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Virus-specific CD4+T cells play a major role in viral infections, such as hepatitis C virus (HCV).
Viral clearance is associated with vigorous and multi-specific CD4+ T-cell responses, while
chronic infection has been shown to be associated with weak or absent T-cell responses.
Most of these studies have used functional assays to analyze virus-specific CD4+ T-cell
responses; however, these and other detection methods have various limitations. There-
fore, the important question of whether virus-specific CD4+ T cells are completely absent
or primarily impaired in specific effector functions during chronic infection, has yet to be
analyzed in detail. A novel assay, in which virus-specific CD4+ T-cell frequencies can be
determined by de novo CD154 (CD40 ligand) expression in response to viral antigens,
can help to overcome some of the limitations of functional assays and restrictions of
multimer-based methods. This and other current established methods for the detection
of HCV-specific CD4+ T cells will be discussed in this review.
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INTRODUCTION
Hepatitis C virus (HCV) infection is a serious healthcare prob-
lem chronically affecting 170–200 million people worldwide (1),
which is approximately 3% of the world’s population (2–4). Hepa-
totropic viruses, such as HCV, can lead to severe liver disease,
such as liver cirrhosis and hepatocellular carcinoma (HCC) (5,
6). HCV is responsible for about 3–4 million infections per year
and deaths of about 476,000 HCV-infected patients from HCV-
associated diseases and their complications (4). Only around 30%
of HCV-infected adults are able to clear the virus spontaneously
and are often asymptomatic. Innate and adaptive host immune
responses play an important role in eradication of the virus. No
protective vaccine is yet available against HCV infection (7).

T cells are highly specific immune cells involved in adap-
tive immune responses. Through their antigen-specific T-cell
receptor (TCR), T cells identify antigens specifically, as well as
efficiently; these expand into specific effector responses, with a
broad repertoire of functions, and eventually contract, forming
a memory response. As important effector cells in the defense
against pathogens such as HCV, T cells are likely the most highly
scrutinized cell type in the immune system.

The cellular components of the adaptive immune response,
i.e., CD4+ helper and CD8+ cytotoxic T-cell-mediated immune
responses, have been shown to play a central role in determining
the outcome of HCV infection (8). Spontaneous viral clearance
of HCV infection is characterized by early, strong, vigorous, poly-
clonal, and multi-specific T-cell responses during the acute phase
of infection (9, 10); whereas, chronic HCV infection is asso-
ciated with late, transient, weak, or narrowly focused specific
T-cell responses (11–13). These data, along with strong associ-
ations between HLA Class I and II genes in outcome (14–16),
point to the involvement of T cells in controlling the infection. In
addition, during persistence of HCV infection, typically only low

frequencies of HCV-specific T cells are reported in blood, although
with a potential higher frequency in the liver (17, 18), which is the
primary site of infection. However, these are functionally weak
T-cell responses leading to the development and maintenance of
chronic HCV infection (11, 19, 20).

However, the data on the function and specificity of T cells in
chronic HCV remain quite limited, partly due to methodologi-
cal constraints. Given their importance in defining both disease
outcome and potentially the progression of pathology, further
information about the frequencies, phenotypes, and functional
capacities of HCV-specific T-cell immune response would be of
value.

Traditionally, the main effector cells that eradicate HCV-
infected cells were considered to be the cytotoxic T lymphocytes
(CTLs) (21). In terms of CD4+ T helper cell responses, much
attention has been focused on type 1 or “Th1” CD4+ T cells,
since secretion of interferon-γ has been proposed to be linked
to control of hepatotropic viruses (22). CD4+ T cells are central
to the adaptive immune response to potentially act in different
ways to initiate and maintain adaptive immunity, such as provid-
ing help for CD8+ T cells by cytokine production and activation
of antigen-presenting cells (APCs) and many other mechanisms.
During HCV infection, CD4+ T-cell responses are observed to
be very different in chronic and resolved individuals; Why CD4+

T-cell responses may fail in acute infection leading to chronic infec-
tion is a critical and unanswered question in the field. Therefore,
it is important to develop specific and sensitive detection methods
for HCV-specific CD4+ T cells.

