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The cerebellum has been considered for a long time to play a role solely in motor coordi-
nation. However, studies over the past two decades have shown that the cerebellum also
plays a key role in many motor, cognitive, and emotional processes. In addition, studies
have also shown that the cerebellum is implicated in many psychiatric disorders including
attention deficit hyperactivity disorder, autism spectrum disorders, schizophrenia, bipolar
disorder, major depressive disorder, and anxiety disorders. In this review, we discuss
existing studies reporting cerebellar dysfunction in various psychiatric disorders. We will
also discuss future directions for studies linking the cerebellum to psychiatric disorders.
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The primary role of the cerebellum has traditionally thought to comprise balance andmotor control.
However, studies have been emerging that support multiple functions of the cerebellum including
emotion regulation, inhibiting impulsive decision making, attention, and working memory (1–5).
In addition, many experimental and computational studies show that the cerebellum plays a role in
errorless (unsupervised) learning (6–8).

It has been suggested that motor (9), cognitive (10), and emotional abnormalities (5) can result
from damage to parts of the cerebellum projecting to the motor areas, the prefrontal cortex, and the
limbic system, respectively. Some further suggest that the cerebellar role in cognitive functioning is
similar to the cerebellar control of purposive motor skills during motor functioning (11). There
is also evidence that the cerebellum may be related to a variety of cognitive abnormalities and
psychopathological manifestations (12). Many recent studies have reported a strong association
between the structural and functional abnormalities of the cerebellum and psychiatric disorders
especially schizophrenia (13, 14), bipolar disorder (15, 16), depression (17–20), anxiety disorders
(21–23), attention deficit hyperactivity disorder (ADHD) (24–26), and autism (27, 28).

The Cerebellar Circuits

The cerebellum communicates and influences information processing in multiple regions of the
brain, including the cerebral cortex (29), spinal cord (30), vestibular nuclei (31), and the brainstem
(e.g., the inferior olive and pontine nuclei) (32). Inputs from the spinal cord and brainstem enter the
cerebellum through the inferior cerebellar peduncle. Also, afferents from the cerebral cortex (relayed
in the pontine nuclei) enter through the middle cerebellar peduncle, and play a role in balance and
movement (33).

The cerebellum projects to the brainstem and cerebral motor cortex via the red nucleus
and ventrolateral nucleus of the thalamus (34). There are three output pathways from the
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FIGURE 1 | A simplified diagram of the cerebellum along with
connections with brain regions (cortex and brainstem).

cerebellum: (1) the cerebellar vermis indirectly to the pons,
medulla, and reticular formation; (2) the intermediate zone of the
cerebellum indirectly to the red nucleus and thalamus; and (3) the
lateral zone of cerebellar hemisphere indirectly to the thalamus
(35). After the thalamic connection, those fibers are projected
to different parts of the cerebral cortex, including frontal cortex,
motor cortex, and parietal cortex (35, 36).

The cortico-ponto-cerebellar and cerebello-thalamo-cortical
pathways allow the cerebellum to affect information processing
in cortical areas responsible for cognitive and emotional processes
(2). These intricate connections between the cerebellum and other
structures can explain why cerebellar damage can lead to various
psychiatric disorders. Below, we discuss common psychiatric dis-
orders associated with cerebellar abnormalities (see Figure 1 for a
simplified cerebellar interactions with other brain regions).

Attention Deficit Hyperactivity Disorder

Many studies report about 5% of children and adolescents aged
6–17 years are diagnosedwithADHD,while 30–50%of these indi-
viduals will continue to show ADHD symptoms into adulthood
(2, 37). The diagnostic criteria of ADHD include three groups
of symptoms: (1) attention deficit (easy distractibility, difficulty
in concentration), (2) impulsiveness (impatience, negligence,
impetuosity, difficulty in postponing answers, and rewards),
and (3) hyperactivity (restlessness, agitation, excessive locomotor
activity) (38). These groups of symptoms may be attributed to
noradrenergic and/or dopaminergic neurotransmission dysfunc-
tion (39). Other theories about ADHD suggest a dysfunction
to the frontal–subcortical pathway (40), while structural and

functional neuroimaging studies show changes in prefrontal cor-
tex, cingulum, basal ganglia, corpus callosum, and cerebral total
volume (41–44). Multiple studies have also reported cerebellar
changes in ADHD (17, 41, 45).

