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Ten mammalian diacylglycerol kinase (DGK) isozymes (α–κ) have been identified to

date. Our previous review noted that several DGK isozymes can serve as potential

drug targets for cancer, epilepsy, autoimmunity, cardiac hypertrophy, hypertension and

type II diabetes (Sakane et al., 2008). Since then, recent genome-wide association

studies have implied several new possible relationships between DGK isozymes and

diseases. For example, DGKθ and DGKκ have been suggested to be associated with

susceptibility to Parkinson’s disease and hypospadias, respectively. In addition, the

DGKη gene has been repeatedly identified as a bipolar disorder (BPD) susceptibility gene.

Intriguingly, we found that DGKη-knockout mice showed lithium (BPD remedy)-sensitive

mania-like behaviors, suggesting that DGKη is one of key enzymes of the etiology of BPD.

Because DGKs are potential drug targets for a wide variety of diseases, the development

of DGK isozyme-specific inhibitors/activators has been eagerly awaited. Recently, we

have identified DGKα-selective inhibitors. Because DGKα has both pro-tumoral and

anti-immunogenic properties, the DGKα-selective inhibitors would simultaneously have

anti-tumoral and pro-immunogenic (anti-tumor immunogenic) effects. Although the ten

DGK isozymes are highly similar to each other, our current results have encouraged us to

identify and develop specific inhibitors/activators against every DGK isozyme that can be

effective regulators and drugs against a wide variety of physiological events and diseases.

Keywords: diacylglycerol kinase, bipolar disorder, hypospadias, Parkinson’s disease, inhibitor, cancer, anti-tumor

immunity

INTRODUCTION

Mammalian diacylglycerol kinase (DGK) represents a large enzyme family (Goto et al., 2006;
Sakane et al., 2007; Mérida et al., 2008; Topham and Epand, 2009). To date, ten mammalian
DGK isozymes, α (Sakane et al., 1990; Schaap et al., 1990), β (Goto and Kondo, 1993), γ

(Goto et al., 1994; Kai et al., 1994), δ (Sakane et al., 1996), ε (Tang et al., 1996), ζ (Bunting
et al., 1996; Goto and Kondo, 1996), η (Klauck et al., 1996), θ (Houssa et al., 1997), ι (Ding
et al., 1998), and κ (Imai et al., 2005), have been identified. Moreover, several alternative
splicing products—such as δ1 and δ2 (Sakane et al., 2002); η1–η3 (Murakami et al., 2003;
Shionoya et al., 2015); ζ1 and ζ2 (Ding et al., 1997), and ι1–ι3 (Ito et al., 2004)—have also
been found. These isozymes contain two or three characteristic protein kinase C (PKC)-like
C1 domains (cysteine-rich, zinc finger structures) and the catalytic region in common and are
subdivided into five groups, type I (α, β and γ), II (δ, η and κ), III (ε), IV (ζ and ι), and
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V (θ), according to their structural features (Goto et al., 2006;
Sakane et al., 2007; Mérida et al., 2008; Topham and Epand,
2009). Each group is characterized by the subtype-specific
functional domains, such as EF-hand motifs (type I), pleckstrin
homology and sterile α motif domains (type II), ankyrin repeats
(type IV), and ras-associating and pleckstrin homology domains
(type V).

Our previous review (Sakane et al., 2008) showed that
many interesting studies on DGK have brought DGK to
the center stage of diverse biological events such as growth
factor/cytokine-dependent cell proliferation and motility, seizure
activity, immune responses, cardiovascular responses, and
glucose metabolism. Therefore, from a medical point of view,
DGK isoforms are implicated in the pathogenesis of a wide
variety of diseases, for example, cancer, epilepsy, autoimmunity,
cardiac hypertrophy, hypertension, and type II diabetes. Thus,
DGKs have emerged as potential and attractive drug targets for
curing these diseases.

Recent advances in genotyping technology have allowed for
rapid genome-wide screening of common variants in large
populations, launching a new era in the investigation of the
genetic basis of complex diseases. DGK is no exception. Since
our review was published (Sakane et al., 2008), additional
interesting reports using genome-wide association studies
(GWASs) have successively implied several new possible
relationships between DGK isozymes and diseases. For example,
DGKη (Baum et al., 2008; Ollila et al., 2009; Squassina
et al., 2009; Weber et al., 2011; Zeng et al., 2011), DGKκ

(van der Zanden et al., 2011; Carmichael et al., 2013), and
DGKθ (Pankratz et al., 2009; Simón-Sánchez et al., 2011)
have been suggested to be associated with susceptibility to
bipolar disorder (BPD), hypospadias, and Parkinson’s disease,
respectively.

