
ORIGINAL RESEARCH
published: 10 February 2017

doi: 10.3389/fgene.2017.00009

Frontiers in Genetics | www.frontiersin.org 1 February 2017 | Volume 8 | Article 9

Edited by:

Yann C. Klimentidis,

University of Arizona, USA

Reviewed by:

Rodolfo Jaffé,

Vale Institute of Technology, Brazil

Patrick M. A. James,

Université de Montréal, Canada

*Correspondence:

Erin L. Landguth

erin.landguth@mso.umt.edu

Specialty section:

This article was submitted to

Evolutionary and Population Genetics,

a section of the journal

Frontiers in Genetics

Received: 13 August 2016

Accepted: 18 January 2017

Published: 10 February 2017

Citation:

Landguth EL, Holden ZA,

Mahalovich MF and Cushman SA

(2017) Using Landscape Genetics

Simulations for Planting Blister Rust

Resistant Whitebark Pine in the US

Northern Rocky Mountains.

Front. Genet. 8:9.

doi: 10.3389/fgene.2017.00009

Using Landscape Genetics
Simulations for Planting Blister Rust
Resistant Whitebark Pine in the US
Northern Rocky Mountains
Erin L. Landguth 1*, Zachary A. Holden 2, Mary F. Mahalovich 3 and Samuel A. Cushman 4

1Division of Biological Sciences, University of Montana, Missoula, MT, USA, 2U.S. Department of Agriculture Forest Service,

Missoula, MT, USA, 3U.S. Department of Agriculture Forest Service, Northern, Rocky Mountain, Southwestern and

Intermountain Regions, Moscow, ID, USA, 4U.S. Department of Agriculture Forest Service, Rocky Mountain Research

Station, Flagstaff, AZ, USA

Recent population declines to the high elevation western North America foundation

species whitebark pine, have been driven by the synergistic effects of the invasive blister

rust pathogen, mountain pine beetle (MPB), fire exclusion, and climate change. This

has led to consideration for listing whitebark pine (WBP) as a threatened or endangered

species under the Endangered Species Act, which has intensified interest in developing

management strategies for maintaining and restoring the species. An important, but

poorly studied, aspect of WBP restoration is the spatial variation in adaptive genetic

variation and the potential of blister rust resistant strains to maintain viable populations in

the future. Here, we present a simulation modeling framework to improve understanding

of the long-term genetic consequences of the blister rust pathogen, the evolution of

rust resistance, and scenarios of planting rust resistant genotypes of whitebark pine.

We combine climate niche modeling and eco-evolutionary landscape genetics modeling

to evaluate the effects of different scenarios of planting rust-resistant genotypes and

impacts of wind field direction on patterns of gene flow. Planting scenarios showed

different levels for local extirpation of WBP and increased population-wide blister rust

resistance, suggesting that the spatial arrangement and choice of planting locations

can greatly affect survival rates of whitebark pine. This study presents a preliminary, but

potentially important, framework for facilitating the conservation of whitebark pine.

Keywords: assisted migration, CDMetaPOP, computer simulations, ecological niche modeling,

genotype-environment associations, landscape genomics, wind resistance

INTRODUCTION

Whitebark pine (WBP; Pinus albicaulis) is one of the most intensively studied North American
conifers, in part due to its unique relationship with the grizzly bear (Ursus arctos horribilis), Clark’s
nutcracker (Nucifraga columbiana), and over 20 other wildlife species (Lorenz et al., 2008), which
depend on its seeds for food; thus it is considered a keystone and foundation species in high
elevation forests within its range. Thus, recent declines associated with the spread of mountain
pine beetle (MPB; Dendroctonus ponderosae), and the introduced invasive fungal pathogen white
pine blister rust (WPBR; Cronartium ribicola) have led to consideration for listing the species
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as threatened under the Endagered Species Act in 2010 (Federal
Register 2010), intensifying interest in developing strategies for
its conservation and management (see recent reviews by Keane
et al., 2012, 2016).

One of the primary threats associated with WBP decline is
WPBR-an invasive fungal pathogen introduced to the Pacific
Northwest of North America around 1910 (Brar et al., 2015).
WPBR affects the productivity and distribution of WBP by
forming cankers, which girdle branches and boles, resulting in
reduced cone production and increased tree mortality. It has
since spread to five-needle pine species across the United States.