Until now little is known about how the brain develops in
ADHD patients during the course of the disorder. Castellanos
et al. (46) scanned adolescents diagnosed with ADHD (age 15–18)
as well as healthy controls, to measure longitudinal changes (over
a decade) of brain anatomy and volume. They found volumetric
abnormalities with reduced cerebrum and cerebellum size that
increased with age, while changes in the caudate nucleus volume
disappeared as the subjects got older. These results were found to
be unrelated to psychostimulant treatments (46). However, Ivanov
et al. (45) found that patients undergoing stimulant treatment have
larger overall cerebellar volume than untreated ADHD patients.
This difference between treated and untreated patientsmay reflect
the therapeutic mechanisms behind the stimulant treatment. The
opposing results between the Castellanos et al. (46) study and
Ivanov et al. (45) study may be due to the differences in the focus
areas used by each study. Where Ivanov et al. broke down the
cerebellum into its smaller regions, Castellanos et al. reported the
volume change of the cerebellum as a whole, resulting in the loss
of resolution of their data. Mackie et al. (47) conducted a longi-
tudinal study comparing cerebellar differences between children
with ADHD and healthy controls over the period of 2–14 years.
ADHD patients were found to have smaller vermis than controls,
which did not change with development. Vermis size could also
predict the outcome for the patient, where smaller superior ver-
mis volumes predicted poorer outcomes. Additionally, patients
with smaller vermis lobules due to stroke or other developmental
abnormalities also demonstrate a diminished attention-orienting
ability (35, 48).

In sum, reduced cerebellar volume is a prevalent theme across
studies investigating cerebellar abnormalities and ADHD. How-
ever, to date, these studies have only scanned and tested partic-
ipants once they have been diagnosed with ADHD. This means
that we are unable to determine if the abnormalities in the cere-
bellum were present from birth or if they developed during the
child’s growth, and how this affects the etiology of ADHD. There
are numerous longitudinal studies that recruit participants from
birth or earlier. If these studies were to implement brain imaging
at a young age, we may have a better understanding of how the
cerebellum develops and whether there are any structural markers
that predict the onset of ADHD in later childhood.

Autism Spectrum Disorders

Autism spectrumdisorder (ASD) includes a range ofmotor symp-
toms, including repeated and stereotyped movements, impaired
social interactions [poor recognition of emotions, difficulty dis-
playing physical gestures typically used in social interaction; (38)].
Interestingly, it was found that cerebellar damage in infants can
predict the occurrence of autism in older age (49). The cerebellum
is able to influence the motor cortex and prefrontal cortex area,
two areas that are responsible for motor control and social cog-
nition, so it is not surprising that abnormalities in the cerebellum
would cause symptoms that observed in ASD.
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Using a mouse model, Tsai et al. (50) have demonstrated in
mutant mice that a decrease in Purkinje cell functioning leads to
ASD-like behaviors, including abnormal social and motor behav-
iors (50, 51). This finding appears to be consistent with human
studies as postmortem investigations have also shown a decrease
in Purkinje cell density in patients with ASD (51, 52). Being
GABAergic, a reduction of these cells may increase activity in the
cerebellum–cortex pathway, which may explain the occurrence
of repeated movements in ASD. This, however, needs to be con-
firmed or disconfirmed in future experimental studies that relate
Purkinje cell loss to exact symptom domains (motor vs. social
dysfunction) in ASD.

Using diffusion tensor magnetic resonance tractography, one
study found altered connectivity in the superior peduncles and the
short intra-cerebellar fibers in patients with Asperger’s syndrome
[a mild disorder of the autism spectrum; (53)]. Decreased activity
in the peduncle regions have also been related to poorer motor
abilities in patients with ASD (54). There is an additional possible
defect in the formation of cerebello-frontal circuits in Asperger’s
syndrome (55). These deficits may be the cause of the motor and
cognitive impairments observed in ASD-like patients.

