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Recent advances in the modeling of microbial growth and metabolism have shown that
growth rate critically depends upon the optimal allocation of finite proteomic resources
among different cellular functions and that modeling growth rates becomes more realistic
with the explicit accounting for the costs of macromolecular synthesis, most importantly,
protein expression. The “proteomic constraint” is considered together with its application
to understanding photosynthetic microbial growth. The central hypothesis is that phys-
ical limits of cellular space (and corresponding solvation capacity) in conjunction with
cell surface-to-volume ratios represent the underlying constraints on the maximal rate of
autotrophic microbial growth. The limitation of cellular space thus constrains the size the
total complement of macromolecules, dissolved ions, and metabolites. To a first approxi-
mation, the upper limit in the cellular amount of the total proteome is bounded this space
limit. This predicts that adaptation to osmotic stress will result in lower maximal growth
rates due to decreased cellular concentrations of core metabolic proteins necessary for
cell growth owing the accumulation of compatible osmolytes, as surmised previously.
The finite capacity of membrane and cytoplasmic space also leads to the hypothesis that
the species-specific differences in maximal growth rates likely reflect differences in the
allocation of space to niche-specific proteins with the corresponding diminution of space
devoted to other functions including proteins of core autotrophic metabolism, which drive
cell reproduction. An optimization model for autotrophic microbial growth, the autotrophic
replicator model, was developed based upon previous work investigating heterotrophic
growth.The present model describes autotrophic growth in terms of the allocation protein
resources among core functional groups including the photosynthetic electron transport
chain, light-harvesting antennae, and the ribosome groups.

Keywords: cyanobacteria, growth rate, molecular crowding, optimization, photosynthesis, ribosomes

HOW FAST CAN CYANOBACTERIA GROW?
There is a very wide range of maximal growth rates observed
among cyanobacterial strains (Carr and Whitton, 1982). Fast
growing model cyanobacterial strains can be grown with dou-
bling times in the range of 3–6 h under optimal conditions (Binder
and Chisholm, 1990; Nomura et al., 2006; Kim et al., 2011; Lud-
wig and Bryant, 2011). On the other hand, many cyanobacterial
strains have doubling times on the order of once per day (Carr and
Whitton, 1982). Moreover, even the fastest growing cyanobacteria
are still much slower growing than many heterotrophic bacteria
and yeasts. Furthermore, the factors accounting for the diversity
of maximal rates of cyanobacterial growth remain poorly under-
stood and it appears that autotrophic growth tends to be slower
than heterotrophic growth, which can be as short as ~10 min dou-
bling times (Labbe and Huang, 1995). This is important because
researchers often include “fast growth” among the criteria in
choosing a cyanobacterial strain for engineering. Since the fastest
rate of growth in heterotrophs occurs in “rich” media containing
abundant amino acids and cofactors and since the main macro-
molecular investment in cell growth is the synthesis of proteins,
then a reasonable hypothesis is that autotrophic metabolism in

cyanobacteria results in slower maximal growth because of the
necessity for the synthesis of the amino acids and all other cell
components from CO2. However, assuming it is the burden of
synthesizing amino acids, then the question arises whether this is
because of the energetic cost of making amino acids, such as ATP
consumed per amino acid and “opportunity costs” of not using
ATP for other cell functions that contribute to cell reproduction.
A bioinformatics analysis using codon bias as an indicator for
expression rates found that less expensive amino acids are prefer-
ably utilized for highly expressed protein (Akashi and Gojobori,
2002). However, energetically more expensive amino acids also
tend to require more biosynthetic steps, and consequently a greater
number of enzymes. Moreover, a more exhaustive analysis found
that amino acid utilization rates for protein were only weakly
correlated, if at all, with the bioenergetic costs of their synthesis
(Barton et al., 2010). Or is it something else, such as greater cellu-
lar space devoted to the corresponding biosynthetic enzymes? As
discussed below, recent theoretical and experimental studies point
to the latter and suggest that the ultimate speed limit relates to the
physical constraints of packing all necessary molecular machinery,
small molecules, and ions into the confined space (cytoplasmic
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Burnap Autotrophic microbial growth

and membrane) of the cell yet have small enough cell dimen-
sions to allow sufficient nutrient exchange (Figure 1). Analysis
of the physical state of cytoplasmic water in E. coli under differ-
ent osmotic conditions indicates that macromolecular crowding
limits growth rate, probably through decreasing the “kinetics of
some biopolymer diffusion processes” (Cayley and Record, 2003).
Accordingly, intracellular crowding appears to be the main con-
straint to growth and sets the upper bound on the size of the
proteome. Evidence for this includes the analysis of the impact
of protein overexpression on maximal growth rates (Scott et al.,
2010; Scott and Hwa, 2011; You et al., 2013) and the effects of
crowding on diffusion within the bacterial cell (Klumpp et al.,
2013; Soh et al., 2013; Parry et al., 2014). Crowding also would
affect the size to the metabolome, primarily because of the limited
amount of free water, as discussed below. Based on these con-
siderations, the total size of the proteome is likely bounded by
intracellular crowding constraints and, assuming a relatively fixed
amount of dissolved ions and metabolites1, the allocation of pro-
teomic resources becomes a “zero sum game.” This is one of the

1As far as the author is aware, information on possible changes in the total size of
the metabolome as a function of different conditions is not readily available.

FIGURE 1 | Hypothetical cyanobacterial growth rate, µ, in response to
substrate abundance falls into two regimes. Submaximal rates of
growth occur when either the light intensity or nutrient availability is limited
and growth rates increase in proportion to increases in the limiting
commodity, as shown in the left portion of the hypothetical graph. When
these are not limiting, the growth rate is the saturated, maximal rate, µmax.
This maximal rate is hypothetically limited by physical constraints such as
packing all necessary molecular machinery, small molecules, and ions into
the confined space (cytoplasmic and membrane) of the cell yet have small
enough cell dimensions to allow sufficient nutrient exchange. Cells
approach a maximal rate where internal factors, referred to as “intracellular
crowding-limited” dominate. Figure adapted from O’Brien et al. (2013), but
the “macromolecular expression (ME)-limited” or “proteome-limited”
growth rate is here considered as limited intracellular crowding as
discussed in the text.

key points for this discussion since we are trying to understand
the physical basis optimal proteomic allocation strategies. As dis-
cussed below, the results of modeling studies and the consideration
of “overflow” metabolism is best explained by a limitation in the
total amount of protein that can be crowed into a cell, yet remain
soluble and diffusionally mobile. From that perspective, it could be
that the autotrophic lifestyle requires a comparatively large invest-
ment into photosynthetic and other anabolic proteins. This would
include the large investment into extensive internal membranes for
photosynthetic machinery as well as the need for large amounts of
the catalytically inefficient carbon-fixing enzyme, Rubisco. Corre-
spondingly, this comparatively greater investment would come at
the expense of the macromolecular machinery dedicated to cell
duplication including ribosomes, initiation factors, cell division
proteins, and all the metabolic precursors required for the dupli-
cation. Conversely, it might be expected that very fast growing
bacteria (Labbe and Huang, 1995) have a greater investment in
the machinery for cell duplication and a streamlined metabolic
capacity that constituted by a minimal set of core enzymes, trans-
porters, and metabolites for the provision of precursors to support
the operation of the cell duplication machinery.

