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Inference of inter-species gene regulatory networks based on gene expression data is an
important computational method to predict pathogen-host interactions (PHIs). Both the
experimental setup and the nature of PHIs exhibit certain characteristics. First, besides
an environmental change, the battle between pathogen and host leads to a constantly
changing environment and thus complex gene expression patterns. Second, there might
be a delay until one of the organisms reacts. Third, toward later time points only one
organism may survive leading to missing gene expression data of the other organism.
Here, we account for PHI characteristics by extending NetGenerator, a network inference
tool that predicts gene regulatory networks from gene expression time series data. We
tested multiple modeling scenarios regarding the stimuli functions of the interaction
network based on a benchmark example. We show that modeling perturbation of a
PHI network by multiple stimuli better represents the underlying biological phenomena.
Furthermore, we utilized the benchmark example to test the influence of missing data
points on the inference performance. Our results suggest that PHI network inference with
missing data is possible, but we recommend to provide complete time series data. Finally,
we extended the NetGenerator tool to incorporate gene- and time point specific variances,
because complex PHIs may lead to high variance in expression data. Sample variances are
directly considered in the objective function of NetGenerator and indirectly by testing the
robustness of interactions based on variance dependent disturbance of gene expression
values. We evaluated the method of variance incorporation on dual RNA sequencing
(RNA-Seq) data of Mus musculus dendritic cells incubated with Candida albicans and
proofed our method by predicting previously verified PHIs as robust interactions.

Keywords: network inference, NetGenerator, transcriptomics, dual RNA-Seq, microarrays, gene regulatory
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1. INTRODUCTION
Organisms need to constantly adapt to environmental changes.
On a molecular level, this is mediated by complex signaling cas-
cades, which transmit the signal to cell nuclei. Transcription
factors bind to their target genes, which consequently leads to a
change in gene expression. This way, biological systems adapt to
new environmental conditions.

In most cases underlying networks are unknown. This is espe-
cially interesting for interacting organisms, such as pathogens
and host. Both the experimental setup and the nature of PHIs
exhibit certain characteristics: (i) pathogen and host are in a bat-
tle leading to constantly changing conditions, (ii) a change in gene
expression is triggered by new environmental conditions and the
response of one organism might initiate faster or persist longer
than the response of the other organism and (iii) two different
organisms interact and eventually one survives which can lead to
missing data time points.

The immune system of the host is permanently active to rec-
ognize and eliminate infectious microorganisms. As a first line
of defense, components of the innate immune system such as

the complement system, immune cells, and antimicrobial pep-
tides recognize pathogen-associated molecular patterns (PAMPs).
In contrast, pathogens developed many strategies to evade these
mechanisms. They can shield microbe-associated cell surface pro-
teins, mimic host surfaces or secrete proteases degrading host
immune proteins (Zipfel et al., 2011). Nevertheless, the interac-
tion with host cells is also important for pathogens, e.g., to acquire
nutrients and to replicate (Casadevall and Pirofski, 2000).

The transcriptome of pathogen and host can be measured by
physical separation of pathogen and host cells before RNA extrac-
tion. This enables RNA extraction from pathogen and host at
different time points. For example, Oosthuizen et al. (2011) used
separate pathogen and host microarrays to measure the tran-
scriptome of Aspergillus fumigatus and human epithelial cells.
The advantage of microarrays is, that they are cheap, process-
ing of raw data is fast and well-established (Zhao et al., 2014).
On the other hand, the recently developed RNA-Seq technology
(Nagalakshmi et al., 2008) opened up the opportunity to study
transcriptomes at a high level of accuracy and depth, also of non-
model organisms. With the advent of dual RNA-Seq it became
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possible to measure transcriptomes of multiple species simulta-
neously without physical separation of cells. A promising research
field for application are infection processes of mammalian cells by
pathogens (Westermann et al., 2012).

Network inference is a systems biology approach which aims to
reverse engineer underlying interaction networks based on gene
expression data (Hecker et al., 2009). To account for dynamics in
the change of gene expression, some tools reconstruct gene regu-
latory networks (GRNs) based on gene expression time series data
(Gustafsson et al., 2005; Guthke et al., 2005; Gupta et al., 2011;
Vlaic et al., 2012). Predicted networks suggest interactions for
experimental validation, but can also put experimental findings
in a bigger context (Smet and Marchal, 2010). While numerous
tools are applied to predict single-species networks, e.g., (Bansal
et al., 2006; Bonneau et al., 2006; Linde et al., 2010; Altwasser
et al., 2012), few inter-species approaches have been published.