Among these isozymes, based on the results obtained for
the GWASs of DGKH (DGKη gene), we recently investigated
the relationship between DGKη and BPD. For this purpose,
we generated DGKη-knockout (KO) mice and used these mice
to perform behavioral and pharmacological tests. Intriguingly,
we found that DGKη-knockout mice showed lithium (BPD
remedy)-sensitive mania-like behaviors, suggesting that DGKη is
one of key enzymes of the pathogenesis of BPD (Isozaki et al.,
2016).

As mentioned in our previous review (Sakane et al., 2008),
the development of DGK isozyme-specific inhibitors/activators
is important both for fundamental research and for developing
therapeutic strategies to treat a wide variety of pathological
disorders. However, there was no available DGK isozyme-
specific inhibitor/activator until recently. We have recently
identified DGKα-selective inhibitors using a newly established
high-throughput screening method (Sato et al., 2013). Because
DGKα has both pro-tumoral and anti-immunogenic properties,
the DGKα-selective inhibitors would simultaneously have anti-
tumoral and pro-immunogenic (anti-tumor immunogenic)
effects.

This mini review will focus primarily on the two
abovementioned topics, recent GWASs and the development of
DGK isozyme-specific inhibitors.

GWAS—NEW POSSIBLE RELATIONSHIPS
BETWEEN DGK ISOZYMES AND DISEASES

DGKη
BPD is a highly heritable neuropsychiatric illness characterized
by recurrent episodes of depression andmania or hypomania and
affects up to 4% of the adult population worldwide (Bauer and
Pfennig, 2005; Merikangas et al., 2007). Approximately 20% of
the patients die of suicide (Kilbane et al., 2009). Recent GWASs of
BPD have proposed novel genetic candidates, including DGKH,
which encodes DGKη. Baum et al. for the first time, reported
a strong association between BPD and three SNPs (rs9315885,
rs1012053, and rs1170191) located in the first intron ofDGKH by
a GWAS in two independent samples of European origin (Baum
et al., 2008; Table 1). Next, SNP rs9315885 was demonstrated to
be associated with BPD in a Finnish family cohort (Ollila et al.,
2009). In addition, six SNPs in DGKH including rs1170191 were
associated with BPD in a German sample as well (Weber et al.,
2011). Moreover, an association of DGKH with BPD has also
been found in Sardinian (Squassina et al., 2009) and Chinese
(Zeng et al., 2011) samples at the haplotype level. In addition,
another study showed that BPD samples displayed significantly
increased DGKH gene expression levels (25% higher than in
controls; Moya et al., 2010). These data imply that mutations of
theDGKH gene are involved in BPD.However, other studies have
not confirmed this association (Sklar et al., 2008; Tesli et al., 2009;
Yosifova et al., 2009). Moreover, GWAS itself does not directly
indicate a relationship between SNPs and diseases. Therefore,
it has been difficult to definitively conclude whether DGKH is
related to BPD.

All of the SNPs in DGKH that are implicated in the etiology
of BPD by GWASs are located in introns and 3′-flank region
(Table 1). For example, the SNPs rs9315885 and rs1170191,
which are identified inmultiple independent reports (Baum et al.,
2008; Ollila et al., 2009; Weber et al., 2011), are located in the
first intron of DGKH. Therefore, it is likely that the SNPs lead to
dysregulation of the expression and generation of splice variants
of DGKη, which probably cause BPD.

DGKη is known to be most abundantly expressed in the
brain (Klauck et al., 1996; Usuki et al., 2015). Interestingly, the
expression of DGKη increased between 1 and 4 weeks after birth,
which coincides with synapse formation in the brain (Usuki et al.,
2015). Moreover, a substantial amount of DGKη was detected
in layers II–VI of the cerebral cortex; in the CA1, CA2, and
dentate gyrus regions of the hippocampus; in the mitral cell and
glomerular layer of the olfactory bulb; and in the Purkinje cells in
the cerebellum of one—to 32-week-old mice (Usuki et al., 2015).

