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Basal ganglia dysfunction has being implied in both Parkinson’s disease and dystonia.
While these disorders probably involve different cellular and circuit pathologies within
and beyond basal ganglia, there may be some shared neurophysiological pathways. For
example, pallidotomy and pallidal Deep Brain Stimulation (DBS) are used in symptomatic
treatment of both disorders. Both conditions are marked by alterations of rhythmicity of
neural activity throughout basal ganglia-thalamocortical circuits. Increased synchronized
oscillatory activity in beta band is characteristic of Parkinson’s disease, while different
frequency bands, theta and alpha, are involved in dystonia. We compare the effect of
the activity of GPi, the output nuclei of the basal ganglia, on information processing in
the downstream neural circuits of thalamus in Parkinson’s disease and dystonia. We use
a data-driven computational approach, a computational model of the thalamocortical (TC)
cell modulated by experimentally recorded data, to study the differences and similarities of
thalamic dynamics in dystonia and Parkinson’s disease. Our analysis shows no substantial
differences in TC relay between the two conditions. Our results suggest that, similar to
Parkinson’s disease, a disruption of thalamic processing could also be involved in dystonia.
Moreover, the degree to which TC relay fidelity is impaired is approximately the same in
both conditions. While Parkinson’s disease and dystonia may have different pathologies
and differ in the oscillatory content of neural discharge, our results suggest that the effect
of patterning of pallidal discharge is similar in both conditions. Furthermore, these results
suggest that the mechanisms of GPi DBS in dystonia may involve improvement of TC relay
fidelity.
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INTRODUCTION
Dystonia is a widespread neurological disorder characterized by
sustained muscle contractions, involuntary repetitive movements
and abnormal posture. Although the exact pathophysiological
mechanism remains unknown, prior studies have demonstrated
involvement of basal ganglia circuitry (Fahn et al., 1998; Tarsy
and Simon, 2006). Some dystonia cases have clear genetic ori-
gin, but there is no apparent neurodegeneration, although some
functional and microstructural brain abnormalities have being
detected and abnormalities of neural plasticity in sensorimotor
networks have been described (Breakefield et al., 2008).

Another disorder where pathology of the basal ganglia is
involved is Parkinson’s disease. It is of interest to note that similar
surgical procedures—pallidotomy (therapeutic lesion) and high-
frequency electric deep brain stimulation (DBS) in the internal
Globus Pallidus (GPi)—are used to treat the symptoms of both
disorders [for example, see (Lozano et al., 1997) for pallidotomy
in dystonia; (Vidailhet et al., 2005, 2007; Kupsch et al., 2006) for
GPi DBS in dystonia; (Laitinen et al., 1992; Lang et al., 1997) for
pallidotomy in Parkinson’s disease; (Moro et al., 2010) for GPi
DBS in Parkinson’s disease]. Hence, comparison of basal ganglia

activity in dystonia and Parkinson’s disease may shed light on the
pathophysiology of both disorders.

Firing rates in GPi—the output nuclei of basal ganglia—have
been studied in detail in both conditions. While at least one
study suggested that the firing rates are similar in both disor-
ders (Hutchison et al., 2003), most studies suggest that pallidal
firing rates in dystonia are lower than those in Parkinson’s dis-
ease, which in turn, are lower than normal rates, as inferred from
primate studies (Lenz et al., 1999; Merello et al., 2004; Starr et al.,
2005; Tang et al., 2007), although it is less clear how much lower
the rates are as the intraoperative mapping of neurons may not
be very representative and may depend on a particular subtype of
the disease (Tang et al., 2007). However, not only average firing
rate but the temporal patterns of activity in basal ganglia circuits
are related to symptomatology in both disorders, perhaps more
than the average firing rates.

In Parkinson’s disease (and experimentally created low-
dopamine states), hypokinetic symptoms are associated with
an increase of synchronized oscillatory activity in the β

frequency band (10–30 Hz, broadly speaking) in basal ganglia-
thalamocortical circuits including GPi (Hutchison et al., 2004;
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Brown, 2007; Hammond et al., 2007). Successful treatment of
hypokinetic symptoms is marked by a decrease in this activity.
While it has not being fully confirmed that this activity causes
the symptoms, it is certainly closely related to their presence in
Parkinson’s disease (Eusebio and Brown, 2009).

Dystonia is also marked by changes in oscillatory activity, how-
ever, it appears to be in a different frequency band. Local field
potentials (LFP’s) (Silberstein et al., 2003; Liu et al., 2006) and
unit discharges (Starr et al., 2005) in dystonia present increased
oscillatory synchronized activity in low frequency bands, i.e.,
theta and alpha (roughly 3–12 Hz). LFP and spikes exhibit syn-
chrony in this frequency range in dystonia (Chen et al., 2006)
and the LFP is correlated with the electromyogram (EMG)
(Sharott et al., 2008). Dystonic muscle spasms are preceded by
an increase of the oscillatory power in low frequencies (Liu
et al., 2008). Similar to Parkinson’s disease the pathological
oscillatory activity is observed in multiple parts of the basal
ganglia-thalamocortical circuits in dystonia (Starr et al., 2005;
Schrock et al., 2009). Animal models of dystonia exhibit similar
low-frequency bursting too (Gernert et al., 2002; Chiken et al.,
2008).

