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Themammalian brain is thought to use a version of Model-based Reinforcement Learning

(MBRL) to guide “goal-directed” behavior, wherein animals consider goals and make

plans to acquire desired outcomes. However, conventional MBRL algorithms do not

fully explain animals’ ability to rapidly adapt to environmental changes, or learn multiple

complex tasks. They also require extensive computation, suggesting that goal-directed

behavior is cognitively expensive. We propose here that key features of processing

in the hippocampus support a flexible MBRL mechanism for spatial navigation that is

computationally efficient and can adapt quickly to change. We investigate this idea by

implementing a computational MBRL framework that incorporates features inspired by

computational properties of the hippocampus: a hierarchical representation of space,

“forward sweeps” through future spatial trajectories, and context-driven remapping

of place cells. We find that a hierarchical abstraction of space greatly reduces the

computational load (mental effort) required for adaptation to changing environmental

conditions, and allows efficient scaling to large problems. It also allows abstract

knowledge gained at high levels to guide adaptation to new obstacles. Moreover, a

context-driven remapping mechanism allows learning and memory of multiple tasks.

Simulating dorsal or ventral hippocampal lesions in our computational framework

qualitatively reproduces behavioral deficits observed in rodents with analogous lesions.

The framework may thus embody key features of how the brain organizes model-based

RL to efficiently solve navigation and other difficult tasks.

Keywords: reinforcement learning, hierarchical learning, hippocampus, planning, context

INTRODUCTION

Reinforcement Learning (RL) provides a computational account of how an agent can learn
appropriate behavior by interacting with its environment, discovering through experience what
actions lead to rewards or punishments, and how to maximize the sum of future rewards (Doya,
2007). The mammalian brain is thought to employ a form of RL using information about
reinforcements encoded by dopamine neurons (Montague et al., 1996; Reynolds et al., 2001;
Samejima et al., 2005; Daw et al., 2006).

RL algorithms estimate the value associated with each action possible from a particular state in
the environment. If the agent is in state s, and executing action a will bring it to a new state s′, then
the value Q of executing action a is expressed as:
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Q (s, a) = E[r + γ ×maxa′ (Q (s′, a′))] (1)

Where r is the expected reward associated with executing action
a from state s, and the discount factor γ ǫ [0, 1] controls the
agent’s degree of preference for immediate rewards over future
ones. According to this recursive equation, the value of executing
action a from state s is a discounted sum of all future rewards
following that action. RL algorithms incrementally update these
value estimates in response to errors between the expected and
observed reinforcements. Q-learning and SARSA (Sutton and
Barto, 1998) are two “model-free” algorithms for reinforcement
learning: these algorithms rely on Q (s, a) action value estimates
to make decisions, and update them in response to reward
prediction errors. Model-free RL is associated with habitual
learning (Daw, 2012).

In the present work we focus on “Model-based” RL (MBRL)
algorithms, which additionally build an internal model of the
agent’s world through experience. The model learns transition
probabilities P(s′|s, a) describing how actions lead from one state
to another, and the reward function r= R (s, a, s′) which specifies
the reward associated with each transition. Value estimates can be
calculated using the model:

Q (s, a) =
∑

s′
P

(

s, a, s′
) (

R
(

s, a, s′
)

+ γmaxa′Q
[

s′, a′
])

(2)

MBRL is associated with goal-directed planning, wherein artificial
or biological agents use knowledge of action outcomes to flexibly
make choices (Daw, 2012; Botvinick and Weinstein, 2014). The
agent’s world model captures the learned dynamics of the world
and allows knowledge gained in one place to immediately become
part of decision-making elsewhere: thus the agent can effectively
“look ahead” during decision making.

However, conventional MBRL algorithms involve a large
computational overhead, especially if the task being learned
involves many states: after each new experience, Equation
(2) must be repeatedly evaluated in order to propagate new
information throughout all the model’s Q (s, a) value estimates.
This suggests that model-based learning and behavior are
cognitively demanding, and prompted research into potential
brain mechanisms for reducing the cognitive burden (Daw
et al., 2005; Cushman and Morris, 2015). Furthermore, MBRL
algorithms do not explain the ease with which animals adapt
to environmental changes, particularly in spatial navigation
(McDonald et al., 2002; Roberts et al., 2007), suggesting
that animals’ implementation of model-based learning includes
features absent from current MBRL algorithms.