To test the association between DGKη and BPD, DGKη-KO
mice are required. However, the generation of DGKη-KO mice
has not been accomplished until recently. In our recent study,
we succeeded in generating DGKη-KO mice, and performed
a comprehensive behavioral analysis of the mice (Isozaki
et al., 2016) to investigate the role of DGKη in higher brain
functions and the relationship between this isozyme and BPD.
DGKη-KO mice exhibited increased open field activity (the
frequency of behavioral switching hyperactivity), increased open
field center time/frequency (antianxiety), increased open arm
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TABLE 1 | Summary of disease-associated SNPs of DGKη, κ , θ , γ , δ, and ι.

SNP name Allele Location Gene Disease/medical condition References

rs9315885 T 13q14.11 DGKη (Intron 1) BPD Baum et al., 2008; Ollila

et al., 2009

rs1012053 A 13q14.11 DGKη (Intron 1) BPD Baum et al., 2008

rs1170191 C/A 13q14.11 DGKη (Intron 1) BPD Baum et al., 2008

UPD Weber et al., 2011

rs1170169 G 13q14.11 DGKη (Intron 1) BPD Weber et al., 2011

UPD Weber et al., 2011

ADHD Weber et al., 2011

rs2148004 G 13q14.11 DGKη (Intron 1) UPD Weber et al., 2011

rs994856 G 13q14.11 DGKη (Intron 3) BPD Weber et al., 2011

UPD Weber et al., 2011

ADHD Weber et al., 2011

rs9525580 A 13q14.11 DGKη (Intron 3) BPD Weber et al., 2011

UPD Weber et al., 2011

ADHD Weber et al., 2011

rs9525584 C 13q14.11 DGKη (Intron 7) BPD Weber et al., 2011

UPD Weber et al., 2011

rs1170101 G 13q14.11 DGKη (Intron 20) BPD Weber et al., 2011

UPD Weber et al., 2011

rs347405 C 13q14.11 DGKη (Intron 26) ADHD Weber et al., 2011

rs2122246 G 13q14.11 DGKη (Intron 14) BPD Zeng et al., 2011

rs1170099 A 13q14.11 DGKη (Intron 20) SCZ Zeng et al., 2011

rs1934179 A/G Xp11.22 DGKκ (Intron 1) Hypospadias van der Zanden et al., 2011;

Carmichael et al., 2013

rs7063116 A Xp11.22 DGKκ (5′ upstream) Hypospadias van der Zanden et al., 2011;

Carmichael et al., 2013

rs5961179 G Xp11.22 DGKκ (Exon 15, synonymous codon) Hypospadias Carmichael et al., 2013

rs7882950 T Xp11.22 DGKκ (Intron 14) Hypospadias Carmichael et al., 2013

rs12556919 T Xp11.22 DGKκ (Intron 13) Hypospadias Carmichael et al., 2013

rs17003341 T Xp11.22 DGKκ (Intron 10) Hypospadias Carmichael et al., 2013

rs1934190 G Xp11.22 DGKκ (Intron 8) Hypospadias Carmichael et al., 2013

rs4143304 T Xp11.22 DGKκ (Exon 6, synonymous codon) Hypospadias Carmichael et al., 2013

rs1934188 T Xp11.22 DGKκ (Intron 4) Hypospadias Carmichael et al., 2013

rs17328236 G Xp11.22 DGKκ (Intron 1) Hypospadias Carmichael et al., 2013

rs9969978 C Xp11.22 DGKκ (Intron 1) Hypospadias Carmichael et al., 2013

rs1934183 T Xp11.22 DGKκ (Intron 1) Hypospadias Carmichael et al., 2013

rs6614511 T Xp11.22 DGKκ (Intron 1) Hypospadias Carmichael et al., 2013

rs5961183 C Xp11.22 DGKκ (Intron 1) Hypospadias Carmichael et al., 2013

rs7876567 T Xp11.22 DGKκ (Intron 1) Hypospadias Carmichael et al., 2013

rs1564282 T/A 4p16.3 DGKθ (3′ downstream) Parkinson’s disease Pankratz et al., 2009

rs11248060 T/A 4p16.3 DGKθ (Intron 2) Parkinson’s disease Pankratz et al., 2009

rs7647305 C 3q27.2 DGKγ (3′ downstream) BMI Melén et al., 2010

rs6798931 G/C 3q27.2 DGKγ (Intron 19) BMI Melén et al., 2010

rs11706414 T/A 3q27.2 DGKγ (3′ downstream) Asthma Melén et al., 2010

rs888383 C/G 3q27.2 DGKγ (Intron 19) Asthma Melén et al., 2010

rs1550532 C 2q37.1 DGKδ (Intron 1) Bone density O’Seaghdha et al., 2013

rs161339 G 7q32.3 DGKι (3′ downstream) Obesity/BMI Laramie et al., 2009

BPD, bipolar disorder; UPD, unipolar depression; ADHD, attention deficit hyperactivity disorder; SCZ, schizophrenia; BMI, body mass index.