Disorganized patterns of activity in GPi (the output nucleus
of basal ganglia) may disorganize the activity of downstream cir-
cuits, in particular, the dynamics of thalamocortical relay. GPi
projects to thalamus and the presence of pathological oscillations
in Parkinson’s disease has being considered as a source of patho-
logically erratic thalamocortical relay, which was conjectured to
contribute to the generation of Parkinsonian symptoms (Obeso
et al., 2000, 2008; Rubin and Terman, 2004; Guo et al., 2008). In
particular, utilization of data obtained from MPTP monkeys in a
computational model of thalamocortical relay revealed how the
presence of oscillations in basal ganglia activity modulates thala-
mocortical relay cells in such a way that they enter a more bursty
mode, where they are less responsive to the incoming excitatory
input (Guo et al., 2008).

The presence of altered oscillatory activity in dystonia sug-
gests that it may affect the efficiency of thalamocortical relay
and thus contribute to symptoms in this condition as well. This
is the subject of the present study. In particular we explore the
differences and similarities between parkinsonian and dystonic
thalamocortical relay. The diseases are generally symptomatically
distinguishable, have different etiologies, and are noted for differ-
ence in pathological neural activity. However, different patholog-
ical rhythmicities may have a similar impact on the downstream
circuits and produce similar effects.

To study this problem we used a data-driven computational
model: a computational model of thalamo-cortical relay modu-
lated by real data recorded in GPi of parkinsonian and dystonic
patients. The use of the real pallidal recordings in the compu-
tational model may be a substantial advantage. The temporal
patterns of synchronous oscillations in PD are known to have a
complicated structure (Park et al., 2010). Dystonia may also be
marked by a similarly complicated temporal patterning of neu-
ronal discharge. Thus, using the real data will allow us to capture
the response of thalamocortical relay not only to bursting in a
specified frequency range, but to real pallidal activity with its
specific complex temporal structure.

METHODS
PATIENTS AND SURGERY
This study included 4 patients with Parkinson’s disease (2 males;
ages, 52, 62, 67, 72 years; disease duration, 10, 14, 15, 18 years)
and three patients with generalized dystonia (2 males; ages, 50,
55, 76 years; disease duration, 3, 11, 10 years), who underwent
stereotactic procedures in GPi (pallidotomy or pallidal DBS)
in Indiana University Hospital. The decision to perform the
surgery was not influenced by subsequent inclusion of the data
in the present study (which included all appropriate patients
for whom the recordings were available). The surgical proce-
dure was described in detail in (Schiff et al., 2002). Briefly,
targeting was carried out using the Leksell frame and MRI
scan with standard stereotactic coordinates for postero-ventral
GPi. Localization was confirmed with postoperative MRI. At the
time of surgery, patients had been off antiparkinsonian medi-
cation for at least 12 h. The protocol was approved by Indiana
University IRB.

DATA RECORDING AND PROCESSING
Intraoperative recordings were performed with 80% plat-
inum/20% iridium glass-insulated microelectrodes (FHC,
Bowdoin, ME), with an impedance, measured in the brain at
1 kHz, being in the range of 0.3–1.0 M�. The recordings were
made with Guideline System 3000 (Axon Instruments, Foster
City, CA). The signal was amplified (×5000) and filtered to
300–5 kHz frequency bands to obtain the spiking neuronal
unit signal, which was digitized at 20 kHz rate and saved for
off-line analysis. Neuronal spikes were subsequently threshold
extracted (>3 SD above baseline), single units were isolated
with SciWorks/Experimenter software (DataWave Technologies,
Berthoud, CO), and the time of occurrence of spikes was recorded
and used to drive the thalamocortical relay model described
below.

MATHEMATICAL MODEL OF TC RELAY
We used the same computational model as the previous study on
monkey data (Guo et al., 2008), which is a modified version of the
TC model from (Sohal et al., 2000). In the TC model, the current-
balance and ionic activation equations take the form

Cmdv/dt = −IL − INa − IK − IT − IGi→Th − IE + Iext

dh

dt
= h∞ (v) − h

τh (v)
(1)

dr/dt = (r∞(v) − r)/τr(v).

In system (1), the terms IL = gL(v − EL), INa =
gNam3∞(v)h(v − ENa), are leak and sodium spiking cur-
rents, respectively. The expression for the potassium
current is IK = gK(0.75(1 − h))4(v − EK). The low-
threshold calcium current is IT = gTp2∞(v)r(v − ET).
For the intrinsic currents, the forms of the functions
and the values of the parameters used appear in Table 1.
The resting potential, spike threshold, and responsiveness of
the model TC cell, in the absence of inputs, are robust to
changes of ionic conductance in this model. The capacitance

Frontiers in Computational Neuroscience www.frontiersin.org September 2013 | Volume 7 | Article 124 | 2

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Guo et al. Thalamocortical relay in Parkinson’s disease and dystonia

is Cm = 1μF/cm2 after rescaling the parameters. The reversal
potentials are given in mV, conductance in mS/cm2, and time
constants in ms.

Additional terms in (1) refer to inputs to the TC cell model.
The equations and parameter values relevant to these terms are
summarized in Table 2, with the same units used as in Table 1.

Iext = 0.41 is a fixed constant background input that yields
a firing rate of roughly 12 Hz in the absence of excitatory
signals and GPi inhibitory synaptic input. This value places
the TC cell near the transition from silent to spontaneously
oscillatory for the model TC cell, in the absence of all other
inputs. IGi→Th represents the inhibitory input current from
the GPi to the model TC cell. IE denotes simulated peri-
odic or stochastic excitatory input to the TC cell. It may
represent synchronized inputs from multiple presynaptic cells.
Earlier studies of this kind of TC modeling (Guo et al., 2008)
and (Guo and Rubin, 2011) performed sensitivity analysis on
the TC cell parameters with various (experimentally recorded
and computer-generated) pallidal inhibition time-series. The
results were very robust and small variation of several param-
eters of TC case in this study did not lead to different
results.

