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Mutations in mitochondrial (mt) DNA determine important human diseases. The majority
of the known pathogenic mutations are located in transfer RNA (tRNA) genes and are
responsible for a wide range of currently untreatable disorders. Experimental evidence
both in yeast and in human cells has shown that the detrimental effects of mt-tRNA point
mutations can be attenuated by increasing the expression of the cognate mt-aminoacyl-
tRNA synthetases (aaRSs). In addition, constitutive high levels of isoleucyl-tRNA
syntethase have been shown to reduce the penetrance of a homoplasmic mutation
in mt-tRNAIle in a small kindred. More recently, we showed that the isolated carboxy-
terminal domain of human mt-leucyl tRNA synthetase (LeuRS-Cterm) localizes to
mitochondria and ameliorates the energetic defect in transmitochondrial cybrids carrying
mutations either in the cognate mt-tRNALeu(UUR) or in the non-cognate mt-tRNAIle

gene. Since the mt-LeuRS-Cterm does not possess catalytic activity, its rescuing ability
is most likely mediated by a chaperon-like effect, consisting in the stabilization of the
tRNA structure altered by the mutation. All together, these observations open potential
therapeutic options for mt-tRNA mutations-associated diseases.
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Introduction

Mutations in genes coding for mt-tRNAs (MTTs) are responsible for a wide range of currently
untreatable pathologies. Clinical presentation may occur at any age, ranging from isolated organ-
specific disorders such as cardiomyopathy or hearing loss, to multisystem diseases including
myopathies, encephalopathies, deafness, diabetes and others (Yarham et al., 2010). Most mt-tRNA
pathogenic mutations are heteroplasmic (i.e., mutant and wild type molecules co-exist within the
same cell), and manifest clinically only when mutated mtDNA exceeds a threshold level, typically
60–90% (Greaves et al., 2012). However, homoplasmic pathogenic mutations (a condition where
all mtDNAmolecules are mutated in the cell) have been reported, either in association with tissue-
specific disorders (i.e., maternally inherited cardiomyopathy; Taylor et al., 2003; Perli et al., 2012)
or with devastating multisystem diseases (McFarland et al., 2002; Limongelli et al., 2004).
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Mitochondrial (mt) tRNA mutations would be expected to
cause impaired mt protein synthesis (i.e., defective transla-
tion of the 13 mtDNA-encoded protein subunits of the respi-
ratory chain), leading to a generalized OXPHOS defect. The
mechanism by which mutations induce a quantitative and/or
qualitative defect of mt translation is complex and not com-
pletely understood. Biochemical characterizations of mutant
tRNAs transcribed in vitro and studies on patients derived
transmitochondrial cybrids (herein cybrids) have shown that
mutations may negatively affect different steps of tRNA biogene-
sis and/or functioning, including processing, post-transcriptional
modification, aminoacylation and translation (see for Review
Yarham et al., 2010; Suzuki et al., 2011). Most pathogenic muta-
tions directly affect mt-tRNA tertiary structure and stability. This,
in turn, can hamper mt-tRNA interactions required for produc-
tive protein synthesis e.g., interactions with: (1) enzymes that
perform post-transcriptional modifications essential for transla-
tional accuracy and efficiency; (2) cognate aaRSs or other tRNA
synthetases, which may lead to non-charged or mischarged tRNA
formation; or (3) translation factors or ribosome, which would
affect the rate or accuracy of translational initiation or elongation.
These alterations would be expected to cause generalized transla-
tion defects and, therefore, decreased levels of mtDNA-encoded
polypeptides. As mentioned above, mutations may also affect
tRNA recognition by enzymes not directly involved in transla-
tion, e.g., enzymes that process mtDNA polycistronic transcripts,
thus leading to decreased steady-state levels of mature mt-tRNA
available for aminoacylation.