ENGINEERING AND MODELING CYANOBACTERIA
Because of their comparative cellular simplicity and ease of genetic
manipulation, cyanobacteria are the object of numerous biotech-
nological efforts for metabolic engineering for the renewable
production of biofuels and high-value products. Compared with
algae and plants, cyanobacteria are easier to genetically modify
and are amenable to organism-wide metabolic modeling, which
are attributes that lend themselves to synthetic biology approaches
[for current review see Berla et al. (2013)]. Cyanobacteria have
thus become the targets of biofuel production that includes the
engineered production of ethanol (Deng and Coleman, 1999),
butanol (Lan and Liao, 2011), isoprene (Lindberg et al., 2010),
ethylene (Ungerer et al., 2012), sugars (Ducat et al., 2012), and lac-
tate (Angermayr et al., 2012). Besides biofuel production chemical
feedstock, high-value compounds, and “nutraceutical” products
are envisioned and important progress has been made (Xue et al.,
2014).

In parallel with this progress in genetic engineering of desired
physiological characteristics into cyanobacteria, systematic mod-
eling approaches for understanding the productivity of genetically
modified cyanobacteria have been developed. To gain insight on
the physiological characteristics of the strains targeted for engi-
neering studies, researchers have developed large-scale models
of metabolic networks based upon annotated gene content that
has been deduced from genomic sequences for a number of
both heterotrophic and autotrophic bacteria [technical approaches
reviewed in Covert et al. (2001), Feist et al. (2009), Steuer et al.
(2012)]. Such models can include hundreds and thousands of
enzyme-catalyzed reactions based upon the predicted gene content
of an organism. The term “metabolic network re-construction”
is used to describe the process of developing such models. The
successful application of this approach is time-consuming and
requires, among other things, careful manual evaluation of algo-
rithmically assigned gene annotations and strategies for “filling in”
predicted enzymes when the corresponding genes are missing from
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Burnap Autotrophic microbial growth

the genomic analysis. However, the rewards for developing a robust
metabolic re-construction appear to be large (Knoop et al., 2010,
2013; Nogales et al., 2012). When combined with linear program-
ing methods, the network models can be used for predicting, in sil-
ico, the metabolic flux patterns under different assumed environ-
mental conditions using linear programing methods termed flux
balance analysis (FBA). Of the possible computational approaches,
constraint-based FBA has already proven useful and appropri-
ate for the predictive analysis of the production of engineered
bioproducts (Nogales et al., 2013). FBA has been used for the
theoretical evaluation of photosynthesis in cyanobacteria under
different trophic conditions including photoautotrophic, photo-
heterotrophic, and heterotrophic growth (Knoop et al., 2010, 2013;
Nogales et al., 2012). Recently, the theoretical yields of different
excreted products such as butanol and sucrose from engineered
cyanobacteria have been analyzed and the computational mod-
els give predicted values that are close to experimentally observed
yields (Nogales et al., 2013). One of the conclusions for that analy-
sis is that autotrophic metabolism in cyanobacteria is relatively
inflexible with respect to genetic engineering and that the network
properties of autotrophic metabolism place basic limitations on
the yields of engineered products.

There are also important experimental applications for recon-
structed metabolic networks. This includes metabolic flux analysis
(MFA), which uses pulse-labeling of cells with substrate atoms
tagged using stable isotopes. This approach has been applied in
cyanobacteria to analyze metabolic fluxes under autotrophic con-
ditions (Young et al., 2011). Again, metabolic network models are
used, but they are used as input to fit the experimental labeling pat-
terns (Young, 2014). Thus, metabolic network re-construction is
of utility from both the experimental and theoretical perspectives
and allows insight into the details and global features of microbial
growth and metabolism.

COURSE-GRAINED MODELS OF MICROBIAL METABOLISM
Besides the detailed and metabolically realistic FBA models men-
tioned above, simpler “course-grained” modeling approaches to
understanding growth and global features of microbial growth
have been developed. Of these, the models of heterotrophic micro-
bial growth (Molenaar et al., 2009; Scott et al., 2010; Scott and
Hwa, 2011) have lent themselves to comparison to the corre-
sponding FBA models. In some respects, the simpler alternatives
for heterotrophic microbial growth and metabolism have pro-
duced explanatory results that were not sufficiently addressed
the early FBA models2. Molenaar et al. observed, for example,
which so-called “overflow metabolism” of microbial growth that
was not adequately accounted for in the earlier implementations
of FBA (Molenaar et al., 2009). Overflow metabolism is a form
of metabolic energy spilling involving the excretion of energy-rich
precursors by heterotrophic microbes under certain trophic condi-
tions (discussed below). The course-grained models of Molenaar
et al. explicitly take into account the limitation of a finite proteome

2However, this situation has dramatically changed with the development of FBA
metabolic models that have been extended to include gene expression and pro-
teomic constraints, which correspondingly gives predictions for conditions where
overflow metabolism occurs (O’Brien et al., 2013).

and frame the problem in terms of a self-replicator cell growth
model that optimizes the allocation of finite proteomic resources
to maximize growth rates (Molenaar et al., 2009). These models
optimize the allocation of cellular protein resources in a small
set of general cellular functions such as transport of substrate
into the cell, conversion of substrate into metabolic precursors
for protein and lipid synthesis, and though overly simplistic,
they were able to reach some key conclusions that are consonant
with more sophisticated FBA approaches (O’Brien et al., 2013).
Both the course grained and FBA modeling are most realistic
when maximal growth rates are constrained by “proteomics costs”
and the inclusion of this constraint allows for an accounting for
certain counter-intuitive physiologic behaviors such as overflow
metabolism.