NetGenerator, a tool to infer small scale GRNs (Guthke et al.,
2005; Toepfer et al., 2007; Weber et al., 2013), has been success-
fully applied to predict single-species GRNs (Linde et al., 2012;
Ramachandra et al., 2014). NetGenerator infers gene-regulatory
networks from gene expression time series data. The interactions
and their strength are identified by a heuristic structure search
and parameter optimization. The resulting model is described by
ordinary differential equations and can be displayed as a directed
network graph as well as simulated. In a pioneering study, the
applicability of NetGenerator to predict PHI networks has been
demonstrated (Tierney et al., 2012). However, this publication
focused on the specific biological example while the requirements
for data processing and for the algorithm to a broader class of PHI
experiments are not discussed extensively.

Hereafter, we discuss a variety of aspects for dual RNA-Seq
data acquisition and processing. Furthermore, we describe the
application of the extended NetGenerator version to infer an
inter-species GRN based on dual RNA-Seq data. Even though
we focus on the novel technique RNA-Seq, most parts of the
described workflow can be applied to microarray data. We evalu-
ate the impact of multiple input stimuli on the inference accuracy
with NetGenerator based on a benchmark example. The extended
NetGenerator version handles missing data values, which we
demonstrate with the same benchmark example. We further
extended the algorithm and its application to consider variances
in replicated measurement data. This is directly embedded in the
inference process and indirectly through a robustness analysis. We
applied this method to a real dual RNA-Seq data set of murine
dendritic cells infected with C. albicans published by Tierney et al.
(2012).

2. RESULTS
2.1. DUAL RNA-SEQ DATA
2.1.1. Data acquisition
RNA-Seq requires a certain amount of input RNA often in
a microgram range, which is practically difficult to extract.
Furthermore, mRNA should be enriched to avoid sequencing
data being dominated by structural RNAs (Tariq et al., 2011).
Additionally, the experimental setup needs to ensure that enough
mRNA of both organisms can be extracted to obtain an appro-
priate sequencing depth (Figure 1A). Westermann et al. (2012)

discuss various important limitations for dual RNA-Seq. One
aspect is that different genome sizes of pathogen and host lead to
different amounts of cellular RNA. It is estimated that for instance
only 1.5% of the human genome encodes proteins (International
Human Genome Sequencing Consortium, 2001). For that rea-
son, we suggest to estimate an appropriate sequencing depth for
both organisms based on their transcriptome sizes and recom-
mend a genome coverage of at least 10. Tools like featureCounts
return transcriptome sizes based on given annotation files as side
products (Liao et al., 2014).

Furthermore, the pathogen-host cell ratio of the experimental
setup, also known as multiplicity of infection (MOI), has to be
considered. A high MOI results in more pathogenic RNA, but may
also lead to a faster and stronger host response and less clinical
relevance.

The number of reads required to achieve a good genome cover-
age in both species has to be estimated in advance. The number of
reads needs to be calculated for the least abundant species based
on the intended fold coverage, transcriptome size and read length.
The total number of reads can be estimated through the ratio of
the amount of extracted pathogen and host RNA.

Furthermore, sequencing parameters need to be set taking
into account transcriptome sizes and how closely related studied
species are. Number of reads, read length, strand-specificity and
single / paired end sequencing have a great impact on the num-
ber of ambiguously mapped reads. For instance, Yazawa et al.
(2013) sequenced 100-base-pair single-end reads of the grass
Sorghum bicolor and the pathogenic fungus Bipolaris sorghicola.
Pittman et al. (2014) sequenced 100-base-pair paired-end reads
of M. musculus and the parasite Toxoplasma gondii.

Finally, data time points have to be determined. A change of
the transcriptional program triggered by a stimulus is usually
strong at the start of the response. Thus, in best case the organ-
ism adapts and the degree of transcriptional change decreases.
The temporal onset and duration of transcriptional response of
pathogen and host can be very different. To detect both responses,
RNA extraction time points need to be chosen carefully. Small-
scale experiments should be carried out in advance to determine
good data time points.

2.1.2. Dual RNA-Seq data processing
Preprocessing and analysis of sequencing data and the selection
of candidate genes is an important step in advance of network
inference (Figure 1B). The output of RNA-Seq are raw reads, of
which low quality bases need to be trimmed [e.g., with trimmo-
matic (Bolger et al., 2014), btrim (Kong, 2011)]. Pathogen and
host read data is separated in silico by aligning reads to the refer-
ence genomes (mapping). Engström et al. (2013) compare various
available mapping tools and evaluate the conservative MapSplice,
TopHat and STAR with comparatively low run time as favor-
able. From this point on, pathogen and host data are processed
separately.