Studies have also shown that impairment of adaptation of social
behavior in patients with ASD may be caused by malfunctioning
feedback pathways from the cerebellum to the cerebral cortex
(56, 57). Also, the fibers of the middle and inferior cerebellar
peduncles connecting the cerebellum with the frontal lobe are
abnormally organized. This may be as either a direct cause or
a consequence of changes in the cerebral cortex and cerebellar
nuclei in patients with autism. Specifically, pathological changes
are evident in the superior peduncles of the cerebellum in chil-
dren with ASD. These pathological changes explain coordination
deficits and ataxia, which are commonly presenting features in
autistic-like behaviors (58).

Currently, there appear to be three main cerebellar abnormal-
ities observed in patients with ASD: diminished Purkinje cells,
reduced cerebellar volume, and interrupted feedback pathways
between the cerebellar and cerebral areas. The latter two may also
be bi-products of diminished Purkinje cells, suggesting that this
is the root cause of the disorder. As Purkinje cells are inhibitory
in nature, a lack of these cells would decrease inhibition that the
cerebellum projects to the cortical and subcortical areas, leading
to hypersensitivity of these brain regions found in most ASD
patients (59).

Most studies to date on Purkinje cells and ASD focused on
either Asperger’s syndrome or autism; however, it would be ben-
eficial to investigate how Purkinje cell density is related to autistic
severity. As Purkinje cells inhibit the cerebral cortex and mid-
brain areas, we would surmise that patients with severe autism
would also exhibit a much lower Purkinje cell density as they
are more prone to being overwhelmed by stimuli. Additionally,
if Purkinje cell density was to decrease further, the patient’s
symptoms would worsen.

In sum, autistic spectrum disorders are developmental-based
disorders; however, as studies focus on patients who have been
diagnosed with the disorder, it is difficult to see when the neu-
rological abnormalities began. Longitudinal studies beginning at
birth that focus on functional and structural aspects of the child’s

brain may offer predictive markers in the cerebellum that would
increase the risk of developing ASD.

Schizophrenia

Schizophrenia is a severe psychiatric disorder highly linked to
genetic, environmental, and neurodevelopmental factors. Symp-
toms usually appear in late childhood and early adolescence and
may include impaired thinking (delusions and hallucinations),
disorganized speech, abnormal or catatonic behavior, and nega-
tive symptoms [e.g., avolition, flat affect, anhedonia; (38)]. It is
estimated that the lifetime prevalence of patients with schizophre-
nia is about 1% of the general population (60). Cognitive deficits
are also present in the disorder, demonstrated by an impairment of
memory (61), learning (62), and executive function (63). Interest-
ingly, many of the symptoms present in schizophrenia are similar
to symptoms observed in patients with damage to the cerebellar
cortex (64, 65).

Neuroimaging studies on schizophrenic patients have found
that the cognitive deficits exhibited in some patients are related to
cerebellar dysfunction, in particular, abnormal corticocerebellar
connections (63, 66, 67). Many suggest that disturbances in the
cortico-thalamic-cerebellar-cortical circuits play a role in cog-
nitive functioning in schizophrenia. Moreover, Andreasen et al.
(68) used functional neuroimaging to investigate brain activity
in patients with schizophrenia while completing a memory recall
task. They found a lower level of cortico-thalamic-cerebellar activ-
ity compared to healthy controls during task performance (68). It
is not, however, known what kinds of functions are subserved by
this pathway that could aid in cognitive performance.

Structural brain imaging studies have found reduced cere-
bellar volumes in schizophrenia patients, including diminished
cerebellar vermis volume (69, 70). Changes in cerebellar volume
in patients with schizophrenia have been linked to neural and
behavioral abnormalities occurring in the perinatal period (71),
male patients (72), onset at extremes of age (73), chronic nature of
the disease (74), and clinical picture with predominantly positive
symptoms (75).

Functional imaging studies in patients with schizophrenia
reveal diminished blood flow to the cerebellar cortex and vermis
during the performance ofmany cognitive tasks, such as attention,
memory, including both short-term and working memory tasks
(76), and social inference (77).