Genetic blister rust resistance was first identified in small
samples of open-pollinated families by Bingham (1972) and
Hoff et al. (1980). A larger trial of 110-seed sources later
established the efficacy of identifying, propagating, and deploying
blister rust resistant seedlings (Mahalovich et al., 2006). While
major gene resistance has not been found in WBP, three
resistance mechanisms exhibit as single-gene recessives. The
no-spot and needle shed resistance mechanisms are present in
very low frequencies (<1%), while the short shoot resistance
mechanism is present in low frequency (5.2 percent, Mahalovich
in prep). In the US Northern Rockies, offspring of over 1300
phenotypic selections are under evaluation in support of active
restoration by planting proven, rust-resistant seedlings which
have a combination of no-spot, needle-shed, bark reaction and
shoot resistance mechanisms (Mahalovich and Dickerson, 2004;
Greater Yellowstone Coordinating Committee whitebark pine
Subcommittee, 2011; Keane et al., 2012, 2016).

Advances in landscape genetics and population genomics
provide a robust means to predict the effects of landscape
structure and climatic gradients on genetic structure, population
connectivity, and adaptive genetic variation (Manel and
Holderegger, 2013; e.g., Shryock et al., 2015). Recently developed
simulation modeling tools provide effective means to link
landscape patterns to gene flow and adaptive evolutionary
processes to predict genetic characteristics of the population
across its range under current and potential future conditions
(Scribner et al., 2016). Simulation models offers several
important benefits for landscape genomic research (Landguth
et al., 2015). For example, simulation modeling can be used
to predict how a system or its behavior will change if certain
processes or parameters are altered. This is particularly relevant
for predicting the effects of environmental change on a system,
or for evaluating the likely outcomes of various management
scenarios.

Our primary objective for this study was to develop a
simulation modeling framework for assessing the connectivity of
WBP across the US Northern Rocky Mountains and to assess the
potential adaptive significance of genetic blister rust resistance.
Specifically, we first developed climate nichemodels forWBP and
WPBR distributions. Then, we used these models with an eco-
evolutionary landscape genetics model to simulate demographic
and genetic (i.e., demogenetic; Frank et al., 2011) responses with
and without the presence of white pine blister rust.We conducted
simulations that introduced a resistant gene for WPBR and
simulated potential planting strategies with this genotype. We
also tested the influence of wind field directionality on the ability

of pollen to disperse rust-resistant genes through the landscape.
Finally, future WBP landscape genetics studies are discussed,
including planting strategies with WPBR resistant individuals in
conjunction with adaptive simulation modeling experiments.

MATERIALS AND METHODS

Whitebark Pine Regeneration and White
Pine Blister Rust Suitability Model
We developed correlative niche models (CNM; aka species
distribution or habitat suitability models; Thuiller et al., 2005;
Elith and Leathwick, 2009) forWBP andWPBR using occurrence
records (presence and absence) to develop a probabilistic model
of occurrence based on statistical relationships with climatic,
topographic and biophysical variables. One criticism of CNM’s
applied to long-lived tree species is that they typically correlate
adult occurrence records with climate data from relatively short
time periods (i.e., 30–50 years). This means that at some
locations, an adult tree >300 years old may have established
under a very different climate than the one being used to
represent its climatic suitability. Recent studies have suggested
using juvenile rather than adult occurrences to provide a more
realistic characterization of the relationship between a species
and a suitable climatic period (Lenoir et al., 2009; Zhu et al.,
2011; Bell et al., 2014; Dobrowski et al., 2015). In this study,
we used juvenile (<130 mm diameter) occurrence records from
Forest Inventory and Analysis (FIA) plot data on all public
lands occurring within US Forest Service Northern Region.
As predictors we developed a suite of high resolution (240
m) temperature, climatic water balance, and snow distribution
models. Gridded data were extracted using the raster library in
the R software environment using bilinear interpolation of the
four nearest neighbor cells at each FIA plot location. Additional
details on the development of the climatic water balance data are
provided in Appendix 1. Details about the CNM for WBP and
WPBR occurrence are provided in Appendixs 2, 3, respectively.