Here we consider the possibility that several computational
properties of the hippocampus serve to endow the brain’s
MBRL system with both flexibility and computational efficiency.
The first is exhibited by the unique operation of Place cells
in the hippocampus, which activate in particular regions of
an environment, exhibit spatial specificity which changes in
a gradient along the septotemporal axis of the hippocampus
(Strange et al., 2014). Place cells in the dorsal hippocampus
represent small regions while those in the ventral hippocampus
represent larger regions (Figure 1). It is speculated that this
gradient of spatial specificity is linked to a similar gradient in

FIGURE 1 | Illustration showing the firing fields of six hippocampal

place cells of an animal in a square enclosure. Red encodes locations of

rapid action potential firing, and blue encodes no firing. The three simulated

cells in the dorsal hippocampus activate in distinct regions of the box, while

those in the ventral hippocampus activate across a larger area.

the spatial firing of entorhinal grid cells (Strange et al., 2014)
from which place cells likely receive input (Moser et al., 2015).
At choice points in a maze, the dorsal hippocampus generates
so called “forward sweeps” of activity encoding possible future
trajectories from the current location (Johnson and Redish, 2007;
Pfeiffer and Foster, 2013), possibly indicating an active process
of predicting consequences and planning paths to goals (Johnson
and Redish, 2007).

Moreover, the hippocampus is associated with representing
the current context, which we consider here to be the gestalt
state of the environment that influences the set of actions (or
policy) the animal has learned to engage (McDonald et al., 2002;
Gruber and McDonald, 2012). Context changes can trigger a
global remapping phenomenon (Jezek et al., 2011) in which a new
set of place cells are recruited to represent the new context.

We hypothesize that the hierarchical representation of spatial
state combined with forward sweep planning and context
representation, could support hierarchical MBRL in the spatial
domain for efficient and flexible foraging. We tested this
by constructing and evaluating a novel computational RL
framework that includes similar features. We implement the
framework in an abstract way, trading biological accuracy for ease
of illustrating its computational properties.

Several interesting properties emerge from this framework.
Model-based learning, planning, and goal-setting are more
efficient at the higher, more abstract levels of the hierarchy
because they generalize over large areas. On the other hand, the
lowest levels of the spatial hierarchy represent the world with
the most spatial detail, and are best suited to creating plans
(trajectories) to achieve high-level goals. This planning is inspired
by the forward sweep phenomenon. Lastly, the framework
provides a means of learning several policies (tasks) associated
with different contexts, and switching rapidly between them;
an ability exhibited by animals, but not by conventional MBRL
algorithms. Our new hierarchal MBRL framework is thus highly
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flexible and efficient, and provides a normative explanation for
several features of processing in the hippocampus.

METHODS

Computational Model of
Place-Cell-Supported Reinforcement
Learning
In this section we propose a hierarchical learning system in which
a task is represented at multiple levels of abstraction, ranging
from very detailed to very general. Model-based reinforcement
learning occurs at each level of abstraction, such that high-level
models learn general strategies (i.e., “move toward the back of
the maze”) while low-level models learn the details required for
efficient navigation (i.e., “the doorway on the right leads to a
hallway that leads to the back of the maze”). As we will show, the
addition of these abstract levels increases efficiency by relieving
lower-level world models of much of the computational burden
ofmodel-based RL. The remainder of this section provides details
of the hierarchical learning scheme. For details of how learning
mechanisms at various levels interact, see Section “Hierarchical
Planning Architecture”.

We consider a simple spatial navigation task, which simulates
an open arena divided into a grid of discrete states that
an agent can occupy. We create several levels of abstraction
with progressively coarser divisions of space by recursively
aggregating groups of four adjoining states (Figure 2). The
result is a spatial hierarchy roughly analogous to that in the
hippocampus. One model-based RL algorithm runs at each level,
learning the action sequence required at its level to reach the
goal. Due to the coarse spatial representation at higher levels,
these learn to set general spatial goals, whereas the lower levels

FIGURE 2 | Illustration of the task and spatial hierarchy. Left: illustration

of the simple simulated “open field” learning task. The artificial agent (initial

position marked in black) must learn to navigate to the goal (marked in green)

in a rectangular area. The open arena is divided into a grid of states. The agent

is aware only of its current state, and cannot sense (e.g., see or smell) the

goal. Right: hierarchical representation of space used by the agent. Higher

levels of abstraction aggregate states into progressively larger macro-states.

The arena is represented by only a few states at high levels of abstraction.

plan a state sequence (e.g., route) to the goal at successively finer
spatial resolutions. We refer to this as a “framework” rather than
a “model” in order to avoid confusion with the model of the
environment employed within the MBRL algorithm.

The hierarchical scheme illustrated in Figure 2 is not
intended to accurately model place cell firing fields, but
rather to implement the general concept of hierarchical spatial
representation. In reality, place fields overlap such that an
ensemble of ventral hippocampal place cells could precisely
and accurately encode spatial state (Keinath et al., 2014). In
this work we focus on the fact that spatial scale increases
along the septotemporal axis of the hippocampus and explore
the computational benefits this provides. Our framework also
abstracts away the roles of various other RL-related brain
structures that interact with the hippocampus. For example,
value information encoded in the striatum (Samejima et al.,
2005) and neocortex (Gruber et al., 2010; Seo et al., 2014) will
here be encoded along with spatial state. The medial pre-frontal
cortex receives projections from the ventral hippocampus and
is associated with task abstraction and prospection (Buckner
and Carroll, 2007; Passingham and Wise, 2014). The state,
value, abstraction, and planning-related information distributed
among various brain structures and circuits, is encapsulated
here in a single computational framework. This allows an easier
exploration of the computational properties of the framework
in the absence of assumptions and dynamical considerations
required for connectionist models.

