also study changes in dialysate
5-HT levels in the DRN (see Introduction). Data described above
in 5-HT1A receptor KO mice illustrated this important con-
tribution. This experiment can give further information when
combined with measurements of the electrical activity of 5-HT
neurons. Again, the comparison of results between a KO mice
model and WT mice is very informative.

Neurochemical changes as measured by using microdialysis can
have functional consequences since they correlated with behav-
ioral data obtained, for example, in the FST. Three examples can
illustrate these benefits.

Example 1, in WT mice: intra-hippocampal BDNF infusion
can potentiate paroxetine-induced increase in 5-HText in the
hippocampus (Figure 2A). The antidepressant-like activity of
paroxetine as measured on swimming behavior was potentiated
by BDNF (Figure 2B). These data suggest an interesting synergy

between BDNF and SSRI on 5-HT neurotransmission; thus, such
a co-administration improved the antidepressant-like activity of
the SSRI (Deltheil et al., 2008, 2009).

Example 2, in 5-HT1A receptor KO mice: as described in Guil-
loux et al. (2006), paroxetine (1 and 4 mg/kg) dose-dependently
increased cortical 5-HText in both WT and KO genotypes, but the
effects were greater in mutants (Figure 3A). Paroxetine admin-
istration also dose-dependently decreased the immobility time
in both strains of mice, but the response was much greater in
5HT1A

−/− mice (Figure 3B). Overall these results suggest that the
genetic inactivation of 5-HT1A receptors, abolished the inhibitory
feedback control exerted by somatodendritic 5-HT1A autorecep-
tors, thus enhancing the response of mutant mice to stressful
conditions such as the FST. Thus, following SSRI administration,
an indirect activation of pre-synaptic 5-HT1A receptors by endoge-
nous 5-HT may limit its antidepressant-like effects in the FST in
WT mice.

Example 3, in SERT−/− mice: another interest of brain micro-
dialysis is to allow the measurement of several neurotransmitters
in the same sample. Thus, we recently examined the effects of
the S(+)-enantiomer of citalopram, escitalopram (ESC) on both
[5-HT]ext and extracellular levels of [NE]ext in the frontal cortex
(FCx) of freely moving WT and mutant mice lacking SERT−/− by
using ICM (Nguyen et al., 2013). In WT mice, a single systemic
administration of escitalopram produced a significant increase
in cortical [5-HT]ext and [NE]ext (Figure 4). As expected, esc-
italopram failed to increase cortical [5-HT]ext in SERT−/− mice,
whereas its neurochemical effects on [NE]ext persisted in these
mutants. In addition, in WT mice submitted to the FST, escitalo-
pram increased swimming parameter without affecting climbing
behavior (Nguyen et al., 2013).

FIGURE 2 | (A) Microdialysis data showing that an acute intra-hippocampal
injection of BDNF (100 ng) potentiated the effects of the systemic
administration of an SSRI, paroxetine (4 mg/kg; i.p.) on dialysate 5-HText
in the hippocampus of freely moving wild-type mice. Results are expressed
as AUC values (means ± SEM) calculated for the amount of 5-HText
collected during the 0–120 min post-treatment period. (B) Antidepressant-like
activity of paroxetine as measured on swimming behavior in the forced
swim test (FST) was potentiated by BDNF. Thus, neurochemical changes

correlated with behavioral data in this protocol, suggesting that a
BDNF + SSRI combination may offer new alternatives to treat mood
disorders (from Deltheil et al., 2009). *p < 0.05, ***p < 0.001 when
compared to the vehicle-treated group; §p < 0.05 when compared to the
paroxetine/vehicle-treated group and paroxetine/BDNF-treated group;
@@p < 0.01 when compared to the BDNF/vehicle-treated group and
BDNF/paroxetine-treated group (two-way ANOVA, Fisher’s PLSD post hoc
test).
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FIGURE 3 | (A) Microdialysis data showing the effects of paroxetine on
cortical 5-HText in 5-HT1A

+/+ wild-type and 5-HT1A
−/− mice. Results

are expressed as AUC values (means ± SEM) calculated for the amount
of 5-HText collected during the 0–60 min post-treatment period.
(B) Antidepressant-like effects of paroxetine on the immobility time in the
mouse forced swimming test (FST) in 5-HT1A