Whitebark Pine Simulation Model
We used CDMetaPOP (Landguth et al., 2016) to simulate how
the presence of WPBR and individuals with resistance to WPBR
influence WBP demogenetics. CDMetaPOP is a landscape-level,
spatially-explicit, and individual-based eco-genetic model of
meta-population processes. CDMetaPOP simulates demogenetic
processes as interactions between individuals located across
a number of “patches” (hereafter, stands) containing meta-
populations. Individuals within a stand are assumed to share
a common environment (e.g., carrying capacity, temperature).
Within each stand, a class (age/stage/size) structure is used
to simulate complex stochastic demographic processes, while
movement of individuals (i.e., seeds and pollen) between
stands is controlled as a function of spatially-explicit landscape
resistance or permeability surfaces (e.g., directional wind
resistance to movement). More simply stated, a landscape
is populated with stands, which in turn are populated with
individual trees. At the stand level, individuals undergo
growth, reproduction, migration, and mortality, and the
resulting genetic processes are simulated over time at the
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individual-tree level. For more detailed information on the
processes simulated in CDMetaPOP, see the user manual
(https://github.com/ComputationalEcologyLab/CDMetaPOP).

Our WBP model required parameterization of a number
of species-specific processes (see Appendix 4, Figure A4.1 and
Table A4.1). After initialization of the model (e.g., stands,
stage structure, and genetics), pollen dispersal (age 0) occurs
during the summer. Then, cones from the current year’s
pollination/fertilization event emerged on each tree and seeds
dispersed in the fall (age 1). Over winter, stage-structured density
dependent mortality was implemented as a function of each
stand’s carrying capacity (K). Growth of all individuals and
establishment of new mature individuals (age 20+) occurred by
spring and the additional WPBRmortality on mature individuals
was implemented at this time. More detailed methods with data
sources used to parameterize the model are outlined below and
in Appendix 4, Table A4.1.

Stands, Carrying Capacity, Age, and Size Classes
The WBP simulations were constrained to an extent in the US
Northern Rockies that was delineated a priori by four zones
(i.e., “seed zones”; Mahalovich and Hipkins, 2011; Figure 1). The
extent contained 1059 initial spatially-delineated stand locations

FIGURE 1 | Study area defined by the northern Rockies seed zones

(Mahalovich and Hipkins, 2011) with initial 1059 simulated stand

locations. WPBR relative spatial selection mortality shown for each stand.

separated by at least 5 km. These WBP stands were designated
by selecting all cells with >0.5 probability of WBP suitability, as
predicted by the CNM described above (see Section Whitebark
Pine Regeneration and White Pine Blister Rust Suitability Model
and Appendix 2). For simplicity, we assumed a carrying capacity
of 100 trees at each stand location.

We initialized the model at time = 0 with a random
distribution of 500 age classes (Burns and Barbara, 1990). We
ran the model without genetic exchange for an initial 25 years
to allow the age distribution to stabilize, and then began genetic
exchange (see next section). We defined age 0 “individuals” as
fertilization events, which 12 months later emerged as age 1
cones producing seeds for dispersal. An annual increment of
0.2 cm diameter at breast height (DBH) (Keane et al., 2007)
was used to grow each individual tree. As trees progressed
through each size class, size-linked parameters (e.g., probability
of mortality, probability of maturation, and fecundity) varied
(Appendix 4).

Neutral and Adaptive Genetics
We initialized each individual’s neutral genotypes with allele
frequency files that match the frequency observed in each
seed zone (Mahalovich and Hipkins, 2011), comprised of 16
loci with at most nine polymorphic alleles per locus. We
did not consider mutation, which is reasonable considering
the short simulation time period. In addition, we added a
bi-allelic adaptive locus and assumed that only one gene
confers resistance to WPBR (e.g., Kinloch et al., 1999; Lui
et al., 2016). We initialized this selection-driven locus at
time = 25 years with 0.01 and 0.99 frequency for the first
and second allele, respectively. Any individual homozygous at
the first allele (i.e., AA) in this selection-driven locus was
assumed to have a selective advantage against blister rust
infection.