EXCITATORY SIGNALS
In the TC model, the excitatory signal IE represents a set of
temporally proximal, but imperfectly aligned cortical inputs to

Table 1 | Functions and parameters for the TC cell.

Current Activation Inactivation

INa m∞(v) = 1/(1 + e−(v+37)/7) h∞(v) = 1/(1 + e(v+41)/4)

τh(v) = 1/(ah(v) + bh(v)), ah(v) = 0.128e−(46+v)/18,

bh(v) = 4/(1 + e−(23+v)/5)

IT p∞(v) = 1/(1 + e−(v+60)/6.2) r∞(v) = 1/(1 + e(v+84)/4)

τr (v) = 0.4(28 + e−(v+25)/10.5)

Parameters gL = 0.05, gNa = 3, gK = 5, gT = 2, vL = −72, vNa = 50,
vK = −90, vT = 90

a TC cell. The excitatory input is modeled by IE = gEsE(v − vE)

and sE is governed by

dsE/dt = α (1 − sE) exc (t) − βsE, (2)

where α = 0.8, and β = 0.25 as given in Table 2. Since
we do not have the voltage signal of a presynaptic neu-
ron in the model, we use the function exc(t) to con-
trol whether the excitatory input is on or off. Specifically,
exc(t) = 1, during each excitatory input, while exc(t) = 0
between excitatory inputs. We used two general forms of
time course for exc(t), namely periodic and stochastic, as
done in the past work (Rubin and Terman, 2004; Guo et al.,
2008).

In the periodic case, exc(t) = 1 from time 0 up to time
d, from time p up to time p + d, from time 2p up to time
2p + d, and so on. We choose 50 ms for p so that the model
TC cells rarely fire spontaneous spikes between excitatory sig-
nals of 20 Hz frequency. This frequency is also consistent with
the high-pass filtered corticothalamic inputs observed in vivo
(Castro-Alamancos and Calcagnotto, 2001). In the stochastic
case, input onset times are selected from a modified Poisson
distribution (Poisson distribution with an enforced pause of
20 ms between spikes to avoid excessive firing) with the same
input duration and amplitude as in the periodic case and with
a mean input frequency of 20 Hz. The use of a stochastic exci-
tatory input provides both biological realism and one measure
of the robustness of our results to noise. We select the val-
ues of the rate parameters α, β, and d based on corticothala-
mic excitatory inputs recorded in vivo (Castro-Alamancos and
Calcagnotto, 2001). We choose the value for gE based on two
considerations. First, IE should be strong enough to overcome
the spontaneous oscillation in the model TC cell and respond
faithfully to both the periodic and stochastic excitatory signals in
the absence of GPi inhibitory input. Secondly, the choice of gE

was motivated by the conjecture that strong inputs would repre-
sent important signals, and that differences in TC relay of strong
inputs would have the most significant impact on downstream
processing.

Table 2 | Inputs to the TC cell.

GPi synaptic input IGi → Th = gsyn s
(
v − Esyn

)
, s = 1, at each spike, decays as

ds/dt = −βinh s after each spike

Excitatory signal IE = gE sE (v − vE ), where sE
′ = (1 − sE ) exc(t) − βsE

Periodic exc(t) Random exc(t)

exc (t) = 1 for d ms when excitatory signal is on;
exc (t) = 0 in between excitatory signals

exc (t) = 1 for d ms when excitatory signal is on;
exc (t) = 0 in between excitatory signals. The onset of each signal is
generated by modified Poisson processes with rate 0.005. The minimal
interval between two signals is 20 ms.

Constant input Iext = 0.41

Parameters gE = 0.04, gsyn = 0.08, vE = 0, vsyn = −85, βinh = 0.1, α = 0.8, β = 0.25, p = 50 ms, d = 5 ms, winoff = 10 ms.
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INHIBITORY GPi INPUT DERIVED FROM PATIENTS’ DATA
We model the inhibitory input as IGi→Th =
gsyn s

(
v − Esyn

)
, s=1, at each spike time of GPi recording,

then decays according to

ds

dt
= −βinhs. (3)

In this study, each TC cell receives one GPi input s that is derived
from spike trains recorded from either PD or DY patients. Spike
sorting was performed to recover single units in off-line analysis
(See section Data Recording and Processing).

EVALUATION OF TC RELAY FIDELITY
The TC neuron responds with a single spike to some of the excita-
tory inputs that it receives, which is a high-fidelity response. The
TC neuron may also produce either no spike or multiple spikes to
one excitatory input under the GPi inhibition, which we consider
as miss and bad responses, respectively.

In this paper, we quantify TC relay performance using two
index numbers, one is the miss index, the other is the bad index.
And they are defined as the following:

miss index = m
n , bad index = b

n ,
where b denotes the number of excitatory inputs to which a TC

neuron gives a bad response consisting of more than one spike,
either a burst response (typically) or a single-spike response fol-
lowed after a delay, but before the next input, by additional spikes.
The number m denotes the count of excitatory inputs that are
missed by the TC neuron, in the sense that it fails to fire any spikes
during a detection window. The number n is the total number
of excitatory inputs. The detection window we use in this paper
extends from the beginning of each excitatory input to 15 ms after
each input. For each excitatory input, either a bad or a miss TC
response is counted if a faithful TC response does not occur dur-
ing this window. The detection algorithm for both miss and bad
responses was first implemented in Guo et al. (2008). In previ-
ous work a single error index that is the sum of miss and bad
index was first introduced in (Rubin and Terman, 2004). Guo
et al. (2008) also used a single error index as in Rubin and Terman
(2004) to quantify how different patterns of inhibitory GPi signals
obtained from experimental recordings of normal and parkinso-
nian monkeys, with and without DBS, affect TC relay responses.
In this current work, we separate the TC relay error into the miss
and bad indices to provide a better characterization of TC relay.