All model-based RL algorithms used in our experiments were
tabular, meaning that a table T [s, a, s′] tracked the number of
times action a from state s resulted in a transition to s′. Transition
probabilities P (s′|s, a) may be estimated using this table:

P
(

s′|s, a
)

=
T

[

s, a, s′
]

+ c
∑

s2
(T [s, a, s2]+ c)

(3)

where c is a prior count which we set to one. A second table R
[s, a, s′] tracked expected rewards associated with each transition.
Upon executing action a from state s and transitioning to state s′

with reward r, the table was updated as follows:

R
[

s, a, s′
]

= R
[

s, a, s′
]

+
(

r − R
[

s, a, s′
])

/T
[

s, a, s′
]

(4)

making R [s, a, s′] a running average of the rewards experienced
during the <s, a, s′> transition.

After each action, Q-value estimates were computed using
Equation (2) and the prioritized sweeping approach described
by Moore and Atkeson (1993). Prioritized sweeping updates
value estimates in response to new information, but forgoes
these updates when the information is not new. We speculate
that the reactivation of trajectories in the hippocampus after
reward (Singer and Frank, 2009) and during rest (Wilson and
McNaughton, 1994) could support such a selective updating
mechanism. The prioritized sweeping algorithm allows an agent
who has learned the task completely to shift into a model-free
mode wherein it relies on cached action values for decision
making. It shifts back to themodel-basedmode when unexpected
state transitions or values are encountered. This shift from
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model-based to model-free paradigms may correspond to the
change from goal-directed to habitual behavior in rats as learning
progresses (Packard and McGaugh, 1996).

Discount factors (which control the extent to which
immediate rewards are favored over distant ones) at each
level of the hierarchical algorithm were tuned in the range
of 0.5–0.9, with higher levels having lower discount factors
(higher preference for immediate reward). This tuning seems
important to prevent any one level from dominating the goal-
setting process. The tuning was done empirically for good
performance in an open arena navigation task, and held fixed at
the same values for all subsequent testing. Each model-based RL
algorithm learns the task (i.e., creates value maps of the space)
independently, at its own level of discounting and at its own
spatial scale.

Models at each level of abstraction were updated according
to Equations (3, 4) and the prioritized sweeping algorithm each
time the agent’s movement constituted a state transition at that
level. At abstract levels, the r value used in Equation (4) was the
maximum reward experienced while the agent was in the macro-
state s. Thus, higher levels of abstraction screened out all but the
most salient positive reward information associated with each
state, much as the limbic system is suspected of triaging stimuli
based on their associated outcomes (Gruber and McDonald,
2012). This is an important feature for successfully applying the
framework to large tasks.

Hierarchical Planning Architecture
Our hierarchical framework first selects a goal by identifying
the maximum action value available at any level of abstraction.
The state (or macro-state) where this action was expected to
lead as per the T table was identified as a goal state. The level
immediately below the goal level then planned a route from the
agent’s current location to the goal region. The next level down
then refined the first step of this plan at a finer resolution. The first
step of the refined plan was refined further by the level below that,
and so on until the base (world) level (Figure 3). Thus, the overall
process involved successive forward sweeps toward intermediate
goals that progressed backward from the high-level goal. These
forward sweeps are considered to be functionally similar to
the forward sweep phenomena observed in the hippocampus
(Johnson and Redish, 2007).

We implemented the planning process using the A∗ algorithm
(Hart et al., 1968)—a heuristic search algorithm which, in
this case, was guided by current action value estimates. The

A∗ algorithm performed an efficient forward search through the
web of states in the agent’s world model to find a path between
the current location and the goal region.

An ε-greedy policy operated on the output of this hierarchical
planning process. That is, the action specified by the plan was
executed with probability ε, and a random action was executed
otherwise. Here we used ε = 0.8.

Context Switching Algorithm
Switching between different contexts was achieved by comparing
a memory of the agent’s recent experiences with each of
several stored models. A history H of the agent’s m most
recent experiences was maintained as the agent traversed the
environment. Each experience ei included an action performed
by the agent, and the state transition and reward it caused. The
probability P (ei) of an experience occurring can be estimated
using the lowest-level world model: to do this, we first modify the
table R [s, a, s′] to track the distribution of rewards experienced
with a state transition rather than the average reward, allowing
it to provide an estimate of P (r | s, a, s′) at any time. The
probability P (s′|s, a) of the transition itself is then calculated as
P (ei) = P (s′|s, a) · P (r | s, a, s′), with P (s′|s, a) given in
Equation (3).