This simple single-locus selection model was chosen because
major gene resistance between the host species and pathogen
has not been found in WBP (Bingham, 1983; Kinloch and
Dupper, 2002), and much of our understanding of blister
rust gene resistance comes from interior western white pine
(Pinus monticola; Kinloch et al., 1999) and recently, Rocky
Mountain white pine (Pinus flexilis; Lui et al., 2016). Thus,
we assumed the blister rust resistance mechanisms acting in
WBP are comparable to these species. Furthermore, the interior
western white pine (Pinus monticola) blister rust screening
program (Bingham, 1983; Mahalovich, 2010) serves as the
basis for WBP blister rust screening trials (Bingham, 1983;
McDonald and Hoff, 2001; Mahalovich et al., 2006). While
there are other presumed single-gene recessive traits present
in low frequency in blister rust screening trials (Mahalovich
et al., 2006), the blister rust resistance trait chosen for modeling
was the short shoot fungicidal reaction (Hoff and McDonald,
1971) due to the higher frequency of these genotypes in
blister rust screening trials from 1999 to 2015 (Mahalovich,
unpublished data). This resistance mechanism involves necrosis
at the base of an infected needle fascicle bundle; thus, normal
canker growth is halted and the branch and tree stem remains
disease-free.
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White Pine Blister Rust Resistance and Mortality
CDMetaPOP implements natural selection analogously to
the adaptive-, or fitness-landscape of allele frequencies as
originally envisioned by Wright (1932). This functionality
enables extension of landscape genetic analyses to explicitly
investigate the links between gene flow and selection in complex
landscapes at the level of the individual (see Landguth et al.,
2012a). We used WPBR occurrence (see Section Whitebark Pine
Regeneration and White Pine Blister Rust Suitability Model)
values at each stand as a proxy for differential mortality
applied to mature trees only (e.g., WPBR occurrence of 0.5
would produce a 50% mortality at that stand; Figure 1). WPBR
mortality rates in each stand were implemented based on the
genotype of each individual and increased survival was associated
with individuals that had AA in the selection-driven locus,
which varied depending on the simulation scenario (see section
Simulation Scenarios and Analysis). This allowed us to model
evolution of WPBR resistance based on a single locus under
selection with a single genotype being selected for.

Maturation and Fecundity
Mature individuals were defined as those of age 20 and greater.
AlthoughWBPmay typically take longer to reach maturity when
growing on poorer sites or at higher elevations (e.g., Krugman
and Jenkinson, 1974; Mahalovich unpublished data), we used
a lower bound of 20 years to allow for more generations in
the model (Fire Effects Information System; http://www.fs.fed.
us/database/feis/plants/tree/pinalb/all.html accessed September,
2015). We implemented a size-based fecundity model to
determine the number of seeds produced at a given basal area per
stand following the individual tree DBH conversion to basal area:
Basal Area = 0.00007854 ∗ DBH2. To obtain a size-based seed
production per individual tree, we used the value of 500 cones per
1 basal area (m2/ha; Barringer et al., 2012) multiplied by 20 seeds
per cone. Although cone and seed production varies spatially and
temporally in our study area (Owens et al., 2008), no masting was
considered and we assumed lower bound estimates (e.g., as low
as 10 seeds per cone; Pigott, 2012) to reduce computational time.

Mortality
In order to isolate the effects of WPBR mortality, we only
considered density-independent mortality based on class-based
mortality probabilities.We applied a 99% probability of mortality
to age 0 class to mimic 1% seed survival (DeMastus, 2013). We
implemented a cumulative 35% probability of survival for age
classes 1–15 (Izlar, 2002). Trees age 500 and older were assigned
25% probability of survival, which allowed for occasional long-
lived trees (i.e., >500 years) given the length of the simulation
time. If a stand reached K, then a random removal of excess
individuals was conducted (e.g., Balloux, 2001).

Reproduction, Pollen Dispersal, and Wind

Directionality
Reproduction within and across stands was monecious with
selfing allowed. We considered two hypotheses for pollen
movement in the summer months. Our first hypothesis assumed
pollen moved according to a null model of isolation-by-distance:

probability of pollen dispersal to a respective female cone
locations was a function of the inverse-square Euclidean distance
(Landguth and Cushman, 2010) with a 50%maximum study area
distance threshold (450 km). Because pollen dispersal is governed
by wind patterns, we also considered a second hypothesis
that included directional movement with respect to prevailing
wind direction (i.e., isolation-by-distance and wind). Thirty-year
average (1979–2010) mean annual average wind direction was
calculated from theNorth American Regional Reanalysis (NARR;
Mesinger et al., 2006). Using the landscape connectivity program,
UNICOR (Landguth et al., 2012b), we created asymmetrical costs
for traversing with and against wind direction for all pairwise
stand-to-stand locations. UNICOR creates a graph of a given
resistance surface, which allows start and end node locations
to find shortest paths on the resistance surface (i.e., Dykstra’s
algorithm). Given a wind direction map (and ignoring vector
magnitude), a resultant vector was created in the 8-Moore
neighborhood to weight direction in the graph creation. This
produced an added cost resulting from the resultant vector
calculation and when a path was traversing from a point and
against wind direction, producing an asymmetrical cost distance
matrix.