The most frequent and extensively studied mt-tRNA
mutation is m.3243A>G, one of the 32 disease-associated
mutations within the MTTL1 gene coding for mt-tRNALeu(UUR)

(http://www.mitomap.org/bin/view.pl/MITOMAP/MutationsRN
A). The effects of this mutation are reported in Table 1.

An important issue that remains to be elucidated is the
remarkable heterogeneity of clinical phenotypes. the hetero-
plasmic m.3243A>G mutation has been reported to occur
in association with a number of clinical syndromes such as
encephalomyopathy, lactic acidosis and stroke-like episodes
(MELAS) syndrome; chronic progressive external ophthalmo-
plegia (CPEO); and maternally inherited diabetes and deafness
(MIDD). Both the specific energetic needs of affected tissues
and, in case of heteroplasmic mutations, the variable ratios of

wild-type and mutant tRNAs in different tissues, contribute to
generating phenotypic variability. However, other factors, such
as the effect of environment, the mt genetic background, and
the interaction with nuclear genes involved in different steps of
mt-tRNA processing andmodification, may also affect the pheno-
typic expression of the mutations. This is exemplified by the case
of mt-tRNA homoplasmic mutations which show an extremely
variable clinical penetrance even within the same family, despite
in all individuals all mtDNA molecules are mutated.

The Penetrance of mt-tRNAs
Mutations can be Modulated by
Over-Expression of mt-aaRS

Proteins interacting with mt-tRNAs are able to effectively rescue
the pathological phenotypes due to point mutations in mt-tRNA
genes. This has been first demonstrated by the over-expression
of the nuclear gene coding for mt EF-Tu in yeast Saccharomyces
cerevisiae strains carrying point mutations in MTTL1 gene,
equivalent to those associated with human diseases (Feuermann
et al., 2003). EF-Tu is an evolutionarily conserved elongation
factor, which plays a central role in the translation process by
binding the aminoacylated tRNA, protecting it from hydrolysis,
and carrying it to the ribosome. The results obtained in the yeast
model have been paralleled in human cell lines. Overexpression
of mt elongation factors EF-Tu and EFG2 partially rescues the
severe respiratory chain deficiency of myoblasts carrying the
MELAS-associated m.3243A>G mutation in MTTL1 at homo-
plasmic levels (Sasarman et al., 2008). Subsequently, the detri-
mental effects of mt-tRNA point mutations have been shown
to be modulated by the expression levels of additional genes, in
particular mt aaRSs. Studies on the yeast model revealed that
over-expression of the nuclear genes NAM2 and HTS1, coding
respectively for yeast mt-LeuRS and mt-HisRS (Natsoulis et al.,
1986; Zagorski et al., 1991) rescues the growth-defective pheno-
type of yeast strains carrying human equivalent point mutations
in the cognate mt-tRNAs (De Luca et al., 2006). Likewise, over-
expression of mt-LeuRS has been shown to correct the respiratory
chain deficiency of human patients-derived cybrids harboring the
m.3243A>G mutation in the MTTL1 gene. (Park et al., 2008; Li
and Guan, 2010).

TABLE 1 | Reported effects of m.3243A>G mutation on tRNALeu(UUR) structure, processing and function.

Effects of m.3243A>G mutation on tRNALeu(UUR) structure,
processing and function

References

Disruption of the L-shaped tertiary structure and decreased stability of the
mutant tRNA

Wittenhagen and Kelley (2002), Sohm et al. (2003)

Dimerization of mutated tRNAs Wittenhagen and Kelley (2002), Roy et al. (2005)

Reduced tRNALeu(UUR) steady-state levels Park et al. (2003)

Reduction of 3’-end processing efficiency Koga et al. (1993), Levinger et al. (2004)

Accumulation of processing intermediates (RNA19S) King et al. (1992)

Defect of uridine modification at the anticodon wobble position Yasukawa et al. (2000), Kirino et al. (2005)