Tools like featureCounts (Liao et al., 2014) and htseq-Counts
(Anders et al., 2014) calculate the number of reads mapped to
a feature, e.g., an exon or gene, to determine gene expression
levels. Subsequently, differential gene expression can be tested.
Various tools [e.g., edgeR (Robinson et al., 2010), DESeq2 (Love
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FIGURE 1 | From dual RNA-Seq data to inter-species GRNs. (A)

Dual RNA extraction results in one sample to be sequenced.
(B) Data preprocessing and analysis leads to separation of host

and pathogen RNA-Seq data. DEGs are identified and candidate
genes selected. (C) Prediction of an inter-species GRN with
NetGenerator.

et al., 2014)] are available for that purpose and were reviewed
recently (Soneson and Delorenzi, 2013; Zhang et al., 2014). The
SEQC/MAQC-III Consortium recommends to apply pipeline
dependent filters for p-value, fold change and expression-level
to decrease estimated false discovery rates. Thereby, the outputs
from different differential expression analysis pipelines yield a
greater agreement (SEQC/MAQC-III Consortium, 2014).

Typically, hundreds of DEGs are found, of which a subset of
candidate genes has to be selected. This number can be reduced,
for instance by clustering gene expression kinetics (Bezdek, 1992)
and choosing one representative for each cluster. This is advan-
tageous, because it results in a set of candidate genes represent-
ing the major expression kinetics of the system. Furthermore,

gene enrichment analysis can be carried out to select functional
relevant candidate genes. FungiFun2 is one of the few enrichment
tools for fungi and includes 298 strains from 240 species (Priebe
et al., 2015). On the other hand, many enrichment tools exist for
vertebrates. The underlying algorithms can be divided into three
classes of which each shows certain advantages and drawbacks. It
is also recommended to apply multiple tools (Huang et al., 2009;
Tipney and Hunter, 2010).

2.2. MODELING PHI DATA
We extended the heuristic network inference tool NetGenerator
(see Data and Methods) and its application to predict PHI net-
works. NetGenerator requires logarithmic fold changes (logFCs)
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of gene expression time series data that can be obtained by various
technologies, such as RNA-Seq or microarrays. Furthermore, the
user of NetGenerator has to provide at least one input stimulus
representing the external signal leading to a change in gene
expression. Also, prior knowledge can be provided by the user to
support the inference process (Figure 1C). It can be integrated in
a compulsory (“fix”) or soft (“flexible”) way.

We generated a benchmark example to evaluate the influence
of different stimuli and missing data on the inference perfor-
mance (see Data and Methods). The benchmark comprised six
data points of seven genes and two stimuli (Figure 2A). Prior
knowledge data sets of two, four, six or eight interactions were
randomly generated. We applied the extended NetGenerator ver-
sion to infer GRNs based on the benchmark data set and each
prior knowledge data set (soft integration). For small networks
as the benchmark example the number of possible solutions was
already very high. On sum, 63 edges (49 gene to gene interactions

and 14 stimulus to gene interactions) and 263 network topologies
were possible not even including the interaction sign.

2.2.1. Multiple stimuli improve network inference
Multiple stimuli trigger responses in both pathogen and host
during infection, such as the mutual stimulation of pathogen
and host. This can be translated into at least two stimuli—the
host stimulating the pathogen and vice versa. Weber et al. (2013)
published the previous NetGenerator version V2.0 which can
integrate multiple stimuli. We tested the influence of one or two
stimuli on the performance of NetGenerator based on the bench-
mark example and each prior knowledge data set (Figure 2B).

First, only one constant stimulus (Test-1) set to a value of 1
was given. In a second test, an additional stimulus set to 0 until
30 min and set to 1 afterwards (Test-2) was given (Supplementary
Table S1). We calculated mean values of F-measure (Figure 2C),
sensitivity and specificity for every prior knowledge data set to

FIGURE 2 | Testing PHI data characteristics. (A) Benchmark example of
an inter-species GRN with 3 pathogen candidate genes (orange nodes),
four host candidate genes (green nodes) and two stimuli (gray nodes).
Edges represent interactions. (B) Test setup. (C) F-measures calculated
from predicted network topologies and the known network topology

given different stimuli functions. Two stimuli increase F-measures
(Test-2). (D) F-measures calculated from predicted network topologies
and the known network topology based on missing data values.
Carefully selected time points covering both the host and pathogen
response increase F-measures (Test-3).
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determine the accuracy of predicted GRNs in comparison to
the known topology (Supplementary Table S2) (see Data and
Methods).