Studies regarding the role of the cerebellum in motor side
effects seen in patients with schizophrenia on antipsychotic
medications are limited. For example, one study showed a
reduction in cerebellar activity in patients with schizophrenia
developing akathesia during treatment with olanzapine (64); it
is not, however, known, how changes to cerebellar function can
lead to akathesia. Studies relating cerebellar function to treatment,
or investigating cerebellar damage through the whole course of
the disease and varying prognoses after using psychotherapeutic
interventions are also scarce (78).

In sum, the current literature offers broad explanations of cere-
bellar abnormalities in schizophrenia, such as decreased volume,
decreased blood flow, and dysfunctional cortical pathways. How-
ever, these features are also present in other disorders; for example,
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ASD and ADHD patients also exhibit a decrease in cerebellar
volume. Smaller cerebellar volume in ASD can be attributed to
decreased numbers of Purkinje cells; however, Purkinje cells do
not differ between healthy controls and schizophrenia patients
(79). This implies that cerebellar volume loss in schizophrenia is
possibly due to the reduction or absence of different parts of the
cerebellum. A closer look at which component of the cerebellum
has depreciated in size or number will give a greater insight
into the functioning of the cerebellum, and the role it plays in
schizophrenia. Future research should also investigate whether
there is difference between positive and negative symptoms and
cerebellar functioning in schizophrenia. To our knowledge, there
is only one study that found a relationship between cerebellar
activation in schizophrenia and the occurrence of delusions (80).

Bipolar Disorder

Bipolar disorder is characterized by alternating periods of mania
and depression, with manic episodes lasting at least a week
and depressive symptoms appearing immediately afterwards (38).
Manic periods may involve abnormal thought patterns, euphoric
moods, strong feelings of grandeur, hyperactivity, and impulsion,
while depressive symptoms may consist of lack of motivation,
psychomotor agitation, or retardation (38). The disorder may
have an episodic course but more commonly, it is a chronic
life lasting condition with a lifetime prevalence of 1.6% of the
general population (81). The exact physiological and pathological
mechanisms underlying bipolar disorder symptoms and the exact
mode of action of mood stabilizers (including lithium) are not
yet known. Many studies demonstrate cerebellar changes with
decreased cerebellar volume and cerebellar atrophy in patients
with bipolar disorder (15, 77, 82–84).

In review of studies comparing cerebellar volume in patients
with bipolar disorder or major depressive disorder (MDD) with
healthy controls, Soares and Mann (85) found smaller cerebellar
regions present in both patient populations (85). It was not clear,
however, how the reduction of cerebellar areas is related to disease
progression or symptom severity. Interestingly, the volume of the
V3 vermal subregion of the cerebellum is significantly reduced in
multiple-episode bipolar disorder patients compared to healthy
controls, while the volume of V2 vermal subregion is smaller in
multiple-episode patients than first-episode patients (86). The
strengths of the Mills et al. (86) study are the recruitment of
different groups of bipolar patients as well as the investigation
of subregions of the vermal region. Their results suggest that
the severity of bipolar symptoms is associated with increased
vermal damage. However, in a more recent study, bipolar
patients does not show any significant differences in cerebellar
volume compared to healthy controls (67). These contrasting
findings may be due to the population tested by Laidi et al. (67).
Participants were not controlled for their history of mediation,
while it has been found that cerebellar volume reduction is
much higher in medication naïve patients compared to patients
undergoing anti-manic drug regime (87).

In a study using functional MRI in BD patients, increased glu-
cose metabolism was found in the cerebellum of BD patients that
were resistant to treatment (88). However, it is unclear whether

these changes in cerebral blood flow and metabolism are primary
or secondary to BD (89), which should be investigated in future
studies. For example, it is not known whether these cerebellar
changes are affected by treatment, as suggested byKetter et al. (88).
Testing both patients who are treatment-resistant and treatment-
responsive and healthy controls can help understand the effects of
bipolar treatment on cerebellar function.