time/frequency in elevated plusmaze (antianxiety), and increased
antidepressant-like behavior (Isozaki et al., 2016). Moreover,
these phenotypes were sensitive to a BPD remedy, lithium. The

behavioral profile (hyperactivity, lower anxiety, lower depressive
states, and cognitive impairment) of DGKη-KO mice is similar
in behavioral dimensions to BPD patients in the manic state
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(Martinowich et al., 2009), including the disappearance of the
phenotypes upon lithium treatment. These lithium-sensitive
phenotypes have been commonly observed in representative BPD
model mice, such as neurocan-KO (Miró et al., 2012), clock-KO
(Roybal et al., 2007), glutamate receptor 6-KO (Shaltiel et al.,
2008), DGKβ-KO (Kakefuda et al., 2010; Shirai et al., 2010),
and glycogen synthase kinase 3β-transgenic (Spittaels et al.,
2000; Prickaerts et al., 2006) mice. Therefore, these findings
strongly suggest that DGKη is one of the key enzymes related
to BPD pathogenesis and support the GWAS results. The lack
of availability of suitable animal models of mania has been one
of the greatest impediments in the field. Our results indicate
that the DGKη-KO mice would represent a bona fide model of
human BPD with mania. Therefore, it is likely that these mice
are particularly useful for studying the pathophysiology of mania.
Moreover, DGKη-specific inhibitors can be good remedies for
BPD patients in the depressive state.

DGKη has also been found to be associated with attention
deficit hyperactivity disorder (ADHD) by GWAS (Weber et al.,
2011). Moreover, mania-like behaviors are similar to ADHD
symptoms. Therefore, DGKη-KO mice could also represent a
model for ADHD, and there may be a possible link between
DGKη and ADHD in addition to BPD (Table 1). GWASs have
also implied that DGKη is associated with unipolar depression
(Weber et al., 2011), and schizophrenia (Zeng et al., 2011).
It is also interesting to investigate the relationship between
DGKη and unipolar depression/schizophrenia. DGKη may
commonly play pivotal roles in the pathology of these four
psychoses.

DGKη-KO mice showed impairment in glycogen synthase
kinase 3β signaling (Isozaki et al., 2016), which is closely related
to BPD (Spittaels et al., 2000; Prickaerts et al., 2006). However,
it is still unclear how DGKη is involved in the etiology of
BPD. Phosphatidylinositol turnover has been hypothesized to
play an important role in the mechanism of action of lithium
(Martinowich et al., 2009). DGK is one of the components of
phosphatidylinositol turnover (Goto et al., 2006; Sakane et al.,
2007; Mérida et al., 2008; Topham and Epand, 2009). Moreover,
we recently found that the pleckstrin homology domain of
DGKη is selectively and strongly bound to phosphatidylinositol
4,5-bisphosphate, a product of phosphatidylinositol turnover
(Kume et al., 2016). We also revealed that DGKη is a unique
enzyme with high affinity for DG (Komenoi et al., 2015).
In addition, DGKη is a positive regulator of the epidermal
growth factor receptor/Raf/MEK/ERK pathway (Yasuda et al.,
2009), which drives phosphatidylinositol turnover and is
related to BPD (Sklar et al., 2008). It will be interesting to
determine what role DGKη plays in the phosphatidylinositol
turnover-related, lithium-sensitive molecular mechanisms of
BPD pathogenesis.