Assuming that the agent’s behavior has already been learned
and is not changing with the experiences, the probability of a
complete history H having occurred under a particular model is:

P (H) =
∏m−1

i=0
P (ei) (5)

Thus, our framework determined the degree to which each
of several stored models explained the experience history, by
calculating the probability it assigned to that history. If the
model currently in use did not provide the best explanation of
the experiences, a different one was selected probabilistically,
with a softmax function determining each model’s probability of
selection based on their likelihood given the experience history.
If none of the previously learned models assigned the history a
probability above 0.5, or if an expected reward was not obtained,
a new model was created to represent the new environment.

Testing
Simulating Hippocampal Lesions
To test the face validity of our framework as a model of rodent
navigation control, we evaluated whether dysfunction of select
levels of the agent’s spatial hierarchy reproduced behavioral

FIGURE 3 | Illustration of the hierarchical planning process. If the agent’s high-level model prompts the agent to move to the bottom region of the arena, the

lower levels perform forward sweeps through the states in their world models, planning a route to this goal at successively finer resolutions.
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impairments of animals after localized hippocampal damage.
Ruediger et al. (2012) found that mice with dorsal hippocampal
(dH) lesions showed an impaired ability to find a hidden
platform in a water maze task. On the other hand, mice with
ventral hippocampal (vH) lesions showed retarded learning, but
eventually performed as well as intact animals. We simulated
a vH lesion by removing the higher layers from the hierarchy,
leaving only the lowest level with the most specific world states
(such as would be found in the most dorsal region of the
hippocampus). We simulated a dH lesion by removing all but the
highest level. We suppose that the low-level world models would
be disabled by vH lesions, but that the reinforcement learning
mechanism (which likely resides outside the hippocampus; Doya,
2007) would be left intact. Thus, in our simulated dH lesion we
replace the lowest-level model-based RL algorithm with model-
free RL. We compared agents with simulated lesions to an
unimpaired agent in terms of the steps needed to find the goal
in a simulated open-field spatial navigation task (Figure 2).

Testing Adaption to Added Boundaries
We next sought to test if the hierarchical organization would
be advantageous for adapting to sudden changes in the
environment. We tested two artificial agents in a changing spatial
navigation task: One agent used conventional MBRL (Sutton,
1990); the other used our hierarchical approach. Each agent
learned to navigate to a goal in an open arena. After ten trials,
boundaries were added to the arena to create one of five new
mazes. The agents were forced to adapt to the changes. Agents’
performance was measured in terms of the number of steps
needed to reach the goal in each trial, and the number of times
each agent accessed their world model(s). Model accesses is a
proxy to measure the cognitive load imposed on the agent. These
simulated mazes measured 16 by 48 discrete states, and the
agent was allowed four actions (up, down, left, and right). The
agent’s state consisted solely of its location in the maze—it could
not “see” or otherwise sense barriers or rewards. Attempting to
navigate into a wall caused a reward of −1. Finding the goal
triggered a reward of 100 and relocated the agent to the start state.
Trial length was capped at 5000 steps—upon exceeding this step
counts the agent was relocated to the start state and the next trial
began. All simulations were repeated 56 times.

The abstraction scheme (Figure 2) and the size of the
simulated environments produced six levels of abstraction in
the hierarchical model. Model-based RL algorithms at each
level were allowed a maximum of 20 model updates per step,
for a total of 120. The conventional MBRL algorithm was
similarly allowed a maximum of 120 updates per step. Thus,
the hierarchical approach employed relaxed model-updating
requirements (lighter cognitive load) at low levels of abstraction,
being allowed far fewer updates to the environment-level model
than the conventional approach (20 vs. 120 updates).

Scaling to Large Problems through Hierarchical

Abstraction
Problems involving many states can be problematic for
conventional RL algorithms, because excessive discounting
causes reward information to be lost over large distances. The

effect is compounded if the agent is allowed finite model updates,
and therefore cannot easily propagate reward information across
a large model. In contrast, the hierarchical framework may
propagate reward information through high-level abstract layers
relatively easily, allowing it to scale to large problems.

We tested our framework’s ability to solve navigation
problems involving many states, by scaling the task in Figure 2

up in size by factors between 1 and 10.We tested the conventional
MBRL algorithm and our hierarchical framework in each of
these larger mazes, and recorded the number of steps required
to reach the goal in each learned solution. The hierarchical and
conventional approaches were allowed equal numbers of model
updates per step in each test.