+/+ and 5-HT1A
−/− mice. FST

and microdialysis experiments have been performed separately. Microdialysis
and behavioral experiments were carried out by using the same experimental
protocol. The duration time of the FST was 6 min, performed at the maximum

effect of paroxetine on dialysate 5-HText, i.e., 30 min after its administration
(from Guilloux et al., 2006). (A) *p < 0.05; ***p < 0.001 when compared to
the appropriate vehicle-treated group; §p < 0.05; §§p < 0.01 when compared
to 5-HT1A

+/+ control mice; ψp < 0.05 when compared to the paroxetine
1 mg/kg-treated group (two-way ANOVA followed by a PLSD post hoc t -test).
(B) *p < 0.05; ***p < 0.001 when compared to the appropriate control
group; §p < 0.05; §§p < 0.01; §§§p < 0.001 when compared to 5-HT1A

+/+
mice. Statistical analysis was carried out using a two-way ANOVA followed by
Fisher’s PLSD post hoc t -test.

FIGURE 4 | Effect of systemic administration of escitalopram (ESC) on

extracellular levels of 5-HT and noradrenaline (NE) in the frontal cortex

in WT (SERT+/+) and KO (SERT–/–) mice. AUC values (means ± SEM)
were calculated for the amount of 5-HT and NE outflows collected during
the 0–120 min post-treatment period (from Nguyen et al., 2013).
***p < 0.001 significantly different between controls and
escitalopram-treated mice. &&&p < 0.001 significantly different from
SERT−/− mice. NS, not statistically significant.

LIMITATIONS
There are also limits regarding the use of constitutive KO mice.
Compensatory events may occur when mice are generated by
homologous recombination (Gardier,2009). For example, 5-HT1B

receptor KO mice exhibit a higher efficacy of 8-OH-DPAT-induced
hypothermia suggesting that an adaptive thermoregulatory pro-
cess involving the functional activity of somatodendritic 5-HT1A

receptors is altered in 5-HT1B receptor KO mice (Gardier et al.,
2001). By contrast, Bouwknecht et al. (2002) found no indications
for adaptive changes in pre-synaptic 5-HT1A receptor function
in 5-HT1B receptor KO mice as measured telemetrically on body
temperature and heart rate responses.

Indeed, to study the direct consequences of alterations in the
targeted gene, constitutive KO mice are very valuable tools because
of compensatory processes that have taken place in reaction to
life-long changes in gene expression (Groenink et al., 2003). The
constitutive deletion of the NET, for example, induced an up-
regulation of two other monoamine transporters DAT and SERT
(Solich et al., 2011). An increase in the binding of [3H]paroxetine
to the SERT and [3H]GBR-12935 to the DAT was observed in var-
ious brain regions of NET-KO mice, without alterations of mRNA
encoding these transporters, as measured by in situ hybridiza-
tion. This important finding obviously impacts the interpretation
of previous data. Similarly, in SERT−/− mice, Zhou et al. (2002)
reported that 5-HT was found in DA neurons of homozygous
(−/−), but not of heterozygous (+/−) mutant mice. DA neu-
rons containing 5-HT have been observed in the substantia nigra
and ventral tegmental area (VTA), but not in other brain areas
of SERT−/− mice. To verify the role of the DA transporter in
such ectopic uptake, SERT−/− mice were treated with DA uptake
blocker GBR-12935: ectopic 5-HT in DA neurons was disappeared.
These data indicate that 5-HT can be taken into DA neurons in
rodents when SERT is not functionally adequate to remove extra-
cellular 5-HT levels, and (c) the DA transporter is responsible
for the 5-HT uptake into DA neurons. Thus, cross neuronal type
uptake exists and serves as a compensatory backup when a specific
transporter is dysfunctional. Thus, when using mice lacking an
important protein from the earliest period of their existence, one
has to be aware that compensatory alterations may occur in the
brain as well as at the periphery. This point must be considered
when it comes to interpretation of the experimental results.

Table 1 summarizes the main advantages as well as some critical
points of the intracerebral microdialysis technique.