Cone/Seed Dispersal
Age 1 cones from the previous year were dispersed from
individual trees (e.g., Clark’s nutcracker, a bird which disperses
and caches WBP seeds) following an isolation-by-distance
movement pattern similar to pollen dispersal: probability of cone
dispersal to a new stand location was a function of the inverse-
square Euclidean distance with a 30 km maximum distance
threshold (Lorenz et al., 2011). This produced the majority of
cones staying in the same stand or nearest neighbor stands
(i.e., dropping near parent tree) with occasional longer distance
cone dispersal (e.g., Clark’s Nutcracker). In addition to 1% seed
survival (DeMastus, 2013), the ability for a seed to establish in a
new stand location was determined based on resource availability
(i.e., carrying capacity not exceeded in the destination stand).

Simulation Scenarios and Analysis
We conducted two blocks of simulation scenarios. The first
block of simulations was used to help understand the added
influence of WPBR mortality with and without an introduced
gene that was resistant to WPBR. The second block of
simulations was used to look at different spatial patterns
for planting individuals with a resistance to WPBR. The
spatially planting strategies we explored included planting in
two regions (seed zones), as well as a broader distribution
of planting across the entire extent outside of wilderness
areas (Figures 2A–C). Each block compared pollen dispersal
simulations for isolation-by-distance and directional pollen
dispersal via wind. Table 1 lists each block and respective
scenario.

We ran simulations for 130 years, with the first 25
years considered “burn-in” for the population dynamics and
age distributions to stabilize. We plotted mean population
abundance, allelic diversity, and heterozygosity for all stands and
for each block scenario. We used 10 replicate simulation runs
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FIGURE 2 | Study area considered using the northern Rockies seed zones (Mahalovich and Hipkins, 2011) with initial 1059 stand locations. (A) WPBR

resistant gene introduced in INLA zone stands (yellow dots). (B) WPBR resistant gene introduced in CLMT zone stands (yellow dots). (C) WPBR resistant gene

introduced in stands (yellow dots) outside of wilderness areas (brown dots).

TABLE 1 | Simulation scenarios (WPBR–white pine blister rust).

Block Name Scenario Name Description

Block 1: WPBR mortality and

resistance

No mortality The null model in which no WPBR mortality considered

All mortality All stand locations applied the added WPBR mortality (Figure 1) regardless

of genetic makeup.

Resistant gene in all zones All stand locations applied the added WPBR mortality (Figure 1). One

genotype assumed to confer resistance to WPBR.

Block 2: WPBR resistance by planting

strategy

Resistant gene in INLA zone All stand locations applied the added WPBR mortality. One genotype

assumed to confer resistance to WPBR only in the most northern zone

(INLA; Figure 2A).

Resistant gene in CLMT zone All stand locations applied the added WPBR mortality. One genotype

assumed to confer resistance to WPBR only in a central zone (CLMT;

Figure 2B).

Resistant gene in non-wilderness All stand locations applied the added WPBR morality. One genotype

assumed to confer resistance to WPBR only outside of wilderness areas

(Figure 2C).

to assess variation in each metric. For a spatial representation
of genetic differentiation, we calculated an overall pairwise
genetic differentiation (GST) across all loci using the method
of Nei (1973) and for each pair of zones at specified year
t= 100.

RESULTS

Whitebark Pine and White Pine Blister Rust
Maps
Results from the CNM for the presence or absence of juvenile
WBP and WPBR within US Forest Service Northern Region

are shown in Figure 3. See Appendix 2, 3 for supporting
documentation on models. The distribution of juvenile WBP
was reasonably well predicted by biophysical predictors, and
presence or absences of juveniles was correctly classified at 92%
of the forest inventory plots (Table A2.1). Mean maximum
daytime temperature, followed by mean annual water balance
deficit (unit of measure), were the strongest predictors in the
WBP model. The model predicts that WBP occurs with highest
probability at high elevation, cold sites with moderate to low
water balance deficit. The distribution of WPBR was moderately
well explained by climatic and biophysical predictors, with an
overall classification accuracy of 81%.
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FIGURE 3 | Probability of occurrence maps for (A) whitebark pine and (B) white pine blister rust.