RESULTS

Simulated Hippocampal Lesions Mimic
Effects of Physical Hippocampal Lesions
Our first objective was to test the face validity of the hierarchical
MBRL schema with respect to the navigation properties of
mammals. The role of the hippocampus in solving water-maze
escape tasks has been studied extensively. In this task, animals
are placed into a pool of turbid water in which a small platform
is hidden under the surface. Animals are intrinsically motivated
to search the pool to find and rest on the platform. Animals
quickly acquire the task by learning to swim in a direct path to
the platform. Animals with lesions of ventral hippocampus (vH)
suffer delayed acquisition, requiring more trials to learn the task,
whereas animals with lesions of dorsal hippocampus (dH) never
learn to perform the task as well as intact animals (Ruediger
et al., 2012). Using our framework to simulate lesions of vH
or dH qualitatively replicated these effects of the physical brain
lesions. The agent with simulated vH lesion learned the taskmore
slowly than the unimpaired agent but eventually achieved the
same asymptotic level of performance. The agent with simulated
dH lesion had worse asymptotic performance (Figure 4). The
simulated dH lesion impaired the agent’s ability to zero-in on the
goal; it could use model-based planning at a high level to quickly
navigate to the general region of the platform, but once there
had to rely on random motion and a slow model-free learning
mechanism to reach the goal.

Efficient Spatial Navigation and Adaptation
We next investigated whether the spatial abstraction represented
in the hierarchy would facilitate adaptation to the sudden
addition of obstacles in the environment. To do so, we first
trained the hierarchial and conventional agents on an open arena
task (as in Figure 2) for 10 trials. After the tenth trial we added
boundaries to form one of five different mazes (Figure 5). We
computed the number of steps required to reach the goal and
the total number of times the agent’s model was accessed, a
measurements which represents the cumulative sum of mental
effort expended during learning. Most of the computational
work in model-based RL is in maintenance of the world
model: the model must be accessed during the decision making
process, and updated after each new experience. The number of
model accesses performed by our computational agent serves to
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FIGURE 4 | Effects of simulated vH or dH lesions, in terms of mean

number of steps needed for the unimpaired and impaired agents to

find the goal in the simple navigation task. The agent with simulated vH

lesion learns the task more slowly than the unimpaired agent, while the agent

with simulated dH lesion is impaired across all trials as compared to the other

two groups. Error bars show the 95% confidence interval.

represent the mental effort required by the analogous processes
in the brain.

The agents performed similarly during the first ten trials in the
open arena. The hierarchical approach required more cognitive
effort during these trials because of the overhead of maintaining
multiple models. However, the hierarchical framework greatly
outperformed the conventional algorithm when the agents were
forced to adapt to the maze boundaries. In every case, there
was a statistically significant (p < 0.01 by the Wilcoxon test)
difference in the number of steps needed to reach the goal after
the change of environment. The hierarchical approach adapted
more quickly and used far less computational resources than the
standard MBRL algorithm. This is because the boundaries affect
low-level navigation, but not the high-level assignment of value
to the region of the goal in the environment. At the highest level
of abstraction, the task does not change.

RL agents solve navigation tasks by learning a value
representation of the states, and ascending the resultant gradient
of values to its peak. This can be visualized by inverting the
gradient and imagining the agent has a bias to move “downhill”
(Figure 6A). The non-hierarchical approach is slow to adapt to
the added boundaries because the value gradient learned in the
open arena must be drastically altered to reflect the additional
maze boundaries, and a conventional MBRL algorithm requires
many steps and much computation to make this change. As a
result, regions are created where the previously learned action
values pin the agent against the new boundaries (Figure 6B), and
it becomes temporarily trapped. Further, the more an agent must
travel against the learned value gradient, the longer it takes to
adapt to the new boundaries. This is why the mazes in Figure 5

with long horizontal runs require the most steps and effort for
the conventional MBRL algorithm. In contrast, the hierarchical
approach relies primarily on action values at higher levels of
abstraction. The lower levels are used primarily for planning
rather than representing action values, so the value gradient

problem is avoided and the agent can adapt more readily to new
boundaries introduced in the previous solution path (Figure 6B).
We next demonstrate that the hierarchical framework can also
rapidly and efficiently cope with changes in goal location.

Adapting to Changing Goals through
Context Switching
The top-down propagation of goal information provides a
means of flexibly and efficiently attaining a learned goal when
obstacles are introduced. But if the goal itself changes—for
instance, if the agent is hungry rather than thirsty, or if the
task rules change dramatically—an entirely different model or
policy may be necessary. Animals can rapidly switch between
learned spatial tasks, and hippocampal damage impairs this
flexibility (McDonald et al., 2002). The implementation of MBRL
in our framework supports context-dependent policies. If the
environment changes or if the current world model no longer
adequately explains the agent’s experiences in the world, a new
context is automatically created (see Section “Methods”). In the
hippocampus, place cells undergo global remapping when an
environment is switched (Jezek et al., 2011). We propose here
that this supports learning of a new model of the world and new
policy that does not interfere with previous models. This allows
rapid context-driven shifts between world models and policies.