DIFFICULTIES IN ASSESSING HCV-SPECIFIC CD4+ T CELLS
The frequency of T cells specific for a single peptide–MHC lig-
and is very low in naive repertoires, (range 0.2–60 cells/106 naive
T cells) due to the high diversity of T cell repertoire, allowing a
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response to a different variety of antigens (23, 24). In the memory
repertoire and in the absence of acute infections, the frequency of
specific T cells in peripheral blood is typically well below 1% (23).
Therefore, the major issue for the detection and identification of
antigen-specific T cells is the detection of rare events. Specifically,
pathogen-specific CD4+ T cells are often circulating in low fre-
quencies in un-manipulated samples, i.e., less than 0.01–0.1%, and
such antigen-specific CD4+ T cells are 10- to 100-fold less frequent
than cytotoxic T cells (25). The frequency of pathogen-specific T
cells can vary widely depending on the nature of the pathogen, the
status of the immune response, and the persistence or clearance
of the pathogen. Interestingly, the functionally important T-cell
populations may occur at even lower frequencies, and such pop-
ulations may require additional enrichment for detection. This
includes the in vitro expansion of antigen-specific CD4+ T cells,
magnetic enrichment to collect infrequent target cells from large
cell samples, enrichment of cytokine-secreting cells, and tetramer
enrichment techniques. Therefore, highly specific labeling meth-
ods, which are capable of processing large cell samples to detect
rare specific T cells within the large numbers of non-specific cells
are necessary and several methods have been proposed to assess
HCV-specific CD4+ T cells.

METHODS AND THEIR LIMITATIONS
Several methods have been utilized to analyze HCV-specific T cells
and can be divided into two groups (Figure 1): (A) indirect assays;
(B) direct assays.

INDIRECT ASSAYS
These assays depend on the functional characteristics of antigen-
specific T cells after particular triggering of TCR, such as pro-
liferation capacity, cytokine secretion, etc. Lefkovits et al. first

described limiting dilution assay (26), by which the frequencies
of antigen-specific CD4+ T cells participating in an immune
response after particular stimulation were assessed (27) with esti-
mations ranging from 1 in 10,000 to 1 in 1,000,000 PBMC.
Traditionally, besides being extremely time consuming, it was tech-
nically difficult to identify rare cells of interest at frequencies below
10−3–10−4, thus making it hard to obtain reliable results. With the
emergence of the latest high speed techniques, such as analyzers
and sorters, these limitations could be overcome.

Proliferation assay
Thymidine incorporation assay is an assay that has been used
for decades to measure the low frequencies of antigen-specific
T cells on the basis of antigen-specific proliferation directly. In
this assay, a radioactive nucleoside, 3H-thymidine, is incorpo-
rated into new strands of chromosomal DNA during mitotic cell
division. It is measured by scintillation Beta counter in terms
of radioactivity in DNA recovered from the cells in order to
determine the extent of cell division due to the specific stim-
ulation. This method can massively alter the phenotypic and
functional properties of reactive cells and cell viability. How-
ever, the method has several limitations, including lower sensi-
tivity, background DNA synthesis in other cells, and bystander
cell activation. It was observed that PBMC proliferation cannot
be equated with CD4+ T-cell proliferation because B cells and
CD8+ T cells have also been shown to proliferate in response
to recombinant viral proteins and/or their breakdown prod-
ucts (28). In a chimpanzee model study, peripheral HCV-specific
CD4+ T-cell responses were observed in all HCV-infected animals
without any correlation to the outcome of infection and inde-
pendent of the kinetics, strength, specificity, or diversity of that
response. However, a strong correlation between the intrahepatic

FIGURE 1 | Different methods to analyze HCV-specific CD4+T cells.
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HCV-specific T-cell response and course of infection could be
found (29).