We always observed noticeable larger F-measures given two
stimuli in comparison to only one given stimulus. The difference
in F-measure of Test-1 and Test-2 was up to 1.36 fold (Figure 2C).
The less prior knowledge was given, the larger were the differ-
ences in F-measures between Test-1 and Test-2. We found the
biggest performance difference between Test-1 and Test-2 when
no or only two prior knowledge interactions were given. In
these cases, 15 of 21 possible true positive edges were predicted
when two stimuli were given, but only 11 true positive edges
given one stimulus (Supplementary Table S2). In general, we
observed increasing F-measures for more given prior knowledge
independent of the number of stimuli.

2.2.2. Avoid missing data values
It is conceivable that time series experiments of pathogen and host
were carried out independently under comparable experimen-
tal conditions. In this case, it is possible to utilize the pathogen
and host data sets to predict PHI networks. Thus, data time
points might differ which leads to missing values at interme-
diate time points or at the end of the time series. In case of
dual RNA-Seq, pathogen and host are collectively processed. This
may lead to a reduced amount of sample RNA of either of the
species resulting in missing gene expression data. This is a prob-
lem especially for later time points when one species may dye.
We extended the NetGenerator algorithm to handle missing data
values at intermediate time points (see Data and Methods). We
evaluated the influence of missing data on the performance based
on the benchmark example, prior knowledge data sets and two
given stimuli as in Test-2 (Figure 2B). Again, we calculated F-
measure (Figure 2D), sensitivity and specificity (Supplementary
Table S2).

We included data of one additional time point (165 min) for
host genes, but additional data for pathogen genes were not
given (Test-3). Thereby, we demonstrated the applicability of the
extended NetGenerator version to data with missing values. We
set the time point in such a way, that an additional data point cov-
ering the onset of the host response was provided and observed
a noticeable increase of F-measure (Figure 2D). The difference
in F-measure is greatest with 0.12 for eight given prior knowl-
edge interactions. In this case, a mean number of 16.7 (Test-2)
and 19.2 (Test-3) out of 21 possible true positive edges were pre-
dicted representing an improvement of 11.9%. This pointed out
the importance of good time point selection covering both the
pathogen and host response in a dual transcriptome data set.

NetGenerator requires complete data for the last time point.
In case of missing measurements at the end of the time range for
a subset of candidate genes, their values must be obtained in a
different way and provided by the user. Here, we set the last time
point to its preceding value (Test-4). We found slightly greater
F-measures for Test-2 in comparison to Test-4 independent of
the number of given prior knowledge. We observed a maximal
difference between the F-measures between Test-2 and Test-4
(0.02) given four, six and eight prior knowledge interactions
(Figure 2D).

2.3. INCORPORATION OF MEASUREMENT VARIANCES
Various differential expression analysis tools are available that
calculate fold changes from multiple replicates. However, fold
changes alone cannot reflect the degree of gene- and time point
specific variances. This variance might be high especially regard-
ing complex biological systems such as PHIs where cells from
two species constantly interact and change the environment.
However, biological variances can be considered in the network
inference process to obtain robust predictions. For this purpose,
we extended and applied NetGenerator to incorporate variances
within the algorithm and in an outer robustness analysis. The
extended NetGenerator algorithm was applied to one of the first
published dual RNA-Seq data sets (Tierney et al., 2012) (see Data
and Methods).

2.3.1. Extended NetGenerator algorithm incorporates measurement
variances

Variances from replicated measurements were incorporated in
the objective function of NetGenerator and need to be pro-
vided by the user. We calculated variances of the dual RNA-Seq
data set of Tierney et al. (2012) as described (see Data and
Methods).

We predicted a GRN (Supplementary Figure S1) with the
extended NetGenerator based on logFCs and prior knowledge
that were used as inputs for the previous NetGenerator in Tierney
et al. (2012). Calculated gene- and time point specific variances
were provided as input. Measured and simulated time courses
of the GRN were plotted showing the standard deviations of
measurements as shaded areas (Figure 3A). We observed that
simulated data reproduced the measured data very well and were
mostly within the shaded areas. Furthermore, simulated time
courses were closer to data points with smaller standard deviation
(e.g., Hap3 at 30 min) than to data points with higher standard
deviation (e.g., Mta2 at 30 min).

2.3.2. Variance incorporation by an outer robustness analysis
Furthermore, variances were considered in an outer robustness
analysis which we carried out based on the data of Tierney et al.
(2012). The mean standard deviation was 1.24 with a minimum
of 0.27 (Sod5 at 120 min) and a maximum of 3.49 (Mta2 at
30 min) (Supplementary Table S3). We scaled the standard devi-
ations to a value of σmax = 0.1 (Supplementary Table S4). We
calculated Gaussian distributed logFCs for every gene and time
point (mean = measured logFC, σ = scaled standard deviation of
replicates) (see Data and Methods). Thus, we generated 500 noisy
data sets and applied the extended NetGenerator (Figure 3B). The
robustness scores of the edges in the resulting 500 GRNs were
illustrated in the bubble map (Figure 3C).