We tested our framework’s ability to cope with changing goals
through context switching by introducing a new task in which the
reward was placed randomly in each trial at one of four locations
in an environment measuring 7 by 7 states. We again tested
both the new framework and a conventional MBRL algorithm,
recording the number of steps needed to reach the goal in each
trial. Here the step count was capped at 500 steps.

The conventional MBRL algorithm could not solve this task
(Figure 7). A failure to acquire reward in a given location persists
in the agent’s model so that re-exploration of the site is inhibited.
In contrast, the new framework’s context-switching mechanism
allowed it to learn the various reward sites as separate contexts.
When the agent arrived at a previously-rewarding location and
found no reward, it switched to a context in which the reward is
expected elsewhere. Thus, it learned to systematically navigate to
each reward site until the goal was found.

Scaling to large Problems
Conventional methods of adapting to environmental change in
computational RL include periodically re-exploring previously
unrewarding actions (Sutton, 1990; Sutton and Barto, 1998) and
tracking, in which the agent weights recent experiences more
heavily than past ones (Sutton and Barto, 1998) and thus tracks
the changing solution to a task rather than converging on an
optimal solution.

Admittedly, these are much simpler methods of adaptation
than our hierarchical or context-switching schemes, and in many
cases would likely perform as well. However, the hierarchical
approach provides an important additional advantage: it can
solve large problems more easily than conventional MBRL when
the capacity for model updating is finite, because even a very
large navigation problem becomes relatively simple at a high
level of abstraction. Thus, the hierarchical system may scale to
large environments in which finite model updates and excessive
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FIGURE 5 | Comparison of a standard model-based reinforcement learning algorithm with the hierarchical approach in a spatial navigation and

adaptation task. (A–E) Results for five different adaptation tasks. Results are arranged as follows. Left: new maze boundaries that the agents were required to learn

after being trained in an open arena for 10 trials. Center: the mean number of steps needed to reach the goal in each trial—the first 10 trials correspond to the open

arena, the next 10 to the new maze. Right: the cumulative cognitive effort expended, measured by the mean cumulative sum of model access performed. Error bars

show the 2.5 and 97.5 percentile values.

discounting over large distances would prevent conventional
MBRL from learning useful action values.

This effect is illustrated in Table 1. The hierarchical approach
sometimes learns marginally sub-optimal solutions—a trade-
off that often accompanies the use of hierarchical abstraction
(Hengst, 2011). However the use of hierarchical abstraction
allows the agent to solve large navigation problems that the
conventional MBRL algorithm cannot. The number of model
access required by conventional MBRL appears to be polynomial
with respect to the number of states in the maze, while the
model accesses required by the hierarchical approach scale

linearly. The performance differences between the hierarchical
and conventional approaches are statistically significant (p< 0.01
by the Wilcoxon test) in all cases except the 4800-state maze,
where the conventional agent exhibited extremely inconsistent
performance.

DISCUSSION

Contributions of the Framework
Foraging and spatial navigation are centrally important for
mammalian survival and depend on the hippocampus (Hartley
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FIGURE 6 | Analysis of difference in agent flexibility. (A) Negative of the

value gradient learned by the conventional agent in the open arena. After

learning, the agent tends to follow this gradient toward the goal from any other

state. (B) The learned value gradient overlaid with the new maze boundaries,

and state occupancy density for trajectories taken by hierarchical and

non-hierarchical algorithms during their first four trials in this new environments.

Brighter red shading indicates states that were visited with higher relative

frequency. The non-hierarchical algorithm is prone to being trapped in areas

where the previously learned action values drive it into new boundaries.

et al., 2003). Our model extends previous RL models by
incorporating the spatial abstraction found in the mammalian
hippocampus, the concept of forward sweeping search for
route-finding, and the concept of context-driven remapping.
Where some literature focuses on strict biological accuracy, our
implementation of these abstract features has instead focused
on testing their computational properties in learning. However,
the computational properties explored here generalize to a more
biologically accurate setting.