GPi ELEVATED SPIKING TIME AND CONTRIBUTED SILENT TIME
We designed detection algorithms to identify the elevated spiking
and contributed silent episodes in GPi. These episodes contribute
to the miss index and bad index in TC cells described in the pre-
vious section. To quantify elevated spiking episodes (ESE), we use
the same detection algorithm for high-frequency spiking episodes
as was done in (Guo et al., 2008) with parameter adjustments. In
this algorithm, we first detect all GPi spikes preceded by a silent
period longer than 26 ms. We choose an interval of 26 ms to iden-
tify the potential start of ESEs because it is large enough so that
we can detect the long interval between spikes, but not so large so
that we will falsely identify bursts by including lots of isolated GPi

spikes into a burst. If this number is too small, the algorithm could
incorrectly separate one ESE into several short ESEs, with each
short ESE only containing a couple of spikes. We chose an inter-
val size that reduces these erroneous values. However, since our
data sets are from real recordings of human patients, we cannot
completely eliminate those two extremes. Nevertheless, we can
monitor the ESE algorithm so that these unreasonable extremes
rarely occur.

Using alternative values in the neighborhood of 26 ms does
not affect the overall results of the indices. Each GPi spike with
a proceeding silent period longer than 26 is a potential candi-
date for the start of an ESE. Such a GPi spike is considered as a
start of an ESE only if the immediate next spike follows within
20 ms. Otherwise, it is considered as an isolated spike. All subse-
quent spikes thereafter are counted as part of the same episode
if and only if they happen within 20 ms of their predecessors.
Once a spike occurs beyond the 20 ms window, the preceding
spike marks the end of the episode. The 20 ms maximum between
spikes within each burst prevents us from falsely including iso-
lated spikes in an ESE. Other spikes occurring in between ESE’s
are considered as random spontaneous spikes. We quantify ESEs
by their duration from the first spike to the last spike. The fraction
of ESE over the total simulation time is called EST (elevated spike
time) and is a number between 0 and 1, with 0 EST correspond-
ing to no bursting GPi episodes with only random isolated spikes.
A moderate EST means a bursty GPi signal which is generally the
case with our GPi signals since they are recorded from PD and DY
patients.

In this work, we associate a new measure, contributed silent
episode (CSE), with TC relay errors. We introduce this new mea-
sure in addition to EST used in previous work (Guo et al., 2008)
for three reasons. First, the bad relay responses with excessive
TC spikes to a single excitatory input usually happen during the
silent time after ESEs due to post-inhibitory rebound. Secondly,
the late part of a long silent episode in between two ESEs does
not contribute to either miss or bad TC responses because post-
inhibitory rebound only lasts for a brief duration of time after
GPI inhibition. Third, when the silent episode between two ESEs
is too short, is it not likely to have a bad TC response because
post-inhibitory rebound has some latency.

The properties of post-inhibitory rebound, such as the latency
of the first TC spike and the duration of post-inhibitory rebound
after inhibition, depends on the neuron’s intrinsic membrane cur-
rents and the amplitude and duration of the inhibition (Perkel
and Mulloney, 1974; Hartline and Gassie, 1979; Harris-Warrick
et al., 1995a,b; Hooper, 1998; Winograd et al., 2008). Throughout
our simulation, all the intrinsic membrane currents of the model
TC neuron and the amplitude of GPi inhibition are fixed. We
assume that both factors, the intrinsic membrane currents and
inhibition amplitude, have the same influence over all simulations
in our study. Thus, we solely consider the effect of duration of GPi
inhibition on the latency and duration of post-inhibitory rebound
of the TC neuron.

We first find the potential non-bursting silent episodes by
marking the time between the last GPi spike of an ESE and the
first GPi spike in the next ESE. There are two cases for these
non-bursting silent GPi episodes. Either there are no isolated
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GPi spikes during the interval or, only a few isolated GPi spikes
occur. When the silent period (with or without isolated GPi
spikes) between two ESEs is smaller than 35 ms, the time inter-
val is too short for the TC cell to generate a bad response due
to post-inhibitory rebound before the next GPi burst. We do
not count these as CSEs. In the case when there are no isolated
GPi spikes during a non-bursting silent period that is longer
than 35 ms, we only use the beginning 100 ms as CSE because
the proceeding GPi burst is unlikely to cause a bad TC response
after 100 ms and before the next GPi burst. In the non-bursting
episodes during which there are a few isolated GPi spikes, we look
at the inter-spike intervals of the first three GPi spikes. For those
spikes whose inter-spike interval is less 35 ms, they contribute lit-
tle to the TC relay response. For those that are larger than 35 ms,
we only count 60 ms toward the CSEs because it is very likely that
the TC cell will generate a bad response. Thus, we try to iden-
tify the part of each silent episode during which bad TC responses
happens due to post-inhibitory rebound. The above algorithm for
calculating CSE is based on empirical observation in our data sets
and numerical simulations. The fraction of CSE of the simulation
time is defined as the contributed silent time (CST).