Tierney et al. (2012) experimentally verified the predicted
inter-species interactions of Ptx3 inhibiting Hap3 and Hap3
inhibiting Mta2. We predicted these verified interactions again
as robust with the extended NetGenerator version (Figure 3C,
Supplementary Table S5). Inhibition of Hap3 by Ptx3 was present
in 71 % of predicted GRNs with a robustness score of 0.76.
Inhibition of Mta2 by Hap3 was present in 72 % of predicted
GRNs with a robustness score of 0.78. This also demonstrated the
applicability of the presented robustness test.
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FIGURE 3 | GRN robustness analysis and visualization. (A) Fitting plots for
each gene are generated showing measured time points (dots), simulated
time courses (solid lines), interpolated time courses (dashed lines), and
standard deviations from replicated measurements (shaded areas). (B) Outer
robustness analysis. Noise is added to time series data with variances

calculated from replicates of genes and time points. This is repeated n times
to predict n GRNs. (C) The bubble map visualizes the robustness of a
predicted edge from column gene to row gene. Bubble sizes illustrate the
robustness score assigned to an edge. Orange and blue pies illustrate the
fraction of activating and inhibiting edges, respectively.

3. DISCUSSION
In this study, we propose a workflow for dual RNA-Seq data
acquisition, data processing and inter-species network inference.
Furthermore, we describe how to handle a different tempo-
ral onset of transcriptional changes, missing data and how to
integrate variances from replicated measurements based on the
extended NetGenerator algorithm.

3.0.3. Delayed host response in PHI data
In a dual transcriptome data set we expect the onset of the
pathogen and host transcriptional response at different time
points. So far, several infection-related transcriptome studies of
fungi were carried out. Transcriptome data was generated already
at two to three time points within 60 min after infection (Linde
et al., 2012; Ramachandra et al., 2014) suggesting an early onset

of the pathogen’s transcriptional response. This is further sup-
ported by a mechanism called adaptive prediction, that some
pathogens have evolved. Based on cues from the current envi-
ronment, pathogens predict a coming change in conditions and
adapt their transcriptome in advance. An appropriate adaptation
of the pathogen increases its survival chances (Brunke and Hube,
2014).

On the other hand, it takes some time until the host recognizes
a pathogen. Moyes et al. (2010) showed that host epithelial cells
initiate a response when a certain amount of pathogens exceed-
ing a threshold is recognized. This is also a protective mechanism.
Furthermore, the assumption of a later onset of the host tran-
scriptional response is supported by various studies monitoring
the host transcriptome from 1 h onwards (Banchereau et al., 2014;
Favila et al., 2014).
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However, we do not see a delayed transcriptional response
of host DEGs in comparison to pathogen DEGs in the data
set of Tierney et al. (2012) possibly because of the high MOI.
Experimentalists keep improving their procedures to achieve real-
istic experimental setups, e.g., they decrease the MOI as much
as possible still allowing them to extract the required amount
of RNA for sequencing. Therefore, we expect to see a delayed
host response in upcoming dual RNA-Seq data sets. To test the
performance of the extended NetGenerator regarding different
stimuli functions and missing data values, we generated a bench-
mark example showing a delayed onset of the host transcriptional
response.

3.0.4. Gene expression time series data
NetGenerator requires time series gene expression data, at least
one stimulus function and optionally prior knowledge. LogFCs
are passed to NetGenerator in form of a data matrix, where
columns correspond to candidate genes and rows to measured
time points.

PHIs are very complex systems, but available data is lim-
ited regarding the number of time points and replicates.
Furthermore, transcriptome data do not provide any infor-
mation about processes taking place as for instance on pro-
tein level and in the extracellular space. Therefore, it has to
be considered that predicted PHIs are indirect, when they are
interpreted.

3.0.5. Modeling PHI stimuli
A GRN can be understood as a biological system that adapts to
external, environmental stimuli yielding changes in gene expres-
sion. NetGenerator can integrate multiple stimuli and requires
one function per stimulus representing it.

Many biological processes can be interpreted as external stim-
uli triggering responses in both pathogen and host cells during
infection. In a typical experimental setup the host is incubated
with the pathogen stimulating both organisms. The host recog-
nizes PAMPs on pathogen cell surfaces by pathogen recognition
receptors (PRRs). This initiates an information flow through sig-
naling cascades (Akira et al., 2006). Nevertheless, the process
of pathogen recognition resulting in a transcriptional response
requires some time. Besides the molecular interaction with the
host, the pathogen is also stimulated by different environmental
factors, e.g., a change of temperature, pH and ion concentrations
(Linde et al., 2010).