Decreased aminoacylation level and efficiency Borner et al. (2000), Chomyn et al. (2000), Park et al. (2003), Sohm et al.
(2003).
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The ability to modulate the effects of pathogenic mt-tRNA
mutations in human cells has been shown to be shared by other
mt-aaRSs belonging, like LeuRS, to Class I and subclass a. As
an example, the steady state levels of mutated mt-tRNAVal were
partially restored by over-expressing the cognate mt valyl-tRNA
synthetase (ValRS) in cybrid cell lines (Rorbach et al., 2008)
More recently, our group has shown that constitutively high lev-
els of mt-IleRS are associated with reduced penetrance of the
homoplasmic m.4277T>C mt-tRNAIle mutation, which causes
hypertrophic cardiomyopathy. Our in vivo findings were paral-
leled by results in mutant cybrids obtained by over-expression of
mt-IleRS (Perli et al., 2012).

Aminoacyl-tRNA synthetases are ubiquitously expressed
enzymes that catalyze the specific attachment of each of the
20 amino acids with cognate tRNAs bearing the correct anti-
codon triplet. Aminoacylation is a two-step reaction in which
amino acids are first activated by ATP, forming an intermediate
aminoacyl-adenylate, and then transferred to the 3′-end of tRNA
to form the aminoacyl-tRNA end-product (Ibba and Soll, 2000).
Human cells contain aaRSs specific to cytoplasm, mitochondria
or, in some cases, both, depending on the cellular compartment
where they exert their catalytic activity and the set of tRNAs
used as substrates. Based on the architecture of their catalytic
binding domain, aaRSs are grouped in two classes, I and II
(Schimmel, 1987; Cusack et al., 1990; Eriani et al., 1990). Class
I aaRSs are specific for amino acids Val, Leu, Ile, Met, Cys, Glu,
Gln, Tyr, Trp, and Arg. Their active site is located in a Rossman
fold nucleotide-binding catalytic domain (made of six parallel β-
strands alternating to α-helices; Li et al., 1992). Class II aaRSs
are specific for amino acids Gly, Ala, Ser, Thr, Asn, Asp, Lys,
His, Phe, and Pro. They are mostly dimeric or multimeric, their
active site is contained in an anti-parallel β-sheet with flanking
α-helices, and they share at least three conserved regions (Cusack
et al., 1991; Schimmel, 1991; Perona et al., 1993). Both class I and
class II aaRSs are further divided into a, b and c subclasses, each
comprising enzymes sharing sequence, structure and function
similarities. All aaRSs contain both a catalytic and an anticodon
recognition domain, which are required to catalyze the aminoa-
cylation reaction and recognize the tRNA molecule specific for
each cognate amino acid, respectively. To ensure translational
fidelity, several aaRSs contain an additional editing domain able
to deacylate mischarged amino acids, with the aim of prevent-
ing insertion of incorrect amino acids during protein synthesis
(Beebe et al., 2008; Schimmel, 2008; Martinis and Boniecki, 2010;
Yao and Fox, 2013).

Although the main aaRSs function consists in charging tRNAs
with their cognate amino acids in the initiation step of pro-
tein synthesis, a number of additional functions have been
recently discovered to be carried out by these enzymes. During
evolution, cytoplasmic aaRSs have acquired additional non-
catalytic domains and insertions, dispensable for aminoacyla-
tion, which are involved in pathways of apoptosis, angiogenesis,
immune response, tumorigenesis and inflammation (Delarue
and Moras, 1993; Guo and Schimmel, 2013; Lo et al., 2014).
Initially, analogous domains with non-catalytic functions had
not been identified in mammalian mt aaRSs. However, domains
of both mt-TyrRS from Neurospora crassa and mt-LeuRS from

S. cerevisiae have been shown to be essential factors for the splic-
ing of several mt RNA group I introns (Akins and Lambowitz,
1987; Hsu et al., 2006). Deletion analysis showed that the splicing
function of yeast mt LeuRS resided in a sixty-amino acid region at
the carboxy-terminal end of the enzyme and that deletion of this
region had no impact on the aminoacylation activity (Li et al.,
1996). Interestingly, the homologous human mt-LeuRS-Cterm
conserves the splicing activity although there is no require-
ment for intron splicing following human mtDNA expression
(Houman et al., 2000).