Another course-grained modeling approach, which from the
Hwa group, also considers the size of the proteome as a fundamen-
tal limiting factor in heterotrophic microbial growth (Scott et al.,
2010) (Figure 2). These models combine the empirical growth
rates with an analysis that derives from the long-standing obser-
vation that microbial growth rates are linearly proportional to the
cellular content of ribosomes (Schaechter et al., 1958). Using this
approach, the authors derived a set of quantitative relationships
between growth rate, gene expression, and cellular composition

FIGURE 2 | Allocation of the proteome among different sectors as
defined by the analysis of growth in the development of a
phenomenological theory regarding its control (Scott et al., 2010; Scott
and Hwa, 2011). Bacterial proteome consists of a fixed fraction, Q, whose
proportion is constant and largely unaffected by the growth rate of the cells
and may contain proteins for cell maintenance and ultrastructure. The
remainder of the proteome minimally is partitioned into two additional
fractions, R and P, which represent ribosome affiliated proteins and nutrient
uptake and processing proteins, respectively. The R and the P fractions are
observed to reciprocally change their proportions as a function of cell
growth rate with the R fraction reaching its largest magnitude under fast
growth conditions. This coincides with the observation that ribosomes are
more abundant in faster growing cells compared to more slowly growing
cells. This same theory was used to derive a Monod-like relationship of
observed growth rate in relationship to nutrient availability as reflected by
parameter κn, along with the translational capacity represented by the
parameter κt.
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Burnap Autotrophic microbial growth

in terms of allocation of proteomic resources toward different
functional classes of protein (Scott et al., 2010; Scott and Hwa,
2011). The minimal model for heterotrophic bacteria is comprised
of a finite proteome consisting of three sectors: a fixed core sector
designated “Q” that, for a given species is invariant in propor-
tion of the total proteome, a ribosome sector, “R” of variable size
consisting of all ribosomal proteins and their affiliates, and a “P”
sector, also variable in size, associated with nutrient uptake. The
fixed Q sector might consist of proteins involved and cell mainte-
nance metabolism and the biogenesis of ultrastructure. The sizes
of the different sectors were determined experimentally, for exam-
ple, by manipulation of the growth rate under different nutritional
regimes or with different inhibitors. The Q sector was experimen-
tally found to be ~55% of the total proteome for E. coli and was not
found to change its size across a variety of trophic conditions sug-
gesting that it is, indeed, fixed in proportion of the total proteome.
The size of the R sector is variable and directly proportional to the
growth rate in accord with the linear relationship between ribo-
some content and growth rate. Interestingly, the course-grained
replicator models of Molenaar mentioned earlier have the linear
ribosome-growth rate relation built into them. The third sector,
“P” is also variable in size and expands at the expense of the R
sector. The P sector exerts a positive effect on growth by provid-
ing nutrients that ultimately feed precursors into the R sector. In
effect, the P sector “feeds” the R sector with precursors for protein
synthesis. However, optimal growth requires a balanced proteomic
allocation of the P and R sectors. Increases in the P sector, due,
for example, to the necessity of increased nutrient uptake capacity
by synthesizing more transporters, occurs at the expense of the R
sector and correspondingly results in a lower rate of growth than
if less of the proteome were invested in the P sector and more in
the R sector. Additional sectors can be elaborated by subdivision
of the three sectors of the minimal model and it was shown how
the expression of unnecessary protein tends to reduce growth rates
due to the reduction in the sizes of the R and P sectors. Extension of
this approach has provided new explanatory insight into the role
of cyclic AMP in coordinating catabolic and anabolic responses to
shifting nutrient regimes (You et al., 2013). In each case, the mod-
els necessarily constrain the size or cost of the proteome in order to
obtain the far reaching conclusions regarding the way proteomics
resource allocation govern maximal growth rates in microbes and
how the different functional modules are regulated to achieve this.
It is also important to note that each of these cases involves an
experimental approach to provide estimates of the sizes of the
sectors.

While these approaches have not been applied to cyanobacte-
ria, there is already a rich and advanced set of modeling efforts for
algae and cyanobacteria that are oriented toward autotrophic pro-
ductivity in natural marine and aquatic environments [c.f. Ross
and Geider (2009)]. Although, there is likely a huge opportunity
to find the parallels between these successful modeling approaches
for autotrophs and the FBA and course-grained models discussed
above, the main objective of this communication is to discuss the
hypothesis that the proteomic constraints that have proven nec-
essary for successful modeling of heterotrophic microbial growth
are also of fundamental significance in explaining cyanobacterial
growth and productivity.

OVERFLOW METABOLISM IS A DISSIPATIVE PROCESS THAT
REFLECTS THE PROTEOMIC CONSTRAINTS OF MICROBIAL
GROWTH
It is useful to consider one of the puzzles of microbial physiol-
ogy: the seeming wastefulness in the phenomenon of metabolic
spilling. In heterotrophic microbes, metabolic spilling involves the
release of incompletely catabolized energy-rich metabolites and
has physiological roles that extend beyond biochemical consid-
erations such as redox balancing. Instead, it appears necessary
for maximal growth under certain trophic conditions despite the
apparent wastefulness of the process. When heterotrophic cells
have an excess of a carbon/energy source they may metabolize
this compound using less efficient pathways (e.g., lower ATP yield
per substrate) with the consequent wasteful release of energy-
rich compounds such as ethanol, acetate, and lactate despite the
fact that environmental and physiological conditions would allow
for more energy-efficient utilization of the carbon source. For
example, the well-known Pasteur effect, which involves metabolic
switching between efficient and less efficient pathways. Here, yeast
cells are observed to switch between less energy-efficient fermen-
tation and more efficient aerobic metabolism by depending upon
the availability of oxygen. However, what is less discussed are the
circumstances where the Pasteur mechanism is over-ridden and
fermentative metabolism occurs even under aerobic conditions –
i.e., overflow metabolism occurs. This situation, known as the
Crabtree effect in yeasts (van Dijken et al., 1993), occurs under
conditions of excess substrate carbon and is characterized by the
operation of fermentation pathways even when oxygen as a ter-
minal electron acceptor is present, potentially allowing the more
efficient utilization of substrate. This phenomenon also occurs
in bacteria and tumor cells under conditions of heterotrophic
substrate excess and, interestingly, under conditions of nitrogen
limitation. Although metabolically wasteful, utilization of low effi-
ciency enzymes appears to allow for faster growth under these
regimes. Apparently, the wasteful metabolism reflects a trade-
off that also rewards the minimization of costs for the catabolic
enzymes, with the cost of the enzymes being either the relative
costs of synthesis of the enzymes or the relative costs of cytoplas-
mic space occupancy by the enzymes of limited cytosolic space
(see next section). These costs are summarized by the phrase “pro-
teomic limitation” as modeled in advanced FBA models that take
account macromolecular expression (O’Brien et al., 2013) or in
course-grained models that explicitly account for the allocation of
proteomic resources (Molenaar et al., 2009; Scott et al., 2010; Scott
and Hwa, 2011).