We found that multiple stimuli functions improve network
inference results significantly. Therefore, we recommended to
provide two or more stimuli functions for inter-species network
inference. One option to model the stimulus representing the
influence of the host on the pathogen is a constant function.
Therewith, the stimulus is active from time point zero onwards
and models an early pathogen transcriptional response. Vice
versa, a second stimulus can represent the stimulation of the host
by the pathogen. We predicted GRNs providing an additional
input signal as a delayed step function (Test-2) aiming to model a
later onset of the host transcriptional response. Another possible
scenario would be to provide a stimulus function representing a
slow increase of the influence.

More options for stimuli functions are possible when real
experiments are carried out. For example, the number of differ-
entially expressed host and pathogen genes can be determined
for every time point and translated into stimuli functions. This
can be done by scaling the number of DEGs to a range from
zero to one. Additional measurements, e.g., cytokine release or
cell contacts, can also be used as a basis for stimuli functions.
Of particular interest is the growth curve of the pathogen, which
we recommend to measure and integrate in the stimuli functions.
Nevertheless, many biological events trigger responses, of which
not all can be integrated in the network inference.

3.0.6. Prior knowledge sources
Optionally, the user of NetGenerator can provide prior knowl-
edge about interactions of candidate genes. This is strongly
recommended to reduce the search space resulting from the
large number of possible interactions (Hecker et al., 2009). Prior
knowledge can be softly integrated by assigning a score between
zero and one that reflects its reliability. A score smaller than one
allows prior knowledge to be rejected if it does not fit the data.

Prior knowledge about interactions in GRNs originates
from published results that were transferred to databases.
PHI databases like PHISTO (Tekir et al., 2013), PHI-base
(Winnenburg et al., 2006), and HPIDB (Kumar and Nanduri,
2010) have been established. Mukherjee et al. (2013) listed various
web sources of interaction data.

Host specific prior knowledge can be extracted manually from
literature or automatically with text mining tools. Pathway Studio
is a text mining tool specific for mammals (Nikitin et al., 2003).
Further gene information is provided by organism specific web-
sites, e.g., the human gene database GeneCards1.

As well, organism specific websites exist for pathogens, e.g.,
Aspergillus Genome Database (Cerqueira et al., 2014) and
Candida Genome Database (Inglis et al., 2012). To our knowl-
edge, no fungi specific text mining tool is available. More general
tools like GeneView—a semantic search engine for PubMed—
can be applied (Thomas et al., 2012). Little is known about some
pathogenic species. In this case, prior knowledge can be gener-
ated by searching orthologous genes in closely related and better
studied organisms.

For both host and pathogen transcription factor binding
motifs and binding sites can be obtained from databases, e.g.,
TRANSFAC (Matys et al., 2006), or predicted with bioinformatic
tools as SiTaR (Fazius et al., 2011).

3.0.7. Robustness analysis
We extended the NetGenerator algorithm and its application to
incorporate variances from replicated measurements in the infer-
ence method and in a robustness analysis. The output provides
guidance for experimental validation of predicted interactions.

Inference methods should take into account the variance
of replicates, because this additional information improves the
parameter estimation. Under the assumption of independent
Gaussian distributed noise the minimization of the objective
function (Equation 4) corresponds to a Maximum Likelihood

1www.genecards.org
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Estimator (MLE) (see e.g., Klipp et al., 2009, p. 155). Here,
we assume that the variances of each gene and time point
exhibit those statistical properties sufficiently. The extended
NetGenerator version incorporates available measurement vari-
ances thus providing more reliable inference results. Nevertheless,
the option to predict GRNs without providing variances is still
available.

In previous publications a similar robustness analysis was car-
ried out with the same standard deviation for each gene and time
point set to a fixed value (Linde et al., 2010, 2012). Biological
replicates can show high variance, that is gene- and time point
specific and has a great influence on the estimated fold changes
as well as their significance. Both the extended objective function
(Equation 4) and the robustness analysis incorporate variances.
They should be determined based on the available data to account
for differences between genes and time points. One possibility
is the rather simple approach to calculate the total variance of a
logFC from sample variances as proposed (Equation 6). Another
possibility is to derive the variances from software packages
that take into account the statistical nature of the measurement
method (including both biological and technical variances), per-
form processing steps, test for significant changes and determine
logFCs. For instance, the R-package DESeq2 calculates standard
errors for estimated logFCs (Love et al., 2014). Since those meth-
ods adjust the variances based on a statistical foundation, the
inference results can be expected to further improve.