AVERAGED GPi SYNAPTIC INPUT TO TC
Another good indicator of GPi rhythmicity is the variability of s
averaged over a time window, which we call averaged GPi synaptic
input. Based on (3), s is between 0 and 1. We choose 25 ms as our
average time window. Then we take values for bin centers from
0.1 to 0.8 with 0.1 increments. We form histograms by displaying
bins centered at 0.1–0.8 based on the frequency of the averaged s
time course. If the average s value mostly falls into bin 0.1 and a
bin away from bin 0.1, for example bin 0.6 in the top histogram

displayed in the right panel of Figure 1, it shows that GPi firing is
rhythmic with many ESEs. This is because GPi synaptic output is
high during each ESEs and low between ESEs. Since we only have
pathological GPi data recorded from patients, most of our data
show high GPi rhythmicity.

Data analysis was performed in MATLAB. Model simulation
was carried out with XPPAUT (http://www.math.pitt.edu/~bard/
xpp/xpp.html).

RESULTS
EXAMPLES OF TC RELAY IN DY AND PD
We will start with presenting examples of TC relay of excitatory
inputs (Figure 1) under inhibitory modulation of the thalamic
cell by experimentally recorded GPi activity. We use a single GPi
spike train in our simulation. Figures 1A,B presents the relay for
a parkinsonian patient, Figures 1C,D presents relay for dysto-
nia patient. GPi synaptic input (Figures 1A,C upper traces) was
computed from experimentally recorded GPi activity as described
in Methods. Figure 1 presents the membrane potential of TC
relay cell responding to 5 s of excitatory inputs (Figures 1A,C
lower traces) under modulation by such GPi synaptic input.
Characteristic examples of miss and bad relay are indicated by
rectangles.

The rectangular box in Figure 1A is an example of bad TC
responses with more than one TC spike to one excitatory input.
Synaptic input from pallidum is small here and TC cell shows
a transient elevation of the firing rate, even though the excita-
tory input is still the same. These dynamics of the TC cell may
be attributed to the rebound properties of TC cells due to T-type
calcium current. The rectangular box in Figure 1C is an example
of miss TC responses: several incoming excitatory spikes yield no

FIGURE 1 | Example of TC relay of periodic excitatory inputs to

thalamus under pallidal inhibition in a parkinsonian (A,B) and

dystonic (C,D) patients. Upper traces in (A,C) are inhibitory synaptic input
from GPi, middle traces are the activity of TC cells, bottom traces are
excitatory synaptic input to TC cells. A rectangular box in (A) marks bad
TC relay responses, rectangular box in (C) marks miss TC responses.
(B,D) are the normalized histograms of the averaged synaptic input from

pallidum to thalamus s as defined by Equation (3) (see Averaged GPi
synaptic input to TC in Methods for the details). They show the probability
that the value of s falls into the bins centered from 0.1 up to 0.8 with 0.1
increments. Synaptic input is high during elevated spiking episodes and
low in between them, so that bimodal distribution points to the presence
of bursting-like activity. The histograms are for one full episode of
recording data from these patients.
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spikes in the TC somatic activity, thus no spikes are relayed. The
consistently high level of pallidal inhibition to TC during this time
is apparently responsible for the miss responses.

The properties of the GPi modulatory inhibitory input in these
data episodes are summarized by the histograms of the averaged
GPi synaptic input, computed from the whole duration of the
intraoperative recording episode (26.3 s of recordings for dystonia
patient, Figure 1B; 41.8 s of recordings for parkinsonian patient,
Figure 1D). Both histograms show rhythmicity in the GPi signal
since the averaged GPi synaptic input, s, falls mostly in the lower
bin 0.1 and in a bin (or a couple of bins) centered at a higher
value. For example, in Figure 1B, the frequency of s as described
in section Averaged GPi synaptic input to TC, in bin centered at 0.1
is high. And the frequencies of s in bins centered at 0.6 and 0.7 are
high also. This shows that there are many ESEs and CSEs in the
GPi signal, signifying the complex bursting nature of GPi activity.

These events of fidelity loss in TC relay and the underlying
properties of GPi activity patterns were studied across our sam-
ple of parkinsonian and dystonic patients. We present the findings
below.

TC RELAY PERFORMANCE IN PD AND DY PATIENTS
The miss and bad indices of TC relay were computed using the
data-driven computational model as described in the Methods
for every patient in our sample of PD and DY patients. The
values of the indices were computed for each episode under
analysis. At the same time, the values for EST and CST, charac-
teristics of the bursty discharge, were computed for GPi activ-
ity, so that one can inspect their relation to the miss and bad
indices. This was done for both modeling setups: with regular
and with random excitatory signals coming to the thalamocortical
relay cell.

Parkinsonian patients
The TC fidelity indices for parkinsonian patients are presented
in Figure 2. In Figures 2A,C, we plot the miss index of TC relay
against EST to both periodic and random excitatory inputs. (EST,
the elevated spike time, was described in the subsection GPi
Elevated Spiking Time and CST.) Each dot represents the miss
index of TC relay to 5 s of GPi data recorded and derived from
parkinsonian patients. The miss index spans an interval from 0
to 0.8 in both periodic and random excitation cases. The overall
trend for miss index is to be positively (possibly linearly) cor-
related with EST. Figures 2B,D show the bad index of TC relay
vs. CST (the CST, see subsection GPi Elevated Spiking Time and
CST.) Figure 2B is TC relay bad index to periodic excitation, and
Figure 2D is TC relay to random excitation. The bad index spans
an interval from 0 to 0.3. The overall trend also shows positive
relation between the bad index and CST. In Figure 2, we used all
the parkinsonian patient data available to us.