FIGURE 4 | Population abundance through time for each scenario in (A) Block 1 and (B) Block 2.

White Bark Pine Landscape Demogenetic
Simulations
Overall population mean abundances (i.e., all stands) for each
block of scenarios are shown in Figure 4 for the simplest model of
isolation-by-distance with no wind resistance included for pollen
dispersal. Block 1 “No mortality” (Figure 4A black dashed line)
shows stable population dynamics, while in the “All mortality”
scenario the population declined smoothly to close to 0 by time
100 (Figure 4A red dash-dotted line). The introduction of a
WPBR resistant gene for all individuals at every stand while still
applying WPBR differential mortality led to stable population
sizes of approximately 1/4th of the “No mortality” scenario
(Figure 4A blue solid line).

Block 2 scenarios are shown in Figure 4B. Planting of
individuals with resistance in the two different zones resulted in
near extirpation of WBP (central CLMT zone; Figure 4B yellow
dash-dotted line, and northern INLA zone; Figure 4B green

line). Figure 4B also shows the scenario for the more widely
distributed planting outside of Wilderness areas (Figure 4B cyan
dotted line), which produced a stable population abundance at

approximately 1
/

2 of the “Resistant gene in all zones” (Figure 4B
blue solid line). Similar results for mean stand growth rate are

shown in Appendix 4 (Figures A4.2a,b).
Overall population mean allelic diversity is shown in

Figure 5 for the model of isolation-by-distance with no wind

resistance included for pollen dispersal. The decline in allelic
diversity revealed patterns similar to those of the population

abundance graphs. The allelic diversity in the null model of
no spatial differential mortality remained relatively constant at

0.39 (Figure 5A black dashed line). In the extreme scenario

where WPBR was applied to every stand, allelic diversity steeply
declined to 0.2 (Figure 5A red dashed-dotted line) and in the
scenario in which WPBR resistant genotypes were planted in
every stand, allelic diversity remained close to the null model
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FIGURE 5 | Allelic diversity through time for each scenario in (A) Block 1 and (B) Block 2.

(0.38; Figure 5A blue solid line). However, there was a greater
loss in allelic diversity with the central (CLMT) zone planting
scenario (0.2; yellow dash-dotted line; Figure 5B) compared to
the northern (INLA) zone planting scenario (0.3; green dashed
line), despite equivalent population abundance, showing how
genetic diversity may be more sensitive to spatial planting than
overall abundance. Furthermore, planting of resistant WPBR
individuals in a continuous distribution across the analysis extent
produced higher allelic diversity numbers than the zone-specific
planting (Figure 5B cyan dotted line). Similar results are shown
for heterozygosity in Appendix 4 (Figures A4.3a,b).

Genetic differentiation for each zone is shown in Figure 6

for time 100 for the model of isolation-by-distance with no
wind resistance. The “No mortality” scenario (Figure 6A) shows
little difference in genetic differentiation through time. However,
as WPBR mortality is applied, genetic differentiation increases,
with the largest differentiation in the “All mortality” scenario
(Figure 6C). In fact, with the “All mortality” scenario, the CLMT
zone becomes extirpated. The uniform introduction of a resistant
WPBR gene produced patterns of genetic differentiation among
zones similar to the “No mortality” scenario, with the exception
of the INLA zone showing slightly higher differentiation
(Figure 6D). The right panel in Figures 6C–F shows the Block 2
scenarios that varied spatial planting strategies for resistant genes
to WPBR. Genetic differentiation increased under all planting
strategies, with local extirpation occurring with the CLMT zone-
specific scenario (Figure 6E). Genetic differentiation for non-
Wilderness area planting of resistant genes only slightly increased
(Figure 6F) from the null model of “No mortality” (Figure 6A).

When we included the effects of directional wind resistance
on pollen dispersal we see an overall increase in genetic
differentiation across all scenarios (Figure 7) with the exception
of the “No mortality” scenario (Figure 7A), which remained at
the same level of genetic differentiation as with the model of
just isolation-by-distance. We also see more local extirpation,
in particular in the scenario in which individuals with WPBR
resistance are only planted in non-Wilderness areas (Figure 7F).