The concepts of hierarchical reinforcement learning and
forward sweeping search have been explored individually in
existing literature. Hierarchical reinforcement learning has long
been a topic of active research, though most algorithmic
developments have focused on learning macro-actions, or

FIGURE 7 | Comparative performance on a task with probabilistic

reward locations. (A) The simulated environment. Agents began each trial at

the black circle. In each trial, a reward was placed randomly at one of the four

numbered locations. (B) The mean number of steps needed to reach the goal

in each trial. The conventional MBRL algorithm failed to learn the task and

often did not locate the reward within the maximum number of steps allowed

per trial (500). Error bars show the 2.5 and 97.5 percentile values. (C) Value

gradients in the four contexts learned by the hierarchical framework.

learning to solve complex problems by first solving simpler sub-
problems (Barto andMahadevan, 2003; Botvinick andWeinstein,
2014). Hinton and Dayan proposed hierarchical abstraction in
the state space (Dayan and Hinton, 1993), but their hierarchy
enforced strictly top-down control which makes adaptation
to change (as in Section “Efficient Spatial Navigation and
Adaptation”) impossible. The use of forward sweeps as part of
a process of planning to reach goals has also been investigated
(Chersi and Pezzulo, 2012; Erdem and Hasselmo, 2012; Penny
et al., 2013), as has the concept of hierarchical selection of
goals (Martinet et al., 2011; Cushman and Morris, 2015; Maisto
et al., 2015). Our framework provides a novel integration of
all these features, yielding a scalable, flexible, and applicable
learning framework. It explains animals’ ability to learn multiple
independent behaviors, adapt quickly to environmental changes,
and solve large problems with low cognitive effort. These features
of animal behavior cannot be explained or reproduced by
conventional MBRL algorithms.

Hierarchical Abstraction in Learning
Hierarchical abstraction can make a difficult learning task more
tractable. For example, learning to play chess would be extremely
difficult if the game were seen as a sequence of individual moves
and board positions. There are millions of possible positions after
just a few moves, and considering all possibilities is unrealistic.
Instead, competent players abstract the game in various ways,
considering high-level concepts like the “strength” of one’s
position. Action selection then becomes a planning process
constrained by the high-level goal. This interaction between high-
level abstraction and low-level planning provides a means of
solving complex problems. In fact, our framework’s ability to
adapt to environmental change (as illustrated in Section “Efficient
Spatial Navigation and Adaptation”) is actually a by-product
of its ability to solve (large) problems through hierarchical
abstraction and planning. This ability of our framework partially
explains the ability of animals to learn complex tasks, and
leads to the prediction that animals with ventral hippocampal
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TABLE 1 | Number of steps taken and total cumulative model accesses performed during 3 trials in a navigation task (Figure 2) that has been scaled-up in

size.

States in Maze Non-hierarchical Hierarchical

Steps Taken (×1000) Model Accesses (×1000) Steps Taken (×1000) Model Accesses (×1000)

768 2.99 [2.99–3] 112 [109–114] 1.91 [1.88–1.95] 124 [120–124]

1728 6.67 [6.61–6.81] 313 [274–339] 3.62 [3.23–3.88] 245 [233–261]

3072 11.75 [11.34–12.05] 673 [631–743] 6.9 [6.33–7.45] 510 [455–558]

4800 16.17 [12.18–18.16] 769 [271–1141] 9.74 [9.03–10.63] 758 [701–789]

6912 26.22 [25.54–27.23] 1683 [1310–2101] 13.43 [12.79–14.33] 1061 [1011–1123]

12,288 Failed 25.76 [24.17–27.44] 2185 [2069–2354]

19,200 Failed 36 [34.07–37.95] 3138 [2932–3366]

76,800 Failed 144.78 [136.45–152.32] 14,323 [13,475–15,488]

Mean and range across 8 repetitions are shown.

damage would be impaired in spatial learning tasks involving
very large distances.

Hierarchy and abstraction simplify learning at the expense
of the optimality of the learned behavior. The behavior is now
merely hierarchically optimal: it is optimal behavior for the
abstract task, but likely sub-optimal for the original task (Hengst,
2011). This trade-off is observed in Figure 5E and Table 1,
which show the hierarchical approach converging to slightly sub-
optimal solutions. Still, biological agents probably rely heavily
on this simplicity-optimality trade-off to make learning complex
real-world tasks tractable (Botvinick and Weinstein, 2014).
Indeed, rats have shown sub-optimal performance as compared
to RL algorithms in several tasks (Sul et al., 2011; Skelin et al.,
2014).

Our model predicts that higher levels of the hierarchy (vH)
are more sensitive to reward outcomes than low levels (dH).
Indeed, encoding of reward information in the dH is weak,
although some changes to the place fields themselves can occur
if reward is consistently associated with one location (Carr and
Frank, 2012). Little is known about reward encoding in the vH
itself, but a wealth of evidence indicates that its primary limbic
and cortical targets express robust reward encoding (Gruber
et al., 2010; Euston et al., 2012; Ito and Doya, 2015). Indeed,
prevailing theories posit that that neural mechanisms of RL
primarily involve other brain structures such as the striatum and
neocortex. The striatum and its cortical inputs may also have a
hierarchical organization in spatial and non-spatial dimensions
(Ito and Doya, 2011) such that the ventral striatum and its
inputs from vH and prefrontal cortex represent a high level of
abstraction, and the dorsolateral striatum and its inputs from
sensory and motor cortices represent low levels (Voorn et al.,
2004). Our model thus elegantly fits with proposals that the
limbic systems (including vH) are involved in reward processing
and goal-directed behavior, while sensorimotor systems are
much less sensitive to rewards and implement sensory-response
control (Gruber and McDonald, 2012). In this larger context
of brain structures, our hierarchical framework provides a
novel explanation for why damage to areas such as prefrontal
cortex and dorsomedial striatum (involved in higher-level RL
layers here) often only cause transient impairments in choice
that are noticeable when environmental contingencies change