CFSE staining, a flow-cytometric approach, is used to directly
monitor the rate of lymphocyte proliferation, due to progressive
halving of CFSE fluorescence in cells following cell division (30)
(Figure 2). Technically, CFSE can be toxic to cells at high concen-
trations, and it is therefore necessary to determine the optimum
labeling conditions that give good fluorescence and preserve nor-
mal function. Furthermore, the analysis of dead cells by apoptosis
during the time of analysis is not possible with this method. There-
fore, the evaluation made with the technique, in which 3–5 days
in vitro culture period is necessary, is not a direct evaluation of T
cells dividing in response to specific antigen stimuli. In the case
of HCV infection, the proliferative capacity assessed by the dilu-
tion of CFSE was analyzed in our previous study, in which only a
minority of chronic HCV cases demonstrated HCV-specific pro-
liferation with highest frequency of 0.46% proliferating CD4+

T cells. In contrast, strong proliferative responses were found in
resolved HCV individuals (31). In conclusion, the lack of prolifer-
ative capacity of CD4+ T cells is linked to persistent HCV-infected
cases.

Although there are technical limitations for these assays,
HCV-specific CD4+ T cells are mostly non-proliferative in such
assay systems; thus, for studies of CD4+ T-cell responses during
chronicity, these approaches are very limited.

FIGURE 2 | CFSE proliferation assay. (A) Decreasing fluorescence by
equal distribution after each cell division. (B) Representative CFSE FACS
plots: CFSE-labeled PBMCs on day 6 following stimulation with SEB or
PHA, CMV, and HCV NS3–5 proteins are shown. Undivided CD4+ T cells are
detected in the upper right quadrants of each FACS plot, and the CFSE
signal is diluted with each cell division as the dye is distributed to the
daughter cells. Numbers in the upper left quadrants of each plot represent
the percentage of antigen-specific CD4+ T cells that have proliferated during
the 6-day culture. SEB, staphylococcal enterotoxin B; PHA,
Phytohemagglutinine; CMV, cytomegalovirus; CFSE, carboxyfluorescein
diacetate succinimidyl ester; NS3-5, pool of HCV non-structural proteins 3,
4 and 5.

Other functional assays
ELISpot is an established method for characterizing the T cell
response in which magnitude and quality of T-cell immunity is
measured at single cell resolution by detecting individual events
of antigen-specific T cells that engage in secretion of cytokines,
such as IFN-γ, IL-2, etc. (Figure 3). In the case of HCV infection,
previous studies revealed that HCV-specific CD4+ T cells were
often unable to produce cytokine after stimulation with HCV anti-
gen in chronic HCV patients, whereas, strong CD4+ T-cell IFN-γ
responses were observed in resolved HCV patients (19, 31–33).
Correspondingly, IL-2 secretion capacity was also similar to IFN-
γ secretion capacity in chronic HCV-infected cases (31, 32). In
contrast, in another study, cytokine secretion could be detected
in chronic HCV at least for core peptides; however, this was not
the case for the non-structural regions (19). Overall, due to relative
dysfunctionality of these cells in chronic HCV infection, especially
for those directed against non-structural proteins, this method
does not provide complete information about the actual frequency
of antigen-specific T cells.

In flow cytometry cytokine production assays, TCR-activated
T cells produce cytokines transiently. Different cytokines have
different kinetics in the response of specific antigen. Intracellu-
lar cytokine production can be detected using Brefeldin A and
Monensin, which interfere in protein-trafficking events. In addi-
tion, cytokines can be detected on the cell surface of the secreting
cells by retention of the secreted cytokine via a cell-surface affin-
ity matrix (34, 35). Therefore, methods based on the detection
of HCV antigen-reactive cytokine expression are independent of
proliferative capacity, MHC alleles, and peptides. However, HCV-
specific T cells that do not produce cytokines after activation (31)
or which produce alternative cytokines not in the assay proto-
col (e.g., type 2 or type 17) may be missed. Furthermore, use
of one defined cytokine for detection of CD4+ T cells may lead
to biased evaluation of the actual frequencies of HCV-specific
CD4+ T cells.

DIRECT METHODS
In these methods, detection depends on direct labeling of antigen-
specific T cells with fluorescent molecules, such as MHC Class II–
peptide multimers (tetramers/pentamers) or particular receptor
antibodies, and can be analyzed by flow cytometry.