The Carboxy-Terminal Domain of
mt-LeuRS is able to Rescue Defects
Associated with both Cognate and
Non-Cognate mt-tRNA Mutations in
Human Cells

An important feature of the yeast mt-LeuRS-Cterm, in view
of potential therapeutic developments, is the ability to rescue
defective phenotypes associated with human-equivalent point
mutations in yeast mt-tRNAs (Francisci et al., 2011). Recently,
we and others have shown that human mt-LeuRS-Cterm: (i) is
the region necessary and sufficient to ameliorate the mt defects of
patient-derived cybrids carrying mutations in both cognate and
non-cognate mt-tRNAs (namely, mt-tRNALeu(UUR) , mt-tRNAIle,
mt-tRNAVal, all of which are aminoacylated by Class Ia aaRSs);
and (ii) has a higher rescuing activity than the whole mt-LeuRS
toward all of the tested mutations (Hornig-Do et al., 2014; Perli
et al., 2014).

The demonstration that the catalytic function of mt-LeuRS-
Cterm is not required for its rescuing activity and the interactions
occurring between the LeuRS-Cterm domain and the cognate
tRNA in experimentally determined three-dimensional struc-
tures (see below) led us to speculate that the ability of this
domain to correct the biochemical phenotype associated with
pathogenic mt-tRNAmutations may be ascribed to a ‘chaperone-
like’ effect. Both human (Perli et al., 2012) and yeast (Francisci
et al., 2005) mt-tRNAs bearing point mutations that determine
a defective phenotype have been previously shown to undergo
conformational and/or aminoacylation defects. We hypothe-
size that, by directly interacting with the mutated mt-tRNA,
the mt-LeuRS-Cterm stabilizes a native-like tRNA conformation
which would be, in turn, better equipped at establishing interac-
tions with proteins and other macromolecular partners required
for protein synthesis, and/or more resistant toward degradation
events.

Structural Basis of the Ability of
mt-LeuRS-Cterm to Interact with
Cognate and Non-Cognate mt-tRNAs

The hypothesis that the rescuing activity of human mt-LeuRS-
Cterm is mediated by a direct interaction with mutated
tRNA molecules is supported by the results of our in vitro
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surface plasmon resonance experiments. These demonstrated
that mt-LeuRS-Cterm is able to directly and specifically interact
with human cognate mt-tRNALeu(UUR) with high affinity and sta-
bility, and with non-cognate mt-tRNAIle with 4-fold lower affinity
(Perli et al., 2014).

Several 3D structures of LeuRS have been experimentally
determined by X-ray crystallography and are available from the
protein data bank (PDB; Berman et al., 2000). Although none
of these structures are from mitochondria, sequence analyses
reveals that both human and yeast mt LeuRS are closely related
to cytoplasmic LeuRS from the bacteria Thermus thermophilus

(Tukalo et al., 2005) and Escherichia coli (Palencia et al., 2012),
whose 3D structures have been determined in complex with the
cognate tRNALeu (Figure 1).

Analysis of the bacterial LeuRS structures (PDB IDs: 2BTE
and 4AS1) revealed that LeuRS-Cterm interacts with the ‘elbow
region’ of the cognate tRNA and establishes a higher num-
ber of contacts with the sugar-phosphate backbone than with
nucleotide-specific chemical groups (13 and 3, respectively, in
the higher resolution LeuRS-tRNALeu complex structure from
E. coli). The preferred interaction of human mt-LeuRS-Cterm
with ribose and phosphate oxygen atoms, which are present in