We performed the robustness analysis for the data of Tierney
et al. (2012). In the data we observed very high variances for
the replicates of some genes and time points. Applying the outer
robustness analysis to noisy data sets based on unscaled standard
deviations led to the prediction of diverse GRNs without more
frequent edges. Therefore, we scaled the set of standard deviations
to a maximal value. It is preferable to decrease the variance of
expression mean by generating more biological replicates (Blainey
et al., 2014).

The application of the robustness analysis is beneficial in
many ways. It provides a ranking of predicted interactions based
on noise added to the data. This makes it easier to decide,
which predicted interactions should be experimentally verified.
Furthermore, NetGenerator is a heuristic algorithm, which means
that not all possible solutions are tested. It is likely, that not the
best solution is returned, but a good one. The robustness analysis
generates many good solutions resulting in a consensus network.
It also accounts for possible mutually contradictory predictions.

4. DATA AND METHODS
4.1. APPLICATION OF EXTENDED NETGENERATOR TO PHI DATA
Network inference was carried out by the NetGenerator algorithm
(see Guthke et al., 2005; Toepfer et al., 2007; Weber et al., 2013
for details). For this study, the previous NetGenerator V2.0 was
extended (recent version of the R package: 2.3-0) to account for
measurement variances and missing values.

4.1.1. Basic algorithm
The NetGenerator heuristics infers GRNs from time series gene
expression data of multiple experiments and multiple stimu-
lation. Expression data (logFCs), stimuli functions and prior

knowledge (optionally) have to be provided by the user. Stimuli
are factors that (directly or indirectly) cause changes in gene
expression. It is assumed, that stimuli are not influenced by genes
or their products, at least in the experimental setup. Nevertheless,
stimuli values may evolve over time.

The inferred network model is described by a system of first
order linear differential equations of the form

ẋ = A x + B u. (1)

The change of gene expression ẋ is influenced by other genes
and (external) stimuli u. While interactions between genes are
described by the system matrix A : N × N, the influence of stim-
uli is represented by the input matrix B : N × M, where N is
the number of genes and M is the number of inputs. The infer-
ence procedure determines the elements of these matrices, i.e.,
the parameters θ of the model, by an iterative heuristics includ-
ing structure and parameter optimization. In each iteration step,
the algorithm includes a submodel which matches the available
time series data best. The parameters of the ith submodel are
determined by minimizing an objective function

Ji = Ji,output + Ji,priorknowledge (2)

The second term evaluates the integration of prior knowledge, see
(Weber et al., 2013) for details. In previous NetGenerator versions
the first term

Ji,output =
E∑

e = 1

Te,i∑
k = 1

[
w(tk) × (

xe,i(tk) − x̂e,i(tk, θ i)
)2

]
(3)

described the error between measured data x and simulated
data x̂. The double sum was calculated for all experiments E
and all time points Te,i. Since the data contain both real and
interpolated artificial values, this was accounted for by weighting
factors w(tk).

4.1.2. Extension to account for missing values
NetGenerator was extended to account for missing data values.
Now, NetGenerator accepts missing values at intermediate time
points provided by the user as “NA.” Internally, the time vector
of the respective output is adjusted and interpolation is carried
out based on existing measurement data. During inference, both
simulation and objective function (Equation 4) can process that
information of missing and replaced values.

4.1.3. Extension to incorporate variances
The objective function Ji,output (Equation 3) was extended by
additional weighting factors, which are the reciprocal vari-
ances 1/σ 2 of the replicated data:

Ji,output =
E∑

e = 1

Te,i∑
k = 1

[
w(tk)

σ 2
e,i(tk)

× (
xe,i(tk) − x̂e,i(tk, θ i)

)2

]
(4)
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Therefore, the variances σ 2 of the logFCs became additional input
arguments to NetGenerator. Larger variances decrease the objec-
tive function value which effectively allows for a larger error
between associated measured and simulated values in comparison
to measurements of smaller variance.

4.1.4. Incorporation of variances in an outer robustness analysis
Moreover, variances are considered in an outer robustness anal-
ysis by predicting GRNs based on disturbed logFCs. To simulate
the measurement process, we sampled three replicates of Gaussian
distributed logFCs (mean = measured logFC , σ = standard devi-
ation of replicates) and determined their mean. This resulted in a
noisy logFC for each candidate gene and time point used as input
for extended NetGenerator. We repeated this process 500 times.