These simulations show that incorporating more realistic effects
of spatial processes, such as wind resistance, reduces pollen
dispersal capability, thus reducing the ability of resistance genes
to propagate through the landscape.

DISCUSSION

The goal of this paper is to provide an example of integrating
species distribution modeling with landscape genetic simulation
of neutral gene flow and adaptive evolution. Our specific focus
was on exploring the effects of different levels of pathogen
lethality and gene flow on the evolution of blister rust resistance
in WBP and the effectiveness of several scenarios of planting rust
resistant genotypes of WBP in different spatial configurations.
This is the first simulation experiment to examine local and
regional demogenetic patterns to the placement of resistant
individuals, and the first to quantify differences in adaptive
evolutionary processes as a function of directional and isotropic
resistance to dispersal.

We first presented climate niche models for WBP and
WPBR distributions. We used the climate niche models with
a new eco-evolutionary landscape genetics model to simulate
demogenetic responses with and without the presence of the
disease agent, white pine blister rust. These models allowed us to
produce baseline null models of a ”healthy” disease-free system
(e.g., Figure 4A black dashed line) with stable demographics
and genetics and an extreme case of complete disease-ridden
system (e.g., Figure 4A red dash-dotted line) with crashing
demographics and genetics.

We then introduced individuals with a genotype that
conferred resistance to WPBR and simulated potential planting
strategies with this genotype in example zone-specific locations
and across more broadly distributed areas across the study extent
(i.e., outside of wilderness areas). This allowed us to quantify
how much the introduction of disease resistant genotypes might
mitigate the effects of WPBR and to evaluate this model systems
sensitivity to the extent and pattern of introduction of disease
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FIGURE 6 | Isolation-by-distance: G’ST values for each seed zone at year 100 for Block 1 scenarios: (A) the null scenario “No mortality,” (B) the scenario in

which a resistant gene was introduced, (C) the scenario in which all stands receive WPBR mortality (“All mortality”) and for Block 2 scenarios: (D) the scenario in which

a resistant gene was introduced in only the INLA zone, (E) the scenario in which a resistant gene was introduced in the CLMT zone only, (F) the scenario in which a

resistant gene was introduced outside of wilderness areas only.

resistant genotypes. Our results demonstrate that different
patterns of planting resistant genotypes can influence genetic
outcomes, and that genetic diversity and differentiation are more
sensitive than population dynamics (Figure 5B compared to
Figure 4B). Furthermore, planting of resistantWPBR individuals
in a systematic distribution across the study area extent

produced much higher allelic diversity numbers than more
localized “clusters” (Figure 5B). A growing body of research has
suggested that the loss of genetic diversity with increased disease
may be a crucial mechanism driving population extinction
risk (Whiteman et al., 2006). Thus, this finding could have
additional important implications for management planning and
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FIGURE 7 | Isolation-by-distance with directional wind resistance: G’ST values for each seed zone at year 100 for Block 1 scenarios (left panel): (A) “No

mortality,” (B) “blister rust resistance in all zones,” (C) “All mortality” and Block 2 scenarios (right panel): (D) “Resistance in INLA zone,” (E) “Resistance in CLMT zone,”

(F) “Resistance in non-wilderness.”

suggests that strategies should focus on implementing broad-
scale, spatially continuous introductions rather than focusing
on concentrating planting of disease resistant genotypes in
particular nodal populations (e.g., Oyler-McCance et al., 2013).
However, this also implies potential logistical limitations to
effective management of WBPR through introduction of disease
resistant genes across broad regions. Specifically, for rust

resistance to spread in a local population it must be introduced
with sufficiently high frequency to not be rapidly lost through
drift before it can spread through selection. This is more
easily achieved through concentrated introductions in patches or
zones. However, our results show that broad-scale, continuous
introductions are needed to effectively mitigate population and
genetic effects of WPBR. It is not clear whether resources could

Frontiers in Genetics | www.frontiersin.org 9 February 2017 | Volume 8 | Article 9

http://www.frontiersin.org/Genetics
http://www.frontiersin.org
http://www.frontiersin.org/Genetics/archive


Landguth et al. Simulating Planting of Whitebark Pine Resistance

be sufficiently invested to implement such widely distributed
planting at sufficient density to produce a lasting effect on the
population.