With the traditional methods based on function, the detection
of the actual frequency and phenotype of reactive T cells, as well
as elimination of bystander proliferation, were difficult to avoid.
Therefore, to achieve accuracy, flow cytometry techniques have
advantages, and also provide an opportunity to examine multiple
parameters of single cells from large cell samples. Polychromatic
cytometry for identification of rare CD4+ T cells has the capacity
to gain maximum information, e.g., up to 20 parameters from a
single analysis. Limitation of flow-cytometric assays to detect rare
events can further be minimized by a pre-enrichment strategy with
magnetic cell separation, which collects the small number of rare
events from large cell numbers (34).

Labeling with peptide–MHC-multimers
Detection of antigen-specific CD4+ T cells is possible ex vivo,
based on direct labeling with specific peptide–MHC-multimers
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FIGURE 3 | Diagram of the technical procedure ofT-cell ELISpot and representative ELISpot wells for a negative control, NS3, CMV lysate, and SEB,
respectively. CMV, cytomegalovirus; SEB, staphylococcal enterotoxin B.

FIGURE 4 | (A) Outline of MHC-pentamer complex with HCV-specific peptide; (B) specific CD4+ T cells bind with HCV-specific pentamer complex. MHC, major
histocompatibility complex.

without restriction to certain functional parameters (Figure 4).
The low binding affinity of TCR to MHC–peptide monomers
(36) was overcome by multimerization of peptide–MHC com-
plexes (37). Initially, MHC class II multimers were diffi-
cult to construct due to the problems of yield, the variety
of MHC class structure, and peptide affinity; recently, how-
ever, different varieties of MHC II multimers for specific

recognition of CD4+ T cells have become commercially
available.

However, there are some limitations for the tetramer technol-
ogy, such as the knowledge of immunodominant epitopes and
exact characterization of the MHC alleles of the patients are
required. Hence, the detection of the entire repertoire of antigen-
specific CD4+ T cells appears difficult (25). Additionally, there still
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remain issues regarding frequencies, since when using non-specific
MHC II–peptide tetramers, background staining may approach
0.1% (38).

Labeling with activation markers
Prior specific stimulation with cognate antigen, i.e., single pep-
tides, proteins, or whole antigen lysates, is necessary for detection
of antigen-specific T cells on the basis of functional parameters. T-
cell antigen reactivity-based assays to enumerate antigen-specific T
cells have the advantage that they are independent of MHC alleles
and not restricted to single peptides.

Independent of functional parameters, such as cytokine secre-
tion or cytotoxicity, another approach for accessing the antigen-
specific T cells by flow cytometer is on the basis of activation
markers. The transient expression of activation markers on the
T-cell surface depends on antigen-specific activation by TCR
triggering. These activation markers may be constrained to a
differentiation state of the T cells (e.g., naïve, central, effector
memory) or T cell types. Several potential activation markers have
been proposed, such as CD69, CD25, CD71, HLA-DR, CD134
(OX40), CRTAM, CD137 (4-1BB), and CD154 (CD40-L) (23).
However, some limitations for many of these markers restrict pre-
cise enumeration due to sensitivity to bystander activation (CD69,
CD25), constitutive expression on specialized T cell subsets (CD69,
CD25, CRTAM), or late up-regulation after stimulation (HLA-DR,
CD134, CD71) (23).

CD69. The extensively used activation marker, CD69 is expressed
on activated CD4+ and CD8+ T cells, B cells, or NK cells. Never-
theless, non-stimulated T cells restrict the accurate enumeration
of antigen-specific T cells (39). There is evidence that CD69
expression is not exclusively dependent on TCR activation (40).

CD137. Expression of CD137 (4-1BB), a member of the TNFR
superfamily, is observed on CD4+ and CD8+ T cells after specific
stimulation (41–43) and even on CD4+ Foxp+ regulatory T cells
(44). Hence, CD137 expression-based assay can be used to detect
antigen-specific CD4+ T cells after TCR activation with specific
stimulation.