FIGURE 1 | Ribbon representation of the LeuRS-tRNALeu complex
from Thermus thermophilus determined by X-ray crystallography
(PDB ID: 2BTE) at a Resolution of 2.9 Å. The structural
domains of LeuRS are colored as follows: catalytic, yellow;

leucine-specific, pink; editing, cyan; anticodon-binding, lilac;
carboxy-terminal, green. The tRNA is colored orange and tRNA
bases are shown as sticks. Position A14, equivalent to m.3243A, is
highlighted by a red sphere.
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all tRNAs, may contribute to explain its ability to bind to both
cognate mt-tRNALeu(UUR) and non-cognate mt-tRNAIle, and res-
cue defects associated with point mutations in both tRNAs.
Additionally, analysis of the 3D models of human and yeast mt-
LeuRS-Cterm, built by homology using the 3D structure of E. coli
LeuRS as a template, showed that positive residues, which are
relatively distant in the amino acid sequences are spatially clus-
tered (Perli et al., 2014). This results in the formation of basic
patches on the domain surfaces, which might explain the ability
of both domains to be imported into mitochondria in spite of the
lack of a canonical MTS.

Future Perspectives

Currently, no reliable treatments or therapies are available for res-
piratory chain deficiencies due to mt-DNA encoded tRNA genes.
Strategies as diverse as those aimed at mt tRNA delivery or mt
ATP production increase have resulted in limited success.

Based on the evidences provided so far, the mt-LeuRS-
Cterm is both an attractive new candidate for future thera-
peutic applications in mt-tRNA related diseases by itself, and
opens a number of potential additional therapeutic avenues.
In this regard it is worthwhile to identify: (i) smaller mt-
LeuRS-Cterm fragments endowed with mt localization and
rescuing ability; (ii) further mutations in mt-tRNAs aminoa-
cylated by class I or II aaRS that can be rescued by
mt-LeuRS Cterm and/or smaller peptides thereof; and (iii)
additional aaRSs and/or peptides endowed with rescuing
ability.

It has been recently demonstrated in the yeast model
that the defective phenotype associated with human equiv-
alent point mutations in MTT genes can be rescued by
overexpressing short sequences (named β30_31 and β32_33,
∼15 amino acid long) derived from the human mt-LeuRS-
Cterm (Francisci et al., 2011). This suggests that mt-LeuRS-
Cterm-derived peptides may be used as therapeutic tools,
provided that suitable agents for mitochondria targeting are
developed to deliver them to their subcellular destination.
Such small mt-LeuRS-Cterm peptides may even prompt the

development of non-peptide organic molecules, especially if
the rescuing activity can be further restricted to smaller
regions.

Further studies on the yeast model have recently shown that
overexpressed mt-LeuRS-Cterm and β30_31 and β32_33 pep-
tides suppress the respiratory defects of the mutants in mt-tRNAs
aminoacylated by class II, as well as class I, mt-aaRS (Di Micco
et al., 2014).

Interestingly, the ability of the whole mt-LeuRS to rescue
pathological mutations in both cognate tRNALeu(UUR) and non-
cognate tRNAIle and mt-tRNAVal has been shown to be shared by
class Ia mt-IleRS and mt-ValRS in both human cells (Perli et al.,
2014) and the yeast model (Montanari et al., 2010). However,
at variance with mt-LeuRS-Cterm, the carboxy-terminal regions
from mt-IleRS and mt-ValRS exerted very limited rescuing activ-
ities in the yeast model (Di Micco et al., 2014). Indeed, the
absence of detectable sequence similarity between mt-LeuRS and
mt-IleRS or mt-ValRS human or yeast and the different struc-
ture and tRNA binding mode detected in homologous enzymes
of known 3D structure indicate that the properties of mt-LeuRS-
Cterm are not necessarily shared by the carboxy-terminal domain
of different aaRSs.

Finally, in view of potential therapeutic application, it is essen-
tial to further investigate the molecular mechanisms underlying
the activity of mt-LeuRS-Cterm and its derived peptides, by mea-
suring their effect on multiple parameters of mt function. It is
expected that the recently reported availability of mouse models
of mt-tRNA mutation related disease (Shimizu et al., 2014) will
further boost research in this important medical field.
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