CONCLUSION
These past 25 years, different strains of KO mice became extremely
valuable tools in Neuropharmacology. They help to identify in
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Table 1 | Summary of the main advantages and some critical points of the intracerebral microdialysis technique in freely moving mice.

Main advantages of using microdialysis in WT and KO mice* Some limitations of using microdialysis in WT and KO mice

– In vivo pre-synaptic test to study consequences of autoreceptor of

transporter blockade on release and reuptake of neurotransmitters.

– Direct access of exogenous molecules into the brain tissue, with

minimal damage: an ideal approach to confirm brain effects observed

following a systemic administration. Even more interesting when the

drug does not cross easily the blood brain barrier [such as molecules

with a high molecular weight: neurotrophic factors, e.g., BDNF

(Benmansour et al., 2008; Deltheil et al., 2009); substance P (Guiard

et al., 2007)]

– *To validate the KO animal model:

– *Possibility to implant two probes in the same mouse: a probe at the

vicinity of cell bodies (e.g., raphe nuclei when studying the neuronal

5-HT system), and a probe at serotonergic nerve terminals

(hippocampus, frontal cortex), thus evaluating a neural circuit

– *Possibility of measuring several neurotransmitters in the same

dialysate sample of WT and KO mice (Nguyen et al., 2013).

– *The same of WT or KO mouse can be studied for two consecutive

days, e.g., on day 1 following administration of the vehicle in the

control group, and on day 2 following the novel pharmacological

treatment

– *Chronic microdialysis: when using a guide cannula, it is possible to

collect samples once a week for several weeks in the same WT or

KO mouse (Popa et al., 2010)

– When applied in awake, freely moving animals, functional

consequences of SSRI-induced increases in extracellular

neurotransmitter levels can be studied, e.g., correlation between

changes in brain 5-HText and behavioral data (the swimming time in

the FST, for example (Deltheil et al., 2009; Nguyen et al., 2013)

– Compared to electrophysiology, technique of reference:

◦ Large outer diameter of microdialysis probe (0.2 mm)

◦ During microdialysis experiments, the samples are collected every 15–

20 min (in the hippocampus and frontal cortex), every 10 min in raphe

nuclei. This is due to the slow flow rate of the perfusion medium

(≈1 μl/min), which leads to a poor temporal resolution compared to

electrophysiology (400 ms)

– Time consuming:

◦ One experimenter, two mice, 1 day; 10–12 animals per group; delayed

results (HPLC). Possible improvement with more sensitive analytical

methods such as capillary electrophoresis coupled to a laser-induced

fluorescence detection (Parrot et al., 2007; Denoroy et al., 2008), but it

remains a very complex technique.

◦ 3–6 months to complete an experiment, i.e., to evaluate the effects of

several doses of an agonist-antagonist compared to mice treated with

the vehicle or in WT controls. Even longer when using Tg or KO mice

(breeding, genotyping, selection of age, sex, and so on. . .).

– Delicate animal handling, to avoid effects of stress, thus requiring an expe-

rienced experimenter to perform in vivo microdialysis in freely moving

mice.

– Absolute need to check the exact location of the probe, macroscopically

on brain coronal sections at the end of the experiment. Especially in mice

(Bert et al., 2004)

– Poor prognostic value of basal extracellular concentrations of 5-HT, DA, and

NA.

– Extracellular concentrations of metabolites in dialysates (e.g., 5-HIAA, the

main metabolite of 5-HT):

◦ Under basal conditions: it reflects intracellular metabolism of 5-HT

(MAO A activity), and not its release or utilization (Wolf et al., 1985;

Bel and Artigas, 1996)

◦ Following pharmacological treatment: it has little interest because

dialysate 5-HIAA levels decrease, independently of the dose of the indi-

rect 5-HT receptor agonist administered.These changes are not related

to the neuronal activity (Malagié et al., 1995; Rocher et al., 1996).