OX40. Similarly, recently a novel assay system has been developed
and validated for the detection of HCV-specific CD4+T cells. The
assay system is based on ex vivo stimulation with HCV antigens,
and HCV-specific CD4+ T cells can be detected with flow cytom-
etry after staining with CD25 (IL-2R α) and CD134 (OX40) (45).
TCR triggering stimulates up-regulation of CD25 and CD134 over
24–48 h, with the optimal readout determined to be 44 h (46). It
is a highly sensitive method, which correlates with CFSE-based
LPA, and successfully detects HCV-specific CD4+ T-cell responses
in resolved and chronic HCV-infected patients (45), as well as
HIV-infected individuals (47).

CD154 (CD40-L) ASSAY
This recently established method analyzing expression of CD154 is
highly sensitive and specific for the overall assessment of antigen-
specific CD4+ T cells. It avoids many of the limitations described
above for the virus-specific CD4+ T cell detection. Hence, a virus-
specific CD4+ T cell response can be detected not only through

an antiviral function of CD4+ T cells, but also staining of PBMCs
with surface marker CD154 (CD40-L) (31) or intracellular CD154
expression after stimulation with cognate antigen (48).

CD154, a type II member protein of 33 kDa, which belongs to
the family of tumor necrosis factors (TNF),also called CD40 ligand
(CD40-L), is a cell-surface molecule present primarily on activated
T cells. Engagement of its receptor, CD40, on APCs results in prim-
ing and expansion of antigen-specific CD4+ T cells, induction of
co-stimulatory molecules on APCs, and the release of cytokines
(49) (Figure 5). This molecule plays a key role in the activa-
tion of antigen-specific CD4+ T cells; this is evident by treatment
of blocking antibodies against CD154, leading to an activation
inhibition of antigen-specific CD4+ T cells (50) (Figure 5).

In addition to the detection of live antigen-specific CD4+ T
cells, it is independent of other effector functions, such as prolifer-
ation or cytokine production, and independent of MHC haplotype
or immunodominant epitopes. The method allows the analysis of
co-expression of CD154 and effector cytokine production, such
as IFN-γ or IL-2 and/or the phenotypes of the T cells with other
surface markers. The detection of CD154 expression for assessing
viral-specific CD4+ T cells is therefore a method which permits
a quantitative and qualitative ex vivo and in vitro evaluation
of antigen-specific CD4+ T cells. The CD154 expression-based

FIGURE 5 |The role of CD154 in the activation of CD4+ T cells.
(A) Activation of naive CD4+ T cells requires two signals: (1) binding of the
TCR (T cell receptor) to the antigen-loaded MHC II complex on the
antigen-presenting cell (APC). (2) Interaction of the co-stimulatory
molecules CD28 and CD80. (B) Activated antigen-specific CD4+ T cells
express CD154, which binds to the CD40 molecule on the surface of the
antigen-presenting cell. Simultaneously, the further differentiation of the
antigen-presenting cell is initiated via CD40/CD154-signaling, in which more
co-stimulatory molecules are expressed (not shown). (C) The fully activated
antigen-presenting cell now increasingly secretes IL-12. Proliferation,
maturation, and differentiation of CD4+ T cells into Th1 lymphocytes with
secretion of IFN-γ and IL-2 can be induced.

www.frontiersin.org February 2015 | Volume 6 | Article 57 | 5

http://www.frontiersin.org
http://www.frontiersin.org/T_Cell_Biology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Lokhande et al. Analysis of HCV-specific CD4+ T cells

method for the analysis of antigen-specific CD4+ T cells allows
the identification of activated T cells even when their capacity to
secrete cytokines is inadequate, such as in chronic HCV-infected
individuals. The method is suitable for whole blood analysis (51).

In chronic HCV infection, one of the main reasons for the
difficulty in assessing antigen-specific CD4+ T cells is their low
frequency. Day et al. used MHC tetramer to detect antigen-specific
CD4+ T cells and estimated about 1:1200–1: 111,000 frequencies
of those cells (52). Interestingly, Möller et al. detected an average
of 100,000–150,000 CD4+ T cells in analysis in the method based
on CD154 expression (53). They used threshold in analysis around
0.01%; therefore, only T-cell populations with a frequency above
1:10,000 could be detected.