(Robbins, 2007; Castañé et al., 2010). This is because low-level
control is sufficient to solve well-learned tasks, while upper
levels are engaged when unexpected state transitions occur. This
is also consistent with the gradual shift of behavioral control
from goal-directed to (lower-level) habitual control (Balleine
and O’Doherty, 2010). This has been proposed to be more
computationally efficient (Daw et al., 2005), which our data here
strongly suggest (Figure 5).

Hierarchical abstraction may be an important part of general
transfer learning: the ability demonstrated by animals (yet still
elusive in artificial intelligence) to apply knowledge learned in
one task to solve a different but similar task (Thrun and Pratt,
2012). Moreover, the various forms of hierarchical abstraction
may be interrelated as discussed above. One notable non-spatial
example comes from Botvinick and Weinstein (2014), who have
discussed hierarchical learning of actions, such as learning to
perform a complex motor sequence (like grasping an object)
as a single macro-action. The question of how an agent learns
useful macro-actions remains. Machine learning research has
proposed several answers (Stolle and Precup, 2002; Şmşek and
Barto, 2004; Taghizadeh and Beigy, 2013), and our hierarchical
planning process may hint at another: plans calculated to achieve
high-level goals may gradually become macro-actions which an
agent can later execute habitually.

Learning Context-Dependent Policies
Our implementation of multiple context-dependent policies
derives from data showing that the ventral hippocampus
facilitates learning different policies in different environmental
contexts. Specifically, if task demands on a spatial maze are
switched, learning the new policy is faster if the hippocampus is
intact and the learning takes place in a different room (McDonald
et al., 2002). When the intact animal is returned to the original
task, it selects between the two learned policies. Our framework
posits the explanation that, without the hippocampus-based
system for encoding distinct contexts and managing separate
models, rats with hippocampal lesions are unable to preserve the
first learned model for later retrieval.

Neural activity in the hippocampus responds to minor
environmental changes through modulating the activity of the
place cells while preserving the spatial encoding (rate remapping;
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Allen et al., 2012). On the other hand, different spatial contexts
are represented by a new set of place cell assignments (global
remapping), and the hippocampus can switch rapidly between
learned contexts based on cues (Jezek et al., 2011). This could be
an important component of contextual control of policies in the
brain, which is not present in our current framework. Moreover,
the expansion of modalities in the hierarchy beyond physical
space (Collin et al., 2015) could account for the critical role of
the hippocampus in forward thinking and creativity (Race et al.,
2011).

Interestingly, place cell remapping does not occur uniformly
along the septotemporal axis of the hippocampus. Changes
to the environment or to the task being performed in the
environment can induce remapping in the dorsal, but not ventral
place fields (Schmidt et al., 2012; Lee et al., 2015; Lu et al.,
2015). This contrasts with our context changing mechanism,
which always creates an entirely new model at every level. The
discrepancy suggests that the brain’s mechanism for learning in
multiple contexts is more efficient than the mechanism we have
implemented here, and is able to transfer some high-level abstract
information between contexts. This ability is probably possible
in part because spatial representations and value information are
stored separately in the hippocampus and striatum, rather than
combined as in our abstract framework.

We speculate that our framework could be enhanced by the
addition of function of other brain regions. In particular, the
prefrontal cortex is strongly implicated in contextual control of
behavior and cognitive flexibility (Buckner and Carroll, 2007;
Euston et al., 2012). It is very likely that cortex exerts control over
the policy, and may do so even if the spatial representation is not
globally remapped as we have implemented here.

Another avenue for future development may lie in the more
comprehensive and biologically accurate concept of reward being
pursued by Gutkin (Keramati and Gutkin, 2011, 2014). While

conventional reward-maximizing RL algorithms are based on
dopamine-driven learning mechanisms (Doya, 2007) Gutkin
proposes an analytical framework in which the objectives of
reward maximization and physiological homeostasis coincide,
providing a broader view of learning and adaptive behavior.
Integration of these ideas with our hierarchical abstraction
scheme seems logical and promising.

CONCLUSION

While there is much opportunity to expand the computational
framework, the present form proposes an interesting
relationship between hippocampal place cells and model-
based learning mechanisms. The hippocampus’ hierarchical
representation of space can support a computationally efficient
style of learning and adaptation that may not be possible
otherwise.
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