Note that although the values of the thalamocortical relay error
indices observed here are comparable with those reported in the
primate study (Guo et al., 2008), one should compare them with a
caution. First, we no longer use a single composite error index in
this paper to characterize TC relay responses, but consider missed
and bad responses separately. Second, in contrast to the earlier
study of MPTP monkeys, here we consider human data. Third,

FIGURE 2 | Indices of fidelity of thalamocortical relay for parkinsonian

patients. Indices for non-transmitted spikes (miss indices) are at subplots
(A,C); indices for extra spikes (bad indices) are at subplots (B,D). Periodic
excitatory spike train to thalamocortical relay cell are at (A,B); random
excitation to thalamocortical relay cell are at (C,D). The indices are plotted
against EST (elevated spike time, the fraction of elevated spiking episodes
over the total simulation time) and CST (contributed silent time, the fraction
of all contributed silent episodes during the simulation time), see Methods.

some parameters of data analysis are different here. Finally, (Guo
et al., 2008) presented a much smaller number of data points.

Dystonic patients
Figures 3A,C show the miss index of TC relay vs. EST to both
periodic and random excitatory inputs. Again each black dot gives
the miss index of TC relay to 5 s of GPi data recorded and derived
from dystonic patients. The miss index spans an interval from 0 to
below 0.8 in both periodic and random excitation. Figures 3B,D
show the bad index of TC relay vs. CST. Figure 3B is TC relay bad
index to periodic excitation, and Figure 3D is TC relay to random
excitation. Bad index spans values from 0 to 0.3. The overall trend
of both miss and bad indices for dystonic patient data again shows
a positive, possibly linear, relationship with EST and CST, respec-
tively. Figure 3 includes the TC relay to all the dystonic patient
data we have.

The TC relay in both parkinsonian and dystonic cases appears
to be similar. The miss index in both cases spans an interval from
0 to 0.8, and the bad index in both is in the range from 0 to 0.3.
The overall trend of both indices in parkinsonian and dystonic
cases is the same. In addition, we performed a statistical analy-
sis to explore the similarity. The results for the indices in both
conditions is presented below.

Pallidal synaptic input to thalamus in parkinsonian and dystonic
patients
We now compare the properties of pallidal activity and pallidal
synaptic input to thalamus in parkinsonian and dystonic patients.
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The EST and CST distributions for PD and DY data are pre-
sented in Figure 4. The mean value of EST in PD (0.46) is very
close to the mean value of EST in DY (0.44). However, the shapes
of distributions appear to be different with a more pronounced
peak in the case of dystonia. A similar effect is observed for the
means of CST; both means are about 0.24, but the distributions
appear to have different shape. The different shape of distribu-
tions should not be very surprising: the data come from different
disorders noted for different kind of rhythmic neural activity.
However, different distributions may lead to similar effects down-
stream. Interestingly, the distribution of the average GPi synaptic
input variable, s, for dystonic and parkinsonian data are quite
similar to each other (Figure 5). Thus, while the properties of pal-
lidal neural activity (as measured by EST and CST) appear to be
related to the indices of relay quality (Figures 2, 3), synaptic filter-
ing at subthalamo-pallidal synapses may decrease the differences
between dystonic and parkinsonian activity and contribute to the
similarity of TC relay in both conditions.

STATISTICAL ANALYSIS
We present mean values and standard deviations for our samples
of miss index, bad index and joint error index in both regular and
random excitation cases in Figure 6. First, one can see that the dif-
ference between the two modeling setups (periodic and random
excitation) is very small for the miss index and error index (which
is dominated mostly by the miss index), and is relatively small for
the bad index. The results for regular and random excitation are

FIGURE 3 | Indices of fidelity of thalamocortical relay for dystonic

patients. Indices for non-transmitted spikes (miss indices) are at subplots
(A,C); indices for extra spikes (bad indices) are at subplots (B,D). Periodic
excitatory spike train to thalamocortical relay cell are at (A,B); random
excitation to thalamocortical relay cell are at (C,D). The indices are plotted
against EST (elevated spike time, the fraction of elevated spiking episodes
over the total simulation time) and CST (contributed silent time, the fraction
of all contributed silent episodes during the simulation time), see Methods.

not expected to be identical and the real excitatory input may be
neither perfectly periodic nor random. However, in both cases,
the values of the indices are similar, which points to the robust
character of the modeling.

The difference in thalamocortical relay between parkinsonian
and dystonic data is small also. Roughly speaking, the bad index
is around 0.1, the miss index is around 0.4 and the error index is
around 0.5 for all the cases considered. We applied the t-test to
compare the means of distributions of the indices between dys-
tonic and parkinsonian patients for each excitation type and for
each index (i.e., comparison of gray bar to gray bar and white
bar to white bar in each of the subplots of Figure 6). The bad
index mean values for dystonia and Parkinson’s disease are not
significantly different at p = 0.01 (for both periodic and random
excitations). The miss and error indices mean values for dystonia
and Parkinson’s disease are statistically significantly different at
p = 0.01 (for both types of excitations). However, statistical sig-
nificance does not imply the difference is large or functionally

FIGURE 4 | The distributions of EST (A,C) and CST (B,D) for

parkinsonian (A,B) and dystonic (C,D) data.