For better visualization of the robustness analysis results we
introduced the bubble map (Figure 3C) showing predicted inter-
actions between candidate genes. It does not only consider the
occurrence frequency of each edge, but also the sign and the
respective objective function values J = ∑

Ji that is the sum over
the values of each time series (Equation 2). The robustness score
Si,j evaluating the interaction of gene j and gene i is calculated as

Si,j =
∑

k

{
1

Ji,j,k
| ai,j,k �= 0

}
(5)

with Ji,j,k being the objective function value of the kth predicted
GRN and ai,j,k being the corresponding element of the interaction
matrix A. A robustness score Si,j of gene j interacting with gene i
is illustrated by the bubble size of column j and row i (Figure 3C).

A big circle represents a frequently predicted interaction.
Small or no circles represent rarely or no predicted interac-
tions. Pie charts show the ratio of inferred activating (orange)
and inhibiting (blue) interactions. Note, that the diagonal repre-
sents autoregulations. Exact robustness scores depending on how
frequently an edge was predicted and corresponding objective
function values of the predicted GRN are available as additional
output (Supplementary Table S5).

4.1.5. Calculation of variances from replicates
Both the extended version of the objective function and the
robustness analysis require variances derived from data. The
gene- and time point specific variance σ 2

tc of each logFC was cal-
culated as the variance of the difference μt − μc between means
of treatment (t) and control (c) samples (error propagation):

σ 2
tc = σ 2

c + σ 2
t (6)

The respective standard deviations σi,j of all genes and time points
can be obtained by taking the square root of the variances. Given
only few replicates, standard deviations can be high leading to the
prediction of diverse GRNs. In that case, the standard deviations
need to be scaled to a maximal value σmax:

σi,j,scaled = σi,j × σmax

max(σ )
(7)

4.2. DATA SETS AND EVALUATION CRITERIA
4.2.1. Benchmark model
We constructed a benchmark system composed of differen-
tial equations representing the logFC time series data of three
pathogen genes, four host genes and two stimuli. The network
topology included 21 directed, signed edges representing inter-
actions. Common biological motifs like feed forward loops and
feedback loops are integrated, too. Based on this topology we set
up a system of differential equations and simulated this model
with the R-package deSolve (Soetaert et al., 2010). We set the time
point 0 min to zero and extracted data values of every differential
equation at six time points on a logarithmic scale (15, 30, 60, 120,
250, 500 min). We added Gaussian distributed noise (mean = 0,
σ = 0.01) to generate the benchmark data set.

As mentioned before, an additional input to guide network
inference is prior knowledge. We generated a prior knowledge
data set for the benchmark data by randomly sampling two inter-
actions of the known network topology and repeated this 50
times. 50% of sampled prior knowledge is signed (activation or
inhibition) and 50% is unspecific. Likewise, we generated prior
knowledge data sets of four, six and eight interactions.

To evaluate predicted GRNs we computed statistical measures
that compare the known topology to the predicted topology.
Sensitivity (SE), specificity (SP), precision (PR) and F-measure
(FM) are calculated as:

SE = TP/(TP + FN + FPs)

SP = TN/(TN + FPn)

PR = TP/(TP + FPn + FPs)

FM = (2 × PR × SE)/(PR + SE) (8)

taking the number of true positives (TP), false positives not part
of the known topology (FPn), false positives with wrong sign
(FPs), true negatives (TN) and false negatives (FN) into account
(Weber et al., 2013). All of these statistical measures range from
zero to one with one evaluating a predicted network as identical
to the known topology.

4.2.2. Real dual RNA-Seq data
We utilized one of the first dual RNA-Seq data sets published by
Tierney et al. (2012) as a second data set for evaluation. Murine
dendritic cells were infected with C. albicans (MOI = 5). Three
biological replicates were generated at 0, 30, 60, 90, 120 min after
infection. Differential expression analysis was carried out with
DESeq (Tierney et al., 2012). Six murine DEGs and five fungal
DEGs were selected as candidate genes to predict an inter-species
GRN with NetGenerator V1.0 (Toepfer et al., 2007). 19 prior
knowledge edges were provided and softly integrated. We repro-
duced the result with NetGenerator V2.0 (Weber et al., 2013)
based on the logFCs, stimulus function and prior knowledge of
Tierney et al. (2012). Furthermore, we applied DESeq to deter-
mine logFCs and normalized count values to calculate gene- and
time point specific variances.

The predicted interactions of Ptx3 inhibiting Hap3 and
Hap3 inhibiting Mta2 were experimentally verified by
Tierney et al. (2012). Therefore, these two interactions should
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be again predicted by the extended NetGenerator and were thus
used for evaluation.

4.2.3. Availability
The extended NetGenerator 2.3.-0 tool is available at http://
www.biocontrol-jena.com/NetGenerator/NetGen
erator_2.3-0.tar.gz.
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