Overflow metabolism in autotrophs is less studied than in
heterotrophs, but may also play important physiological roles.
Though not metabolic energy spilling per se, all organisms capa-
ble of oxygenic photosynthesis, including cyanobacteria, have
the ability to dissipate excess light energy in the form of non-
photochemical quenching (NPQ) (Niyogi and Truong, 2013). This
involves the dissipation of excitation energy captured by the light-
harvesting antennae by regulated mechanisms that convert the
excitation energy into heat under conditions where the energy
cannot be productively utilized by the photosynthetic reaction cen-
ters. Thus, NPQ is a form of energy spilling. Although excitation
energy spilling is widely discussed in the area of photosynthesis,
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Burnap Autotrophic microbial growth

the concept of metabolic energy spilling in photosynthetic organ-
isms is less thoroughly considered. In principal, metabolic energy
spilling could occur as the release of compounds from the cell or
the action of futile cycles that dissipate, for example, excess reduc-
tant produced by the light reactions. A physiologically significant
example is a futile cycle associated with the CO2-concentration
mechanism (CCM) of cyanobacteria. The CCM is a metabolic
process that not only satisfies the requirement of the inorganic
carbon supply by energetically acquiring bicarbonate, but it also
dissipates excess energy under high light conditions by spilling of
large amounts of acquired bicarbonate by release into the environ-
ment (Tchernov et al., 2003). Therefore, in aquatic systems, light
may produce a net increase in the amount of bicarbonate dissolved
in the media rather than the expected decrease due to uptake by
the carbon fixation activity by the Calvin–Basham–Benson (CBB)
cycle. Because the CCM is powered by the products of the photo-
synthetic electron transport (PSET) chain, ATP and NADPH, the
excretion of bicarbonate provides an escape valve when the elec-
tron transport chain is more active than CO2-fixation by the CBB
cycle, as under conditions of excessive light. Metabolic spilling in
cyanobacteria is also observed in mutants having defects in their
ability to synthesize glycogen are observed to excrete pyruvate and
α-ketoglutarate into the growth medium, apparently to dissipate
excess carbon fixed via the CBB cycle (Carrieri et al., 2012; Grün-
del et al., 2012). Presumably, this occurs because the assimilatory
flux capacity of anabolic metabolism is exceeded by the produc-
tion of these intermediates and the glycogen synthesis pathway
normally absorbs this excess flux of reduced carbon, but in its
absence, excretion of pyruvate and α-ketoglutarate occurs.

“PROTEOMIC LIMITATION” OF GROWTH RATES IS DUE TO
CROWDING LIMITS WITHIN THE CELL
A common thread that emerges in the different modeling
approaches discussed above is the necessity to include a constraint
on the size or expression cost of the cellular proteome in order
to derive critical features of microbial growth. Only when pro-
tein costs are explicitly included in the optimization models do
we find that comprehensive predictions of metabolism possible.
The case in point is the prediction of overflow metabolism in het-
erotrophs. Expression of metabolically inefficient, but less costly
(protein expression cost) pathways leads to maximal growth rates
under conditions of nutrient excess and accounts for the effi-
cacy of overflow metabolism in maximizing cell growth rates. On
the other hand, expression of metabolically more efficient (non-
overflow) pathways catalyzed by enzymes with a higher proteomic
cost, lead to maximal growth rates under conditions of nutri-
ent limitation (Molenaar et al., 2009). However, the expression of
more efficient, but more costly enzymes also comes at the expense
of dedicating less proteomic resources toward the machinery of
protein synthesis (ribosomes and affiliated proteins) so the effi-
ciency of utilizing the limiting nutrient is maximized but only at
the simultaneous cost of allocating less of the proteome to ribo-
somes and cell duplication, which accounts for the lowered rate of
growth. This is consistent with the independent line of reasoning
and experiment that led to the “bacterial growth laws” showing
the allocation of proteomic resources enabled maximal bacterial
growth and accounts for diverse regulatory features controlling

bacterial metabolism and gene expression (Scott et al., 2010; Scott
and Hwa, 2011; You et al., 2013). Similarly, when metabolism
and gene expression are simultaneously integrated into the FBA
model for E. coli growth, overflow metabolism is explained in
terms of differing proteomic costs. Furthermore, growth regimes
that are distinguished by nutrient limitation at lower growth rates
and “proteome-limited” at maximal growth rates, fall out of the
analysis (O’Brien et al., 2013). As discussed throughout, this appar-
ent “proteome-limitation” and the associated “proteomic costs,”
appear to be a consequence of the physical constraints of intra-
cellular crowding in bacteria. The underlying, yet still unproven
assumption, is that expression of metabolically efficient pathways
has a higher proteomic cost. Maximal rates of growth occur where
all nutrients are in surplus and, under these surplus conditions,
intracellular factors place an upper bound on the fastest achievable
growth rates. At lower nutrient levels, growth rates are constrained
by the limiting nutrient(s) and growth rate follows a depen-
dence on nutrient concentration according to the quasi-Michaelis–
Menten formulation of microbial growth (Monod, 1949). Thus,
at saturating levels of nutrient (and for autotrophs and saturating
light intensities), maximal growth rates are limited by intrinsic
factors within the cell, whereas nutrient and light availability limit
growth rates below this threshold.

What sets the upper bound on the maximal growth rate rates
under saturating nutrient and light conditions for cyanobacteria?
There is compelling evidence that the packing density of molecules
and the solvent capacity of the cytoplasm along with the packing
density of membrane complexes in microbial cell membranes all
place severe limits on the size of the proteome in a microbial cell
(Beg et al., 2007; Tadmor and Tlusty, 2008; Vazquez et al., 2008;
Klumpp et al., 2013). The packing of photosynthetic membranes is
very dense in chloroplast (Kirchhoff et al., 2011) and in cyanobac-
teria (Folea et al., 2008). In other words, the cost of a protein can
be evaluated in terms of the space it occupies because expression
of that protein comes at the expense of limiting the available cyto-
plasmic or membrane space allocated for the expression of other
proteins. Atkinson argued that one of the fundamental selective
constraints in the evolution of cells was the conservation of “sol-
vent capacity” with the view that enzymes are optimized to be
efficient, in part, to avoid “wasting solvent capacity” that would
otherwise occur by the accumulation of high concentrations of
metabolic intermediates (Atkinson, 1977). He argued that natural
selection has favored enzymes in a pathway should have lower
Km values to have the fast substrate-product conversion fluxes
even when metabolite concentrations are low. With such effi-
cient enzymes, high flux rates through metabolic pathways can
be maintained even at low metabolite concentrations. Of course
this also assumes that the utilization of products of those path-
ways is equally efficient to avoid product accumulation. But this
gets back to the larger point of proteome allocation: if the prod-
uct of a biosynthetic pathways composed of efficient enzymes is an
amino acid, then it would important that the expression of protein
synthetic machinery is maintained at a high enough level (fraction
of the proteome) to utilize the amino acids being produced. Con-
versely, if there is not a large enough allocation of amino acid
biosynthetic enzymes (or the enzymes feeding nutrient precursors
to those biosynthetic enzymes), then the proteomic allocation to
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protein synthetic machinery would be excessive, and in a cellular
environment where to total proteome is finite, the allocation
would be suboptimal. The concentration of soluble protein in the
cyanobacterial cytoplasm is estimated to be ~500 mg/mL (Moal
and Lagoutte, 2012), similar to the high concentrations estimated
for other bacteria (Zimmerman and Trach, 1991; Cayley et al.,
2000; Ellis, 2001; Cayley and Record, 2003), although accurate esti-
mates are technically challenging. The dense crowding of the bac-
terial cytoplasm is mainly due the volume occupied by protein and
RNA, with the latter mostly associated with ribosomes (Neidhardt
et al., 1990). The proportions of protein, RNA and metabolites rep-
resent about 55, 20, and 3% of the dry mass of the cell (Neidhardt
et al., 1990). Nevertheless, the impact of macromolecular crowd-
ing on the metabolome may be critical because of the limitation
it imposes upon the availability of water for solvation of metabo-
lites (Cayley et al., 2000; Cayley and Record, 2003). That said,
macromolecular diffusion rates are disproportionately decreased
by crowding relative to small smaller solutes (Mika et al., 2010).