FIGURE 5 | The distributions of the averaged synaptic input from

pallidum to thalamus s [as defined by Equation (3)] for parkinsonian

(A) and dystonic (B) data. These figures are similar to Figures 1B,D, but
are computed from all the data used in this study.
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FIGURE 6 | The relay error indices for parkinsonian and dystonic

patients: bad index, the fraction of additional spikes (A), miss

index, the fraction of non-transmitted spikes (B), and error index,

the sum of the first two (C). The bars indicate mean values, the

lines indicate standard deviations. Gray bars indicate periodic excitatory
input, white bars indicate random excitatory input. Left pair of bars in
each subplot is obtained from dystonic patients data, right pair of bars
come from parkinsonian data.

significant. Even though the t-test demonstrates a difference,
the value of this difference is very small (see Figures 6B,C), i.e.,
much smaller than the values of the indices and their standard
deviations.

For example, the 95% confidence interval for the difference
of means of DY and PD miss index is (0.0125, 0.0515). The val-
ues of the means are 0.4107 and 0.4426. Thus, even the largest
boundary of this interval is less than 13% of the smallest of
the indices. The difference of means is less than 7.5% of the
average of the means. Even more important is the observation
that the difference between means is much smaller than the
variance of either of the samples, PD and DY. More specifi-
cally, for the bad index, for periodic excitation the difference
of means was −0.0019 (PD-DY) and the standard deviations
were 0.056 (PD) and 0.053 (DY), for random excitation the
difference of means was 0.0008 (PD-DY) and the standard devi-
ations were 0.064 (PD) and 0.056 (DY). For the miss index, for
periodic excitation the difference of means was 0.039 (PD-DY)
and the standard deviations were 0.13 (PD) and 0.13 (DY), for
random excitation the difference of means was 0.032 (PD-DY)
and the standard deviations were 0.11 (PD) and 0.12 (DY). For
the error index, for periodic excitation the difference of means
was 0.037 (PD-DY) and the standard deviations were 0.12 (PD)
and 0.12 (DY), for random excitation the difference of means
was 0.035 (PD-DY) and the standard deviations were 0.10 (PD)
and 0.11 (DY). Thus, the difference of means for bad index
in PD and DY (Figure 6C) is more than an order of magni-
tude smaller than the standard deviations of error indices. The
difference of means for miss index and error index are more
than three times smaller than the standard deviations of these
indices.

DISCUSSION
SUMMARY OF FINDINGS
We studied TC relay response to excitatory inputs under the influ-
ence of GPi input in DY and PD patients using a data-driven
computational model. TC is represented by a conductance-based
model; excitatory inputs are computer-generated tonic inputs; the
inhibitory modulation of TC by pallidum is obtained from exper-
imentally recorded data from parkinsonian and dystonic patients.
We observe that in both conditions, PD and DY, the modulation

of TC by inhibitory pallidal input leads to infidelity of thalam-
ocortical relay. That is, some of the excitatory spikes arriving at
TC fail to elicit TC spikes, while sometimes TC generates a spike
without any excitatory input. The amount of “missed” spikes and
“bad” spikes (generated without input) is quantified by us in
relation to the relayed spikes, yielding measures of relay quality.

We compared the relay quality indices for TC relay modulated
by PD and DY pallidal activity. Both “miss” and “bad” indices
(as well as their sum, “error” index) are very close to each other.
The statistical tests are able to distinguish between the samples of
indices in PD and DY, however, this difference is very small and
is likely to be insignificant functionally. Statistics can distinguish
between sufficiently large samples of two very similar distribu-
tions, which are virtually the same for most practical purposes. In
the case considered here the difference between the mean values
of all indices is more than an order of magnitude smaller than the
mean values themselves. Even more importantly, the variances of
indices in DY and PD largely overlap. In addition, the effect of
random vs. regular excitation to TC generates small differences
in indices which are comparable or larger than the differences in
PD vs. DY. Thus, it is very reasonable to suggest that the differ-
ences in the quality of thalamocortical relay between dystonia and
Parkinson’s disease are very small and are likely to be functionally
inconsequential.

It is interesting to note that the “bad” index is four times
smaller than “miss” index. Apparently under inhibitory pal-
lidal modulation TC is much more likely to miss a spike
in response to an excitatory signal rather than to generate
an extra spike. However, we would like to reiterate again
that while the “bad” index is smaller than “mixed” index,
the difference in each index between PD and DY is virtually
non-existent.

ROBUSTNESS AND POTENTIAL PITFALLS OF THE MODELING
APPROACH
Any computational modeling study unavoidably omits (poten-
tially important) details of the real experimental system and
this study is no exception. There are several potential problems
with the modeling which we would like to discuss here, as well
as several considerations for why the overall conclusions may
nevertheless be correct.
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Dystonia is a heterogeneous disorder with many different
subtypes which may have different etiologies and different elec-
trophysiologies (Defazio et al., 2007; van der Salm et al., 2009).
In this study, there was no selection bias, but the number of
patients is relatively limited. This may diminish the relevance
of the observations. However, the modeling results are robust
and the outcomes for the different patients are similar to each
other. So even though dystonia (and Parkinson’s disease) may be
inhomogeneous conditions, the resulting similarities of the thala-
mocortical relay imprecision are quite robust, which may suggest
that there is a large population of dystonic and parkinsonian cases
to which these results apply.