LESSONS FROM STUDYING CD154 EXPRESSION IN HCV
INFECTION
In recent studies, CD154 expression was examined on CD4+ T
cells after stimulation with HCV-cognate antigen in peripheral
blood from HCV chronic infected patients and in spontaneous

viral resolved (SVR) HCV patients (31) (Figure 6). The results
of these studies demonstrated that HCV-specific CD4+ T cells
were present not only in spontaneous resolved HCV, but also in
chronically infected HCV individuals. Similar findings by Bes et al.
proved that HCV-specific CD4+ T cells, although dysfunctional,
are present in the peripheral blood in most patients with chronic
HCV infection and can be easily detected, irrespective of their
functional profile, by transient antigen-specific up-regulation of
CD154 (54).

Indeed, in our previous findings, detection of CD154 expres-
sion could be found in chronic HCV-infected patients, with fre-
quencies of HCV-specific CD4+ T cells almost comparable with
spontaneous viral clearance. However, when these frequencies
were assessed for functional capacity, IFN-γ and IL-2 secretion,
as well as proliferation, were significantly lower in chronic HCV
infection when compared with the spontaneous HCV-resolved
individuals, suggesting that HCV-specific CD4+ T cell responses
are present in chronic HCV, although in a dysfunctional state (31).
Several studies utilizing MHC class II tetramers have supported

FIGURE 6 | (A) Ex vivo analysis of antigen-specific CD154 expression
without enrichment. Analysis of antigen-specific CD154+ CD4+T cells
from two representative individuals with spontaneously resolved
infection and chronic HCV infection, respectively. SEB, staphylococcal

enterotoxin B. (B) Ex vivo analysis of antigen-specific CD154
expression pre- and post-enrichment using the magnetic bead
enrichment assay. TT, tetanus toxoid; NS3-5, pool of HCV non-structural
proteins 3, 4 and 5.
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the conclusion that CD4+ T-cell responses in the majority of
chronically infected HCV patients are absent (52). However,
CD154 expression-based analysis of HCV-specific CD4+ T cells
indicates that the HCV-specific CD4+ T cells are present in the
peripheral blood and even liver, but they are dysfunctional. Sev-
eral studies suggested that HCV-specific CD4+ T cells might
be sequestered at the site of viral replication and inflammation
(31, 55–58), and the CD154 up-regulation studies found higher
antigen-specific CD4+ T-cell frequencies in the liver than the
blood in HCV-infected patients. Overall, these studies indicated
that the virus-specific CD4+ T cells are present and even enriched
at the site of disease, and that the virus can persist despite the
presence of these virus-specific T cells.

One advantage of the CD154 method for the assessment of
viral-specific CD4+ T cells is that responses can not only be
detected using whole protein as antigen, but also using peptides,
allowing fine mapping of epitopes (31). Thus, overall this is a sim-
ple method for reliably characterizing the targeted peptides after
stimulation with corresponding antigens.

SUMMARY
In summary, antigen-specific CD4+ T-cell responses can be readily
analyzed by detection of CD154 expression in HCV infection. This
method is simple, reliable, and independent of both HLA type,
knowledge of the epitopes, and effector functions, such as cytokine
production or proliferation capacity of CD4+ T cells. Studies using
CD154 expression-based methods for analysis of HCV-specific
CD4+ T cells suggest that CD4+ T cells are not fully exhausted or
deleted during chronic HCV infection, but some remain detectable
and can trigger through their TCR. However, these cells typically
lack proliferative capacity and cytokine secretion capacities, such
as for IFN-γ and IL-2.

It will be of interest in the future to explore the mechanisms
that lead to the dysfunction of virus-specific CD4+ T cells. The
method to detect these “dysfunctional” antigen-specific CD4+ T
cells in blood and at the site of infection, provides a new oppor-
tunity to pursue this important question experimentally and to
understand the overall mechanisms that lead to chronic HCV
infection. Defining the exact state of differentiation of CD154+

CD4+ T cells, the differences between chronically infected patients
and patients with spontaneous viral clearance, and the impact of
direct acting antivirals (DAA) therapy are all relevant questions
for future study.
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