Macromolecular processes may be rate-determined by crowd-
ing limitations and this may affect the rate that the components of
the cell can be duplicated. These limitations can be expressed in
terms of characteristic transit times for the occurrence of produc-
tive collisions of metabolic and macromolecular reactants, which
is controlled by the intercellular diffusional parameters involved.
Theoretical analysis using this approach and using the simplify-
ing assumption of spherical cell shapes, calculates the optimal size
for a generic bacterial cell to be slightly larger than one micron,
close to actual sizes in nature (Soh et al., 2013). For example,
the highly crowded nature of the bacterial cytoplasm requires the
expression of high concentrations of translation factors such as
EF-Tu (Klumpp et al., 2013). This is because molecular crowding
restricts the macromolecular diffusion of translational complexes
that cooperate with the ribosome in protein synthesis and thus
high concentrations are required to overcome this diffusional
restriction and to achieve maximal cell growth rates (Klumpp et al.,
2013). The attachment and localization of the enzyme ferredoxin
NADP reductase (FNR) to the phycobilisome rods (Schluchter
and Bryant, 1992) places it in proximity to PSI, which is calcu-
lated to be critical for the fast reduction of NADP+ by linear
electron transport (Moal and Lagoutte, 2012). Again, a mecha-
nistic strategy has evolved to overcome diffusional limitations,
this time realized by localizing the reactants in close proximity
to one another. Recently, chemical analysis of the plastoquinone
pool in cyanobacteria has indicated that the overall balance of
the reduced and oxidized forms of plastoquinone are remarkably
stable, which is in stark contrast to the dynamic changes evident
in the fluorescence transients attributed to the redox state of the
plastoquinone pool’s ability to re-oxidize the electron acceptor
side of photosystem II following its reduction by photochemi-
cal charge separation (Schuurmans et al., 2014). Conceivably, this
disparity may reflect the spatial inhomogeneity in the redox state
of the plastoquinone population with the reduced form accumu-
lating near photosystem II at a rate faster than the rate that it
can diffuse away to the cytochrome b6f complex for oxidation.
Overall, crowding of the cytoplasm and membrane systems with
macromolecules suggests that the necessary modeling constraint
of“proteome-limitation”discussed above may have a physical basis

in terms of available space in the cytoplasm and membrane. This
space limitation hypothesis is in contrast to the other alterna-
tive constraint hypothesis expressed in terms of the costs of ATP
expenditure required for protein synthesis or limitations in growth
due to the energetic costs for macromolecular precursor synthesis
(Akashi and Gojobori, 2002). While metabolic efficiency may be
at a premium under certain circumstances such as low nutrient
environments (Molenaar et al., 2009; O’Brien et al., 2013), it is
likely that the highly crowded cellular milieu places a premium on
the space and solvent capacity occupied by the myriad molecular
constituents of the cell.

While there is a good argument that proteomics costs in the
form of limited space constrain maximal growth rates, one can
ask whether the same constraints apply to growth in the nutrient-
limited region of the growth versus nutrient availability curve? It
is possible that under certain conditions, the expression of addi-
tional nutrient uptake and assimilation proteins could partially
or entirely alleviate the nutrient limitation, but this up-regulated
expression may begin to compete for cellular occupancy space with
other important functional classes of protein. Nevertheless, there
are also conditions where no amount of increased expression of
uptake proteins can alleviate a deficiency of an essential nutri-
ent if the nutrient is present only in vanishingly small amounts.
Thus, it is conceptually useful to consider the two domains of
growth limitation as metabolically limited and proteomically lim-
ited (Figure 1), referring to the nutrient-limited submaximal
growth rate and the nutrient saturated maximal growth rate,
respectively (O’Brien et al., 2013).

HYPOTHESIS: PROTEOMIC LIMITATIONS WITHIN THE
CYANOBACTERIAL CELL CONSTRAIN MAXIMAL GROWTH
RATES AND PHOTOSYNTHETIC ADAPTATION
The overall hypothesis is that growth rates are constrained by the
limits on the total amount of proteins and other macromolecules
that can be fit inside a cyanobacterial cell. Space and crowding
constraints combined with the restrictions on surface-to-volume
ratios are hypothesized to be the fundamental physical restrictions
on the composition and function of the microbial cell, includ-
ing cyanobacteria. As suggested below, this results in a novel and
testable explanation for reductions in growth under conditions
of osmotic stress. Surface-to-volume ratios, combined with cell
shape, determine the capacity for nutrient and waste exchange
across the cell boundaries and give an upper limit on the size of
microbial cells (Soh et al., 2013). Packing, solubility, and solute
concentrations limit how much material can be confined within
the cell volume and membrane domains, which thereby limits the
sum total of expressed proteomic resources, as discussed above. In
effect, optimizing the allocation of protein resources for maximal
cell growth rate is a zero sum game in the sense that production of
more proteins in one functional class occurs at the expense of the
ability to produce proteins in another functional class. This restric-
tion is explicitly accounted for in the phenomenological models
that minimally partition the proteome into three different sectors,
the Q, P, and R sectors with the relative proportions determined by
the growth rate (Scott et al., 2010; Scott and Hwa, 2011; You et al.,
2013). This proteomic restriction is also explicitly incorporated
into the course-grained models of heterotrophic microbial growth
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Burnap Autotrophic microbial growth

(Molenaar et al., 2009) and the extended detailed FBA models of
E. coli growth (O’Brien et al., 2013). Moreover, this leads to a pre-
diction regarding the effects of osmotic stress on growth rates in
cyanobacteria and other microbes as suggested recently (Klumpp
et al., 2013).