*Some advantages of this technique are very interesting in KO mice knowing the difficulties to breed most of them.

animals susceptibility genes and proteins involved in the patholog-
ical processes leading to anxiety and depression. These biological
markers could then be helpful to pose the diagnosis of the dis-
ease in human. They also give information on their functional
role, thus offering opportunities to develop new drug treatments.
When performed in KO mice, and together with other techniques,
brain microdialysis was very useful to define central monoaminer-
gic dysfunctions having behavioral consequences similar to those
associated with endogenous depression in humans. Some KO mice
with mutations of serotonin targets (e.g., the 5-HT transporter
SERT, 5-HT1B, 5-HT1A, and 5-HT4 receptors) display changes in

phenotypes similar to those induced by chronic treatment with
antidepressants in WT control mice.

Chronic antidepressant treatment may regulate the expres-
sion of neurotrophic factors such as BDNF and stimulate the
process of adult neurogenesis in the dentate gyrus of the hip-
pocampus in rats (Malberg et al., 2000) and adult mice (Santarelli
et al., 2003; David et al., 2009). Changes in adult neurogene-
sis are only seen after chronic, but not acute, antidepressant
treatment. Microdialysis studies in heterozygous mice for BDNF
(Szapacs et al., 2004; Deltheil et al., 2008, 2009; Guiard et al.,
2008) contributed to this knowledge by exploring the relationship
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between the hippocampal 5-HT system (i.e., the function of its
transporter, one of the main targets of antidepressants) and brain
BDNF levels.

In the future, our efforts to understand the pathophysiology of
mood disorders, especially anxiety/depression, will focus on the
antidepressant responses, especially in non-stressed and stressed
rodents. Microdialysis technique in young or adult KO mice
will continue to decipher region-dependent relationships between
brain neurotransmitters and circuits involved in the mechanism
of action of an antidepressant drugs’ polytherapy, soon available
on the market. Furthermore, original strategies are now avail-
able to rescue the expression of a particular receptor subtype in
a tissue-specific and temporally controlled manner in mice. For
example, it is well known that agonists of the 5-HT1A recep-
tor such as buspirone have anxiolytic properties, and KO mice
lacking this receptor show increased anxiety-like behavior (as
indicated above). However, the relevant brain regions involved
in anxious phenotype have not been delineated. Using such a
tissue-specific, conditional rescue strategy for the 5-HT1A recep-
tor, Gross et al. (2002) engineered mice in which the expression
of the 5-HT1A receptor gene was under the control of the antibi-
otic doxycycline. The gene of interest was switched off when the
mice were fed with the antibiotic. They used autoradiography
to demonstrate that high levels of post-synaptic 5-HT1A recep-
tor expression in the hippocampus and cortex of the rescue mice,
but the pre-synaptic 5-HT1A autoreceptor, was undetectable in
the raphe nuclei. By using mice in which the 5-HT1A recep-
tor can be knocked out at will, they show that the absence of
the receptor in newborns lead to anxiety-like behavior, whereas

its knock-out during adult life has no effect. In addition, they
found that postnatal developmental processes help to establish
adult anxiety-like behavior. Generating such a rescue mice is a
long-lasting process, but each animal can be used as its own
control.

Another strategy can be used to rescue a gene of interest, in
which the KO mice line previously generated was used as the con-
trol group. A gene of interest is re-expressed into the midbrain
of KO mice by stereotaxically injecting a lentiviral vector carrying
this gene coding for a receptor to test for the selectivity of behav-
ioral effects. This strategy was recently applied to study the role
of beta2-subunit of the nicotinic acetylcholine receptor (nAChR;
Maskos et al., 2005) in mediating the reinforcement properties of
nicotine. In this example, microdialysis experiments were per-
formed to confirm the rescue of nicotine effects in the vectorized
line of mice compared to WT and KO lines. Regarding the sero-
tonin field of research, global disruption of 5-HT2A receptor
signaling in mice reduces inhibition in conflict anxiety paradigms
without affecting depression-related behaviors. Selective rescue of
5-HT2A receptor in the cortex normalized conflict anxiety behav-
iors (Weisstaub et al., 2006). These findings indicate a specific role
for cortical 5-HT2A receptors in the modulation of anxiety. These
techniques allow greater precision and flexibility to generate KO
rodents for understanding neurotransmitter function. No doubt
that such novel and powerful tools, together with techniques of
knock-in or SiRNA recently applied to the field of 5-HT recep-
tors, will continue to give unexpected information on molecular
and cellular mechanisms involved in mood disorders and their
treatments.
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