In sum, there is currently contention in regards to the pathology
of the cerebellum in BD. Laidi et al. (67) reported no difference
in total cerebellar volume, while other studies report significant
differences in cerebellar volume when compared to healthy con-
trols (85–87). This difference is likely due to lack of controls
over the participants (i.e., medication history). BD is also based
on cycles between mania and depression; however, most studies
do not take the patients current state into consideration during
testing. Due to the inhibitory nature of the cerebellum, we would
expect activation to decrease during manic phases, and increase
during phases of depression. Alternatively, activation from the
cerebellum could remain constant, while the rest of the brain
is cycling while trying to compensate for the deviant inhibitory
activation from the cerebellum. BD also has two manifestations:
bipolar I and bipolar II sub groups. The difference between the two
is that the latter involvesmanic phases that are less intense as those
experienced in bipolar I. Investigating functioning and structural
differences in cerebellum between the two subtypesmay be able to
isolate themanic component of the disorder, giving greater insight
to the role the cerebellum plays on this aspect. To our knowledge,
no study to date has investigated cerebellar structural or function
difference between the two bipolar patient groups.

Major Depressive Disorder

Patients diagnosed with MDD have experienced at least one
depressive episode that may involve both motor and cognitive
symptoms (38). Cognitive symptoms consist of difficulty concen-
trating or indecisiveness (38) are highly common and have been
often linked to the prefrontal cortex and limbic system in MDD
(90). In addition to these brain regions, patients with MDD have
also shown various abnormalities in the cerebellum. Yucel et al.
(91) found a significantly smaller vermis, an area responsible for
the regulation of emotion and cognition (92), in MDD patients
compared to healthy controls (91). Like bipolar disorder, studies
also reported a smaller cerebellum in MDD patients (82).

Blood flow in the vermal areas of the cerebellum have also been
linked to symptoms of MDD. Acutely depressed patients on var-
ious antidepressant medications showed an increased cerebellar
activity and blood flow in the vermis when compared to remit-
ting or healthy subjects. These findings were positively correlated
with the severity of the depressive episodes, severity of cognitive
deficits, and resistance to antidepressant medications (93–95). It
is important to note that patients in the Liotti et al. study were
not showing any depressive symptoms at the time of testing, thus
suggesting that cerebellar activation patterns could reflect a trait
marker for depression.

Further studies on medication naive patients also suggest
abnormal cerebellar connectivity with the anterior cingulate cor-
tex (19), an area known to influence affect, social functioning,
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motor control, and motivation (Paus, 2001). Abnormal connec-
tions between the cerebellum and frontal lobe have also been
found in patients with severe depression andwho are also resistant
to treatment (5) and also reported in geriatric depression (96).

In sum, studies on the cerebellum and MDD have shown a
reduced cerebellar size, an increase in cerebellar activity, and dis-
rupted cortical connections. The reduction in cerebellar size is an
interesting finding as this is also present in patients with ADHD.
Additionally, this reduction for both patient groups appears to
be focused on the vermis areas, an area that has been implicated
in attention (35, 48), which is also impaired in patients with
MDD (97). Interestingly, this area is also impaired in bipolar
patients who exhibit attentional deficits (98). Further, although
some studies investigated cerebellar activity in relation to sever-
ity of depressive symptoms (96), to our knowledge, no study
has looked at the relationship between cerebellar function and
individual symptoms in MDD, including anhedonia, low mood,
or psychomotor retardation. However, some studies found that
changes in cerebellar activity are not related to mood changes in
MDD (99, 100).

Anxiety Disorders

Anxiety disorders include disorders that involve excessive fear
(concern about a current threat or perceive threat) and anxiety
(concern about future threats or perceived threats). These dis-
orders are typically coupled with extreme autonomic reactions,
including muscle tension and elevated heart rate (38). The exact
neural mechanisms underlying the occurrence of anxiety dis-
orders are still unclear; some of the suggested mechanisms are
decreased blood flow and metabolism in the frontal, temporal,
parietal areas, and cingulate gyrus (101). In addition, impairment
to the cerebellum has been reported in anxiety disorders and
might be linked to increased arousal present in posttraumatic
stress disorder (PTSD), generalized anxiety disorder (GAD) (102),
and social anxiety disorder (SAD) (21).