HYPOTHESIS 1
Lowered rates of cell growth in salt-adapted cultures are due to
global reductions in the concentrations of macromolecules and
metabolites in the cytoplasm. There is strong evidence that growth
rates in E. coli are inversely proportional to osmotic stress and that
this is due to molecular crowding that is exacerbated by the neces-
sity for the accumulation of compatible osmolytes in the cytoplasm
(Cayley et al., 2000; Cayley and Record, 2003). During osmotic
adaptation, E. coli cells enlarge in volume, keeping the protein
content per cell relatively constant. The cells increase potassium
and osmolyte and also increase the total amount of water per cell
(Zimmerman and Trach, 1991). Combined with the proposal that
diffusion of critical macromolecules (e.g., EF-Tu) limits growth
rates (Cayley et al., 2000; Cayley and Record, 2003; Klumpp et al.,
2013), the dilution of these critical molecules due to greater cell
volume may account for the lower growth rates. There is a wide
diversity of osmotic and salt tolerance characteristics and adaptive
mechanisms among different cyanobacteria (Hagemann, 2011).
Although information on changes in cyanobacterial cell size fol-
lowing adaptation to osmotic stress seems to be scant, at least one
instance of larger cell size has been reported (Erdmann et al., 1992).
Salt-tolerant and halophilic cyanobacteria generally synthesize
compatible osmolytes (e.g., glucosylglycerol in Synechocystis sp.
PCC6803) and accumulate potassium to maintain osmotic balance
when challenged by high salt conditions. Immediately following
an upshift in environmental salt concentrations, there is a decline
in metabolic activities, such as in PSET, and there is a mobilization
of many stress response genes. After this initial period, compati-
ble osmolytes accumulate, damage is repaired and cyanobacterial
cells regain nearly normal levels of metabolic activities and resume
growth, albeit at a lower rate (Hagemann, 2011). The crowding of
the cytoplasmic volume due to the accumulations of high concen-
trations of potassium and compatible osmolyte, while essential for
osmotic adaptation, is hypothesized to reduce the growth rate of
the cells due to occupancy of solvent space. Analysis of molecular
crowding with respect to the concentration of translation factors
necessary to sustain high growth rates in bacteria led to a simi-
lar hypothesis regarding the effect of increasing external osmotic
stress (Klumpp et al., 2013). One of several predictions is that
osmotic-stress adapted cyanobacterial cells ought to have either
lower amounts of protein per cell, or similar amounts of protein
per cell, but cells with larger volumes, as with E. coli (Zimmerman
and Trach, 1991) and the resultant dilution of cellular protein
should correlate with reductions in growth rate.

HYPOTHETICAL MODELING OF THE CONSEQUENCES OF
PROTEOMIC LIMITATIONS IN THE GROWTH AND
ALLOCATION OF PROTEOMIC RESOURCES IN
CYANOBACTERIA
To evaluate the imposition of the constraint of a finite proteome in
relation to photosynthetic growth of a microbe, an optimization

model was constructed based upon the “autocatalytic replica-
tor” models of Molenaar et al. (2009). The original publication
provided the source code of the models and this code was re-
structured to emulate, in a highly simplified manner, autotrophic
metabolism. In contrast to the highly detailed models used in
FBA, these models are “course-grained” models. The models are
implemented in the GAMS language (Andrei, 2013) and were set
up to compute the optimal allocations of proteins necessary to
achieve maximal growth rates (Molenaar et al., 2009). The origi-
nal heterotrophic microbial growth model consists of a simple set
of relations between enzymes and metabolites and is arranged in
a way that satisfies basic assumptions of balanced cell growth, cell
volume, and composition, and are defined by a set of equations
and corresponding stoichiometry matrix (Molenaar et al., 2009).
The present model uses the same strategy, but involves a rudimen-
tary model for autotrophic metabolism (Figure 3). In essence,
the previous heterotrophic model and present autotrophic model
each represent a system of enzymes and transporters that feed
precursors to ribosomes and membrane lipids. The GAMS lan-
guage allows definition of mathematical sets and subsets, such as
proteins and enzymes, allowing for versatile configurations and
operations in the model, which in this case involved optimization

FIGURE 3 | A simplified autocatalytic replicator model of
cyanobacterial growth. The model consists of a simple set of enzymes
(blue outlined boxes), metabolites (yellow boxes), and membrane structural
components (green objects) representing functional classes of molecules
(e.g., enzyme “ribosome” represents are ribosomal proteins and those
affiliated with protein synthesis). The proteins interrelated by a
stoichiometric matrix and kinetic equations as described in the text. The
model optimizes the allocation of finite proteomic resources among the
different proteins (as protein synthesis, blue arrows) to achieve maximal
growth rates. Consistent with the observation that microbial growth rates
scale in direct proportion to the number of ribosomes, this “ribosome
centric” model defines a set of “enzymes” (light blue boxes) that feed
precursors to ribosomes and are, in turn, subject to synthesis by the
ribosomes. Growth rates correspondingly correlate with flux rates for the
generation of precursors for protein synthesis. The model was
implemented in GAMS software environment (Andrei, 2013) using a
previous model of heterotrophic growth (Molenaar et al., 2009).
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Burnap Autotrophic microbial growth

of the size of the subsets. A ribosome subset of the proteins gen-
erates all proteins and the system is autocatalytic in the sense that
ribosomes beget more ribosomes. This is possible due to the coop-
eration of ribosomes with the other proteins that contribute to the
generation of precursor (e.g., amino acids) feeding the ribosomes
and membrane structures. In these highly simplified models, the
“ribosome enzyme” actually represents all proteins involved in
protein synthesis, or in the terminology of the Scott models, the
R sector (Figure 2), which is comprised of all “ribosome affili-
ated” proteins. The system of equations includes expressions that
describe the different allocations of active ribosomes toward dif-
ferent sets of enzymes (substrate assimilation, activating enzymes,
and the ribosomes themselves). In other words, the total pool of
ribosomes sums to one with different fractions of the total ribo-
some pool working on different subsets of protein. The fractional
distribution of ribosomes working on the synthesis of different
subsets of proteins is optimized in these models with the objective
function being the maximization of growth rate, µ. The actual
proportions of the enzymes produced during the optimization of
the model are not likely quantitatively accurate since a fitting of
real kinetic parameters was not attempted either in the original or
present models. However, in the case of the original heterotrophic
models, the overall trends were informative since, for example,
the switch between non-overflow and overflow metabolism could
be emulated and the notion of a proteomic constraint was cru-
cial, as discussed above. In the current form, substrate uptake
involves the aggregate of all potentially limiting inorganic sub-
strate transport and assimilation proteins (STA) and a PSET chain
that generates ATP and reductant. The goal of the model is, essen-
tially, to feed precursors to the ribosomes. The products of the
STA and PSET proteins are combined by the action of precursor
biosynthesis enzymes (PRB). The main difference with the orig-
inal models of Molenaar et al. is the mechanism to generate the
pool of precursors (prc) necessary for the synthesis of protein and
lipid, which is now satisfied by the parallel action of the PSET
and STA proteins. Collectively, these constitute the “core” proteins

of the autotrophic replicator. In addition to these core proteins,
a subset of proteins called “niche-adaptive proteins (NAP)” were
modeled here. These are supposed to represent species-specific
proteins that enable the organism to thrive in a particular niche
and may not be present in other species. An additional difference
with the heterotrophic models is the assumption that, apart from
light, the external substrate is not a source of energy. As with the
original model, there are constraints in the model to provide limits
on the size of the cell, the fraction of proteins occupying the lipid
membrane and cytoplasm. The model is schematically shown in
Figure 3.