The two different kinds of excitatory stimuli for the TC cell do
not lead to substantial differences in the outcome. Thus, the over-
all computational model and considered phenomenon are robust.
Moreover, the switch from periodic to random excitation of TC
generates larger differences in TC fidelity indices, than does the
switch from PD to DY pallidal activity. This is an additional indi-
cation that TC fidelity is very similar in Parkinson’s disease and
dystonia.

The infidelity of thalamocortical relay is apparently caused by
the bursty nature of the pallidal modulation of the thalamus.
Bursting is hard to quantify by a single index. However, different
degrees of burstiness may potentially lead to similar consequences
downstream. Our results overcome this problem, because at the
end we look at the thalamocortical relay quality with real experi-
mentally recorded data, which does not depend on the index used
to characterize the bursting.

While pallidal recordings from healthy humans are obvi-
ously not available, the data from normal monkeys provide
a general idea for the values of the indices we observe here
in a healthy state (Guo et al., 2008). The reported values of
error index in MPTP parkinsonian rhesus macaques are around
0.6 and are similar to the values observed here in parkinso-
nian patients (about 0.5), while the error index values for the
healthy primates are about two times smaller. It is reasonable
to suggest that as in the PD state, the error index values in
the healthy state are similar in monkeys and humans. Thus,
the relatively high values of error indices we observe here in
parkinsonian and dystonic humans are likely to be much larger
than these indices in healthy humans. Thus, not only is the
fidelity of thalamocortical relay similar in PD and DY, this
fidelity is likely to be substantially smaller than that of healthy
humans.

IMPLICATIONS FOR DYSTONIC AND PARKINSONIAN PHYSIOLOGY
Complete understanding of the relationship between the TC relay
properties and the physiology of both disorders is not possible
before TC relay mechanisms and properties are well-understood
and PD and DY symptomatic mechanisms are better character-
ized. However, by combining modeling and experimental data,
our manuscript provides some interesting implications for poten-
tial PD and DY pathophysiological mechanisms. Our analysis
shows no substantial differences in TC relay between the two con-
ditions. As noted above, comparison with the healthy and MPTP
monkeys strongly indicates that TC relay is substantially impaired
in PD and thus in DY. While disruption of thalamic processing in

PD was discussed earlier, our results suggest that a disruption of
thalamic processing could also be involved in dystonia. Moreover,
the degree to which TC relay fidelity is impaired is approximately
the same in both conditions. While PD and DY may have much
different pathologies and differ in oscillatory content of neural
discharge (e.g., Starr et al., 2005; Crowell et al., 2012; Weinberger
et al., 2012), our results indicate that the effect of patterning of
pallidal discharge (which may elicit rebound bursts in thalamus
preventing TC from relaying excitatory input, Rubin and Terman,
2004; Guo et al., 2008; Agarwal and Sarma, 2012) is similar in
both conditions.

Since PD patients often present some dystonic symptomatol-
ogy (Jankovic, 2008), it is not surprising that our results demon-
strate similar effects on TC relay fidelity in the two conditions.
This study does not explore correlations of particular features
of TC relay with specific sets of motor symptoms. However, it
suggests that even if the specifics of pallidal activity are different
between PD and DY, the downstream effect on TC relay fidelity is
the same in both conditions.

Furthermore, these results suggest that the mechanisms of GPi
DBS in DY may involve improvement of fidelity of TC relay. It has
previously been suggested that one of the ways in which high-
frequency DBS of basal ganglia structures may improve motor
behavior is via improvement of thalamocortical relay (Rubin and
Terman, 2004; Guo et al., 2008; Guo and Rubin, 2011). DBS may
regularize pallidal output which leads to a more efficient TC relay.
Interestingly, experiments with DBS in dystonic hamsters indicate
that DBS suppresses oscillatory power in a relatively broad fre-
quency range, which extends from low frequencies to the higher
frequencies, those in the beta band (Leblois et al., 2010), thus pro-
viding another evidence of a potential overlap of DBS action in
dystonia and Parkinson’s disease. Similarly, pallidotomy may par-
tially remove bursty pallidal input to thalamus, improving fidelity
of TC relay. As we observe here, TC relay in DY is similar to that
in PD. Therefore, one of the potential mechanisms of pallidal
DBS (or pallidotomy) in DY may be improvement of TC relay
similar to that seen in PD. However, we should note that there
are likely to be other mechanisms as well, because post-surgical
improvement of symptoms in dystonia often demonstrates a delay
in onset as compared to the improvement of motor symptoms in
Parkinson’s disease, which itself may follow different time courses
for different symptoms (Lozano et al., 1997; Vidailhet et al., 2005,
2007).

The differences in the time-course of DBS improvements may
be partially mediated by the substantial involvement of abnor-
malities of plasticity of sensorimotor circuitry in DY (Breakefield
et al., 2008; Tamura et al., 2009; Peterson et al., 2010). Yet,
when the stimulation is turned off, the symptoms return quickly
(Vidailhet et al., 2005, 2007). So in spite of many differences in
DBS and ablative surgeries in PD and DY with respect to the effi-
ciency, target and time-course, there may be a common effect on
TC relay.

Finally we would like to note that our observation of equally
poor thalamocortical relay in both conditions suggests that while
the basal ganglia is involved in both DY and PD, the differences
in symptoms may be grounded in the pathophysiology of struc-
tures outside the basal ganglia (such as abnormalities of cortical
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and striatal plasticity, Breakefield et al., 2008; Tamura et al., 2009;
Peterson et al., 2010) or in circuits other than the traditional
motor circuitry implied in PD (such as potential disorganization
of the oscillatory activity in the sensory domain in dystonia, Liu
et al., 2008).
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