Single photon emission computed tomography (SPECT) was
utilized by Bonne et al. (103), which revealed increased cerebel-
lar activity when re-experiencing the traumatic event in PTSD
patients (103). In a study conducted on healthy subjects per-
forming moderate exercise and complex mental arithmetic task,
increased cerebellar and vermal activity was revealed in PET scan-
ning. Cerebellar hyperactivity correlated positively with increased
blood pressure and heart rate, highlighting a possible role for
the cerebellum in the regulation of sympathetic activity, which
may explain its role in anxiety disorders (104). These results
were confirmed by another study on patients with panic disor-
der revealing a significant high-glucose metabolism levels in the
pons, midbrain, medulla, thalamus, hippocampus, amygdala, and
cerebellum (105).

In sum, most studies on anxiety and the cerebellum suggest
a hyperactivity of the cerebellum; however, this is also true for
patients with MDD. While this may be the cause of the atten-
tion impairments observed in both disorders, it would also be
interesting to see which if any, areas are also contributing to the
contrasting deficits that characterize each disorder. Comparisons
of cerebellum activity during anxiety attacks with activity during
a major depressive episode may help researchers understand how

the role the cerebellum plays in each of these disorders. Data on
role of treatment or psychotherapeutic interventions on cerebellar
function are still unclear and warrant further studies. In addition,
future comparative studies should also investigate cerebellar func-
tions across anxiety disorders as well as symptom clusters in each
anxiety disorder.

Conclusion

Growing evidence and recent data suggest that the cerebellum
plays a role not only in the control of balance and intentional vol-
untarymovement but also plays an important role in the control of
cognitive and emotional processes. The exact involvement of the
cerebellum in these functions and its role in psychiatric andneuro-
logical disorders is clearly supported by functional and structural
imaging studies. As discussed above, the cerebellum was found to
be associated not only with psychiatric and cognitive symptoms in
different disorders but also with pharmacological and behavioral
therapies. However, it is still unclear how cerebellar dysfunction
relates to different symptoms in psychiatric disorders. Future
research using different motor and cognitive tasks in different
types and subtypes of psychiatric and neurological disorders are
still needed. Attentionmust be drawn to the interaction of genetic,
developmental, structural, and functional brain changes involv-
ing the cerebellum in the production of symptoms in different
psychiatric and neurological disorders.

The majority of studies are inconclusive when addressing spe-
cific anatomical abnormalities in the cerebellum that are present
in psychiatric disorders. However, several of the disorders dis-
cussed share similar cerebellar abnormalities, for example, ASD,
schizophrenia, bipolar, and MDD all show decreased volume in
the vermis; however, their symptoms are remarkably different. As
each area of the cerebellum projects to different areas of the cere-
bral cortex and mid-brain (106), the variety of symptoms suggests
that the abnormalities of each disorder focused to specific areas,
rather than the cerebellum as a whole. This may explain the wide
range of symptoms observed across the disorders. For example,
strong connectivity between the VIIb and IX vermis areas and the
visual network has been noted by Sang et al. (106). This area is
also known to have reduced blood flow in schizophrenic patients,
which in turn could be a factor in visual hallucinations experience
by the patient. The same can be said with hemispheric areas
VI, VIIb, and VIII, which show connectivity with the auditory
network (106) and could explain auditory hallucinations present
in some schizophrenic patients. This problem highlights the need
for more topographical studies focusing on smaller areas when
looking for cerebellar abnormalities in these disorders.

In sum, our review shows that most prior studies of cerebellar
function in psychiatric disorders did not focus on (a) investigating
the different symptom domains for each disorder in relation to
exact cerebellar damage, (b) testing which subregions of the cere-
bellum are related to the symptoms in each psychiatric disorder,
(c) understanding drug effects, and (d) understanding neurode-
velopmental changes associated with psychiatric disorders. In
addition to experimental studies testing these points, theoretical
analyses and computational modeling work are needed to explain
how damage to certain subregions of the cerebellum relates to
specific symptom clusters.
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