EFFECTS OF LIGHT INTENSITY ON GROWTH RATES AT
DIFFERENT CONCENTRATIONS OF AVAILABLE INORGANIC
SUBSTRATE
The behavior of the model under different light and substrate
conditions was explored by iteratively varying these two environ-
mental conditions. Each iteration computed the optimal distrib-
ution of proteomic resources among each of the different enzyme
groups with the overall mathematical objective of maximizing
the growth rate. Figure 4 shows the increase in growth rate as a
function light intensity at three different substrate levels. The sim-
ulated growth rate as a function of light intensity was observed,
as expected, to exhibit a saturation behavior that is modulated by
substrate availability. Although the model is too simple to spec-
ify it, the substrate could represent inorganic carbon and each
of the three curves would represent the light saturation behavior
of autotrophic cell as a function of inorganic carbon availability.
Besides this lack of specificity, the present model has the additional
limitation of not considering important physiological character-
istics, such as the photosystem II to photosystem I ratio, which
are known to be regulated as a function of irradiance and inor-
ganic nutrient availability. Nevertheless, the current model does
provide a first approximation of predicted optimal physiological
responses to alterations in environmental conditions. When the
allocation of the proteome is examined for one of the curves (high

FIGURE 4 | Simulated effect of light intensity and inorganic substrate
concentration on photoautotrophic growth rate and proteome
allocation. Growth rates increase with light intensity, but rates saturate at
different levels set by different levels of substrate concentration (Left).

Allocation of the proteome to ribosomes (RIB) and photosynthetic electron
transport (PSET) and light-harvesting complexes (LHC) as a function of growth
rate (Right Panel) using data from the high light simulation shown in the left
panel.
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Burnap Autotrophic microbial growth

light) in this computational experiment, it is found that the frac-
tion of light-harvesting complexes (LHC) decreases when plotted
as a function of growth rate. This is expected since light is limiting
growth early in the light saturation curve and at low growth rates
with these conditions is reflected by the near linear decrease in the
fraction of the proteome composed of LHC due to the fact that a
smaller antenna provides the sufficient excitation of the PSET. It
is worth noting that PSET is also predicted to be changing in rel-
ative abundance as a function of growth rate during light-limited
growth, so that the amount of LHC providing excitation energy is
adjusted to a “moving target” of different PSET levels. The model
predicts that PSET increases with increasing growth rates, which
fits with the expectation that it should parallel the rate of carbon
fixation and thus biomass accumulation in vivo. A similar pre-
dicted increase in the allocation of proteome toward PSET is also
observed for substrate limitation simulation (not shown). Since
most chlorophyll in cyanobacteria is associated with reaction cen-
ters, the prediction of higher PSET with increasing growth rates
leads to the prediction that faster growing cyanobacteria should
have higher chlorophyll contents on a per cell basis. Evidence for
higher levels of chlorophyll per cell in cyanobacteria have indeed
been observed for light-limited (Deblois et al., 2013) and nitrogen-
limited growth of marine cyanobacteria, at least in the range of
moderate to high growth rates (Dittrich, 2013). It is also worth
noting that while the predicted proteomic allocations of model
may eventually be more directly tested experimentally, the model
is mute on the regulatory features that lead to optimal distribution
of the proteome amongst the functional sectors. Consistent with
the growth hypothesis regarding ribosome content in direct pro-
portion to µ (Schaechter et al., 1958; Worden and Binder, 2003),
the allocation toward the RIB fraction of the cell increases linearly
with growth rate.

HYPOTHESIS 2
Species-specific differences in the maximal growth rates of cyano-
bacteria are due to different proteomic allocations into niche-
specific proteins.

The reported doubling times of cyanobacteria ranges from
~3 h to one or more days. We can use the above considerations
to formulate the following hypothesis for why different species
of cyanobacteria have different maximal growth rates: depend-
ing upon the niche they are evolutionarily adapted to, different
species may have more or less total allocation of protein resources
to NAPs. Hypothetically, cyanobacteria that are adapted to com-
plex environments will need to express additional proteins beyond
the core set of proteins needed for autotrophy. Cyanobacteria with
smaller “fixed” fractions of NAPs will have the capacity for faster
growth because they will be able to devote a greater fraction of
the proteome to this core set of proteins, although they would
correspondingly have less capacity to adapt to non-ideal envi-
ronments. The fastest growing cyanobacteria would thus have the
most proteomic resources devoted to core functions of autotrophic
metabolism and minimal allocation of proteomic resources to spe-
cialized nutrient uptake and assimilation, defense mechanisms,
and other NAPs. To simulate this, the model (Figure 3) includes
a fraction of the proteome that is fixed and representing the NAP.
To explore this idea, the simulation was performed at two different

levels of NAP with the outcome showing that a large investment
in NAP indeed predicts a large decrease in growth rate as might
be expected (Figure 5, top panels). This observation is formally
identical to the production of heterologous protein in the original
heterotrophic models (Molenaar et al., 2009). A further observa-
tion is that the relative proportions of the other proteomic sectors
is fairly similar under in the high NAP and low NAP cell types if
the allocation to NAP protein is excluded (i.e., if the RIB, LHC,
PSET, STA, PRB, and LPB are summed to 100%) (Figure 5, bot-
tom panels). This suggests that the metabolic balance between
these functional sectors is balanced in each cell type and that
all sectors “expand” when the NAP proteins are removed from
the optimization. Although not modeled, deviations from this
trend would be anticipated to the extent that the NAP proteins
utilize additional cellular resources (e.g., reductant) beyond the
synthesis of the precursors that go into forming the NAP class of
proteins.