Our results also show that large differences in predicted
genetic differentiation are produced when models use simple
isolation-by-distance assumptions as compared to when they
implement more realistic spatial processes, such as isolation by
resistance. Specifically, scenarios that incorporated the influence
of wind resistance on the ability of pollen to disperse resistant
genes through the landscape produced much higher rates of local
extirpation along with higher genetic differentiation (Figure 7).
These simulations showed that incorporating more realistic
landscapes that control for movement, such as wind resistance,
reduces pollen dispersal capability, thus reducing the ability of
resistance genes to propagate through the landscape. This has
important implications for spatial genomic and evolutionary
modeling, most of which has to date utilized simple models
of isolation-by-distance controlling gene flow (but see Forester
et al., 2015). Our results show that it is essential to move this
work into an explicitly landscape genomic framework in which
gene flow is realistically driven by spatial patterns of landscape
features that influence dispersal (such as wind fields in this
case).

To produce reliable inferences about implications of adaptive
variation, researchers must unambiguously determine whether
markers for key adaptive traits, such as blister rust resistance,
are under selection and identify the factors in the environment
that drive that selection (Joost et al., 2013; Rellstab et al., 2015).
This, however, remains a challenging task (see Vitalis et al., 2001;
Luikart et al., 2003; Angeloni et al., 2011). For example, outlier
detectionmethods will often detect signals of selection inmarkers
that are not themselves under selection, but instead just linked to
a gene that is (e.g., Jones et al., 2014). Moreover, when numerous
regions of the genome are under divergent selection, outlier
analyses can miss many regions that clearly are under selection
(Michel et al., 2010). Further complications arise for the ability
to detect adaptive loci when landscape configuration, dispersal
ability, and selection strength intertwine (Forester et al., 2015),
as well as the effects of sampling through design, replication,
and resolution of markers (e.g., number of SNPs) (e.g., De Mita
et al., 2013; Lotterhos and Whitlock, 2015). Developing methods
for reliably identifying markers under selection is a major
ongoing theme in landscape genomics research. Common garden
experiments with reciprocal transplant of genotypes is a robust
way to assess environmental selection (e.g., Whitham et al.,
2006; Cushman, 2014) and can be readily extended to evaluate
the interactions between environmental selection and pathogen
resistance. For the simulation framework identified here to be
truly useful to understand the potential of genetically mediated
blister rust resistance to mitigate impacts onWBP populations, it
will be important to identify the genetic mechanisms controlling
resistance and how they may be linked to selection on other
factors, such as drought and cold tolerance.

There are several lines of addition future work which should
be explored to extend the scope of what we have presented
here on the spatial dynamics of adaptation to the blister rust

pathogen and the potential effectiveness of different strategies of

planting resistant genotypes. First, this paper used a simple one-
locus model of genotype-environment association. While this is
a model that is widely used in theoretical evolutionary ecology
(Coyne and Orr, 2004) and genotype-environment association
testing (e.g., Jones et al., 2014; Forester et al., 2015) and applies
to some proposed blister rust mechanisms (Kinloch et al., 1999),
the majority of micro-evolutionary processes are likely mediated
through polygenetic selection in whichmany loci each contribute
relatively small fitness effects. This paper serves as an initial
analysis of a simple classical model of one locus selection
which provides insight. However, future modeling work should
explore how the blister rust distribution and planting of resistant
genotypes interacts within the context of multiple loci/allele
selection, pleiotropy, and epistasis.

In addition, while this paper is the first to combine
empirical data, experimentation, and large-scale population-wide
simulation modeling, WBP and WPBR are complex systems that
are still imperfectly understood and simulation models are a
simplified representation of reality. Future studies should invest
in improving how WBP and WPBR biology are represented in
simulations (e.g., more realistic growth models or disease spread
dynamics) and assess sensitivity and uncertainty in these systems.
For example, simulations could explore the effects of habitat
quality and density-dependent processes (Pfluger and Balkenhol,
2014) on the interaction between rust resistance and white bark
pine population dynamics. In addition, simulation experiments,
such as presented here can describe the processes affecting
population and identify the conditions under which they have
important influences. However, models without data are not
compelling. It is essential to confront thesemodels with empirical
data on the actual patterns of genetic differentiation in complex
landscapes, and to confirm the fitness relationships underlying
these patterns in experimental studies, such as common gardens
(Cushman, 2014).
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