DGKκ
Hypospadias is a common congenital hypoplasia of the penis,
affecting ∼1 in 750 births in Europe. It is believed that
hypospadias is caused by sex hormonal disturbances. In fact,
genetic polymorphisms in endocrine-related genes such as
estrogen receptors have been associated with hypospadias

(Ban et al., 2008). To further identify the genetic variants in
hypospadias, van der Zanden et al. performed the first GWAS
using European samples of anterior or middle hypospadias
patients and found that two SNPs, rs1934179 and rs7063116, in
DGKκ , which mapped to Xp11.22 and encodes DGKκ, exhibited
a significant association (van der Zanden et al., 2011; Table 1).
The authors also found SNPs in DGKκ in additional Dutch
and Swedish cohorts of anterior or middle hypospadias cases.
Carmichael et al. confirmed that DGKκ variants are associated
with hypospadias in a more racially/ethnically diverse study
population of California births (Carmichael et al., 2013). In
addition to rs1934179 and rs7063116, several other SNPs in
DGKκ are associated with the disease. DGKκ mRNA is most
abundant in the testis and placenta (Imai et al., 2005), and
the study of van der Zanden et al. showed that expression of
DGKκ was lower in preputial tissues in carriers of the risk allele
rs1934179 (van der Zanden et al., 2011). These results indicate
that DGKκ is a major risk gene for hypospadias.

DGKθ
Parkinson’s disease (PD) is a second most common chronic
neurodegenerative disease with a cumulative prevalence of
greater than one per thousand people (Kuopio et al., 1999).
Mutations in five genes have been identified to influence PD risk
in fewer than 5% of those with PD (Pankratz and Foroud, 2007).
Three genes, PARK2 (parkin), PARK7 (DJ1), and PINK1, are
typically transmitted with autosomal recessive inheritance and
two, SNCA and LRRK2, are inherited in an autosomal dominant
fashion. Mutations in all but LRRK2 are typically found in early
onset PD.

In addition to those five genes, two SNPs, rs1564282 and
rs11248060, in the GAK (cyclin G associated kinase, a cell cycle
regulator)/DGKQ (DGKθ) region were repeatedly reported to be
associated with PD by Pankratz et al. (2009), and Simón-Sánchez
et al. (2011) (Table 1). DGKθ is abundantly expressed in the brain
(Houssa et al., 1997). Thus, these data suggest the identification
of new susceptibility alleles for PD in the GAK/DGKQ region.

Other DGK Isozymes
genome-wide association studies have suggested that several
other DGK isozymes are associated with diseases and medical
conditions as follows: DGKγ: asthma (rs11706414, s888383) and
obesity (rs7647305, rs6798931) in children (Melén et al., 2010);
DGKδ (rs1550532): bone mineral density (O’Seaghdha et al.,
2013); and DGKι (rs161339): obesity/body mass index (Laramie
et al., 2009; Table 1).

SPECIFIC INHIBITORS FOR DGK
ISOZYMES

DGKα (Sakane et al., 1990; Schaap et al., 1990) is highly
expressed in hepatocellular carcinoma and melanoma cells
(Yanagisawa et al., 2007; Takeishi et al., 2012). DGKα expression
is involved in hepatocellular carcinoma progression and is a
positive regulator of the proliferative activity of hepatocellular
carcinoma through the Ras/Raf/MEK/ERK pathway (Takeishi
et al., 2012). In melanoma cells, DGKα positively regulates
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tumor necrosis factor-α-dependent nuclear factor-κB (p65)
activation via the PKC ζ-mediated Ser311 phosphorylation of
p65 (Kai et al., 2009). The growth of colon and breast cancer
cell lines was significantly inhibited by DGKα-siRNA and
R59949 (Torres-Ayuso et al., 2014). The DGKα/atypical PKC/β1
integrin signaling pathway is essential for matrix invasion
of breast carcinoma cells (Rainero et al., 2014). Therefore,
the suppression of DGKα activity is expected to inhibit the
progression of these cancers. On the other hand, DGKα is
abundantly expressed in T lymphocytes, where it facilitates the
non-responsive state known as anergy (Olenchock et al., 2006;
Zha et al., 2006). Anergy induction in T cells represents the
main mechanism by which advanced tumors avoid immune
action. Therefore, if a DGKα-selective inhibitor is identified and
developed, it would reversely attenuate cancer cell proliferation
and simultaneously activate T cell function and can be a dual
effective compound.

We started the “Dual effective DGKα-selective inhibitor
project” in 2009. To develop highly effective and DGKα-
selective inhibitors, a system for high-throughput screening is
required; however, the conventional DGK assay is quite laborious
and requires technical skill. For example, the conventional
assay requires the use of a radioisotope ([γ-32P]ATP) and
the manipulation of thin-layer chromatography with multiple
extraction steps. We recently established a simple DGK assay
(Sato et al., 2013) that is useful for constructing a high-
throughput screening system for detecting DGK inhibitors from
chemical compound libraries.