The last set of simulations that were performed to investigate
the consequence of engineering cells to divert metabolic precur-
sors toward an excreted “energy” product (Figure 6). This scenario
might apply to cells that are engineered for biofuel production, for
example. The simulation is highly simplified in the sense that it
only considers the diversion of ATP and reductant toward a hypo-
thetical excreted product and ignores the more realistic inclusion
of diversion of a fraction of the material substrates (S) toward this
end. A more realistic model will result in proteome allocations that
depend upon the chemical characteristics of the excreted product,
most notably, the C/H ratio of its chemical formula. Nevertheless,
the findings are interesting and show that under these simpli-
fied circumstances, the model predicts a resultant re-distribution
of the proteome in accord with what is observed in experiment.
It has been shown that the cyanobacteria engineered to excrete
sugar have adjusted their metabolism to have increased total pho-
tosynthetic capacity presumable to compensate for the genetically
imposed drain on their metabolism (Ducat et al., 2012).

CONCLUSION
The statistician, George Box stated that “essentially, all models
are wrong, but some are useful” (Box and Draper, 1987). The
autotrophic replicator model (ARM) is probably best consid-
ered a preliminary construction should be useful for bringing
current ideas on heterotrophic microbial growth to the topic
of autotrophic growth. It should also be useful since testable
hypotheses can be derived from the model and packing con-
straint assumption presumed by the model. The present model
was developed on the basis of previous models where it was
concluded that inclusion of “macromolecular costs” is critical
for accurate representation of optimal cellular metabolism and
this is evident when trying to account for heterotrophic over-
flow metabolism (Molenaar et al., 2009). This constraint was
also included in the ARM. It was also concluded that the best
hypothesis for macromolecular costs was probably not the energy
costs, but rather packing constraints limiting the size of the pro-
teome. Accordingly, allocation of proteomic resources is essentially
a zero sum game with the consequence that increased invest-
ment in proteins for niche adaptation, for example, result in
slower growth rates due to correspondingly smaller investments

www.frontiersin.org January 2015 | Volume 3 | Article 1 | 9

http://www.frontiersin.org
http://www.frontiersin.org/Synthetic_Biology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Burnap Autotrophic microbial growth

FIGURE 5 |The effects of the expression of non-core, “niche-adaptive
protein (NAP)” on growth and expression of core autotrophic functions.
Upper graphs depict the simulated distribution of the proteome holding the
NAPs at 5% (upper left) or 60% (upper right) of the total proteome and the
corresponding growth rates (µ) at saturating levels of light (hν) and substrate
(S). Lower graphs show that the relative proportions of the other sectors are
similar despite the reduction of their net amount due to displacement by the
NAPs. Sectors correspond to functional protein groups: inorganic substrate

transport and assimilation proteins (STA), photosynthetic electron transport
chain (PSET) that generates ATP and reductant, precursor biosynthesis
enzymes (PRB). The main difference with the original models of Molenaar
et al. (2009) is the energy source (light) and mechanism to generate the pool
of precursors (prc) necessary for the synthesis of protein and lipid, which is
now satisfied by the parallel action of the PSET and STA proteins. Collectively,
these constitute the “core” proteins of the autotrophic replicator (see
Figure 3).

FIGURE 6 | Simulated diversion of energy precursors to excreted
products alters the allocation of the proteome. Product diversion is
defined as the excretion of 80% of the energy precursor for engineered
product synthesis. Only ATP and reductant are considered in this highly

simplified model, whereas a more realistic model will depend upon the
chemical characteristics of the excreted product, most notably, the C/H ratio
of its chemical formula. See Figure 5 and text for definitions of the functional
protein groups of the model.

in proteomic resources dedicated to cell duplication (e.g., ribo-
somes and energy generation). Proteomic limitation of maximal
growth hypothesis lends itself to experimental tests including
growth slowdowns due to loss of solvent space during osmotic
stress as surmised, but not tested earlier (Klumpp et al., 2013).
Such thinking also provides a heuristic explanation to better
explain why some strains of cyanobacteria and algae exhibit much
faster maximal growth rates than others. The autotrophic lifestyle

requires an enormous investment in the synthesis of photosyn-
thetic membranes and the enzymes of inorganic carbon uptake
and carbon fixation. The ARM formulated is useful for glimps-
ing of trends in adaptation and engineering in cyanobacteria
that can later be more accurately obtained from more sophisti-
cated FBA models or from refinement of the current models to
more accurately represent the kinetic and stoichiometric relation-
ships anticipated in a real cyanobacterial cell. Besides the growth
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hypothesis regarding the linear relationship between ribosome
number and growth rate, additional testable predictions can be
made including the abundance of photosynthetic machinery as a
function of growth rate, species type, and environmental condi-
tion. Improvements would also include modeling different ATP
and NADPH demands under different conditions and the cor-
responding ability to adjust the (photosystem I/photosystem II)
ratios. It would also need to include alternative electron transport
(e.g., cyclic electron flow) and specific nutrient uptake mecha-
nisms such as the CO2 concentrating mechanism. Such consider-
ations are already made in FBA approaches (Knoop et al., 2010;
Nogales et al., 2012), which would then need to be extended to
include macromolecular expression (FBA-ME) (O’Brien et al.,
2013). Furthermore, improvements can be made by trying to uti-
lize the rich modeling literature regarding cyanobacterial and algal
growth that have been effectively applied especially for under-
standing growth dynamics in marine environments (Ross and
Geider, 2009).

Optimal growth ultimately requires that allocation of the pro-
teins constituting different functional modules of the proteome
result in a set of flux balances between the production and uti-
lization of cellular metabolites. It has been argued here that the
main reason for protein allocation being a zero sum game is that
molecular crowding places a ceiling on the amount of protein in
a bacterial cell. In the ARM, the amount and activity of the PSET
proteins is assumed to be sufficient to supply ATP and reduc-
tant at rates that match the demand of enzymes involved in the
generation precursors (PRC) for macromolecular synthesis. Nat-
ural selection has tuned the regulation to ensure optimal protein
levels to achieve this balance. As noted, the ARM does not spec-
ify mechanisms, but it seems likely that metabolic intermediates
that accumulate or are depleted under conditions of imbalance
are good candidates to serve as allosteric modulators of gene
expression. This type of regulation is observed, as one example,
for control of the inorganic carbon uptake mechanism proteins
(Nishimura et al., 2008; Daley et al., 2012). It is also almost cer-
tain that other selective forces modify expression levels of proteins
to not only satisfy flux balance, but also achieve system robust-
ness. For example, the PSET appears to be expressed at levels that
exceed the amounts needed to supply its main products, ATP and
NADPH, to the CBB cycle based upon measurement of photo-
chemical quenching capacity at steady state ambient growth light
conditions. One possibility is that expression levels of the PSET
proteins have evolved to cope with fluctuations in light intensity
and have resulted higher expression levels to be able to the PSET to
absorb peaks in energy input without the generation of damaging
reactive intermediates.
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