We screened a library containing core 9600 compounds
(Drug Discovery Initiative, The University of Tokyo) using a
high-throughput chemiluminescence-based assay. We obtained
several compounds that inhibited the α-isozyme of DGK. Among
the compounds, CU-3, 5-[(2E)-3-(2-furyl)prop-2-enylidene]-
3-[(phenylsulfonyl)amino]-2-thioxo-1,3-thiazolidin-4-one was
identified as a potent and selective inhibitor against the DGKα

(Liu et al., 2016). Compared with commercially available DGK
inhibitors, such as R59022 and R59949 (Sato et al., 2013), CU-3
exhibited higher efficiency and selectivity against DGKα. The
IC50 value of CU-3 (0.6µM) was markedly lower than the values
of R59022 and R59949 (∼25 and 18µM, respectively; Sato
et al., 2013). R59022 and R59949 only semi-selectively inhibited
type I, III and V DGKs α, ε, and θ, and type I and II DGKs α,
γ, δ, and κ, respectively (Sato et al., 2013). However, the IC50

value of CU-3 for DGKα was at least ∼12 times lower than the
values for other DGK isozymes. Therefore, this study is the first
report of a highly α-isozyme selective inhibitor. The target of
CU-3 is the catalytic domain of DGKα, and CU-3 competitively
reduced the affinity of DGKα for ATP but not diacylglycerol
or phosphatidylserine, strongly suggesting that CU-3 competes
with ATP binding.

CU-3 induced apoptosis in HepG2 hepatocellular carcinoma
and HeLa cervical cancer cells (Liu et al., 2016). Supporting
our results, Torres-Ayuso et al. (Torres-Ayuso et al., 2014)
also demonstrated that the growth of colon and breast cancer
cell lines was significantly inhibited by DGKα-siRNA and
R59949. In addition, Dominguez et al. reported that DGKα-
siRNA and R59022 negatively affected the proliferation of

glioblastoma, melanoma, breast cancer, and cervical cancer
cells (Dominguez et al., 2013). The authors also observed
that in marked contrast to cancer cells, R59022 did not
weaken the growth of non-cancerous astrocytes and fibroblasts
(Dominguez et al., 2013). CU-3 also failed to increase
the caspase 3/7 activity of the non-cancer-derived COS-7
cells. These findings suggest that CU-3 selectively induces
apoptosis.

In addition to the induction of cancer cell apoptosis, we
found that CU-3 promoted IL-2 production, which is one of
the indicators of T cell activation. Because inactivation (anergy
induction) of T cells is the main mechanism by which advanced
tumors to avoid immune action, it is expected that CU-3 is able
to activate cancer immunity.

General anti-cancer drugs inhibit the proliferation
and function of both cancer and bone marrow cells
(Chabner and Roberts, 2005; Pérez-Herrero and Fernández-
Medarde, 2015). Therefore, they induce not only the
attenuation of cancer cell proliferation but also bone
marrow suppression/myelosuppression, which is one of the
most commonly observed side-effects of anti-cancer drugs.
However, there is no drug that has both pro-tumoral and
anti-immunogenic effects. The DGKα-selective inhibitor would
simultaneously have anti-tumoral and pro-immunogenic effects
(Figure 1). Therefore, in addition to the direct effects on
apoptosis induction in cancer cells, CU-3 can indirectly induce
the death of cancer cells through activation of the immune
system. Moreover, CU-3 can be an effective tool for biological
science concerning cancer and immunity.

CU-3 still does not have sufficient isozyme selectivity and
efficiency as an excellent inhibitor. Moreover, comprehensive
studies where other kinase groups are tested have not
been performed. Further refinement of CU-3 and/or
identification/development of new candidates using larger
chemical compound libraries are required. Finally, our
current results encourage us to identify and develop specific

FIGURE 1 | A DGKα-selective inhibitor would directly attenuate cancer

cell proliferation and simultaneously activate T cell function, which

includes anti-tumor immunogenic activity (Liu et al., 2016).
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inhibitors/activators against every DGK isozyme that can
be effective regulators and drugs against a wide variety of
physiological events and diseases, although the ten DGK
isozymes are highly similar to each other.
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