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Bacteria and archaea can exchange genetic material across lineages through processes
of lateral genetic transfer (LGT). Collectively, these exchange relationships can be
modeled as a network and analyzed using concepts from graph theory. In particular,
densely connected regions within an LGT network have been defined as genetic
exchange communities (GECs). However, it has been problematic to construct networks
in which edges solely represent LGT. Here we apply term frequency-inverse document
frequency (TF-IDF), an alignment-free method originating from document analysis, to
infer regions of lateral origin in bacterial genomes. We examine four empirical datasets
of different size (number of genomes) and phyletic breadth, varying a key parameter
(word length k) within bounds established in previous work. We map the inferred lateral
regions to genes in recipient genomes, and construct networks in which the nodes are
groups of genomes, and the edges natively represent LGT. We then extract maximum
and maximal cliques (i.e., GECs) from these graphs, and identify nodes that belong to
GECs across a wide range of k. Most surviving lateral transfer has happened within these
GECs. Using Gene Ontology enrichment tests we demonstrate that biological processes
associated with metabolism, regulation and transport are often over-represented among
the genes affected by LGT within these communities. These enrichments are largely
robust to change of k.

Keywords: TF-IDF, lateral genetic transfer, horizontal genetic transfer, microbial genomes, genetic exchange
community, lateral genetic transfer network, clique analysis

INTRODUCTION

Bacteria and archaea (BA) comprise much of the planet’s biodiversity. Although individually
inconspicuous, communities of these organisms are responsible for key biological and geochemical
processes including nitrogen fixation, aerobic and anaerobic digestion of biomass, and oxidative
dissolution of minerals. Bacteria also cause a range of diseases in plants, animals, and humans. Since
1996, genome-sequencing technologies have been applied initially to study bacterial pathogenesis,
and more recently to understand environmental processes and explore biodiversity. Genome
sequences are publicly available for more than 30,000 BA, and large international projects are
underway to sequence many thousands more.
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Arguably, the two most-notable discoveries from the first two
decades of microbial genomics have been the extent of strain-to-
strain variation in gene content (Tettelin et al., 2005; Segerman,
2012; Croucher et al., 2014), and the prevalence of lateral genetic
transfer (LGT). It has long been known that bacteria can take up
genetic material from their surroundings, incorporate it into their
main genome (or maintain it on extrachromosomal elements)
and transmit it to subsequent generations. More than 35 years
ago, unexpected patterns of gene presence among bacterial taxa
and anomalous topologies of phylogenetic trees inferred for
bacterial proteins were attributed, somewhat controversially, to
LGT (Ambler et al., 1979a,b; Dickerson, 1980; Woese et al.,
1980). In the last 10–15 years, large-scale analysis has revealed
the surprising extent of LGT among BA, with many estimates
indicating that 10–40% of genes may have a relatively recent
lateral origin; for details see the review by Ragan and Beiko
(2009). Thus while all organisms transmit genetic information
vertically from parent to offspring, BA simultaneously operate
an orthogonal genetics that links important components of their
genomes with viruses, phage, plasmids and free environmental
DNA in a vast web (Doolittle, 1999; Bryant and Moulton, 2004;
Beiko et al., 2005; Kunin et al., 2005; Dagan et al., 2008; Dagan
and Martin, 2009; Halary et al., 2010; Puigbò et al., 2010; Bapteste
et al., 2013; Koonin, 2015).

We and others (Beiko et al., 2005; Dagan et al., 2008; Dagan
and Martin, 2009; Popa et al., 2011) have sought to model
this web of genetic relationships as a graph in which vertices
represent observed entities that carry DNA (genomes, and in
some applications also plasmids and phage), and edges represent
the inferred transmission of genetic material between them.
However, resolving the lateral signal turns out to be unexpectedly
tricky. Two genomes that have descended only recently from
a common ancestor are unlikely to differ greatly in genome
sequence or gene content, and if they are accorded individual
vertices, the similarity between them will arise almost entirely
from vertical signal. To the extent that our graph is intended to
help us understand patterns of LGT, it makes sense to combine
such genomes into a single vertex (node). As genomes diversify
through time, it becomes increasingly desirable to represent them
as separate vertices, because doing so potentially increases the
resolution at which LGT can be studied; but pairwise edges
represent a mixture of vertical and lateral signal. Moreover,
older LGT (more-basal in the tree of vertical signal) becomes
established in lineages and begins to be allocated among present-
day genomes in hierarchical patterns that reinforce local vertical
signal (Gogarten et al., 2002; Gogarten and Townsend, 2005).
Thus by flattening the temporal (historical) dimension into the
plane of the (present-day) graph, we hide sequence diversity
in the vertices and admix vertical and lateral signal in the
edges. Although an optimal balance (or multiple locally optimal
balances across the tree) can be sought, these issues remain.

Until now, the nature of the edges has received the most
attention. LGT detection methods can be classified into two
general types: surrogate and phylogenetic (Ragan, 2001a,b;
Gogarten and Townsend, 2005). The former include methods
based on all-versus-all sequence comparison (Bansal et al., 1998;
Lima-Mendez et al., 2008; Fondi and Fani, 2010; Halary et al.,

2010) or reciprocal best matches (Tatusov et al., 1997; Bork
et al., 1998) of genes or proteins. Some additional filter must
then be applied to distinguish matches that are unexpectedly
strong after correction for shared vertical relationship (and
perhaps other factors, e.g., functional constraints), and therefore
candidates for LGT. This filter might involve a more-stringent
match threshold (Halary et al., 2010) and/or subtracting edges
present in a trusted reference tree (Dagan et al., 2008; Dagan
and Martin, 2009). A converse strategy was employed by Clarke
et al. (2002), who were interested only in the vertical component.
Alternatively in the phylogenetic approach, a test tree (inferred
for a putatively orthologous gene or protein family) is compared
with a reference (genome or organismal) tree, and instances of
topological incongruence that meet a statistical support criterion
are considered prima facie cases of LGT (Goldman et al., 2000;
Beiko et al., 2005; Zhaxybayeva et al., 2006; Beiko and Ragan,
2008). Even so, reconstructing the pathway of inferred LGT as
shortest edit paths is computationally hard and may not yield
a unique solution, or any solution at all (Beiko and Hamilton,
2006). Popa et al. (2011) employ a hybrid approach in which only
genes assessed as having regions of anomalous G+C content are
input into phylogenetic discordance analysis.

Several objections have been raised to these approaches, both
individually and collectively. We have repeatedly argued that as
genes are not the actual units of LGT, gene families should not
be the primary units of analysis (Chan et al., 2009a,b). Doolittle
and Bapteste (2007) and Doolittle (2009) have argued that by
using a reference tree external to the analysis, we impose a higher
standard of evidence on rejecting the reference topology (and
thereby inferring LGT) than on accepting (or failing to reject)
it, thereby according the vertical paradigm a methodologically
unfair and theoretically unjustified advantage; for a conflicting
opinion see O’Malley and Koonin (2011). A way is needed to infer
LGT directly, positively and fairly in large genome-scale datasets.

Recently we (Cong et al., 2016a,b) introduced term frequency-
inverse document frequency (TF-IDF) as an accurate, scalable
approach to infer LGT among microbial genomes. Using TF-IDF,
edges represent only lateral signal and can be inferred directly
from whole genomes without first parsing them into individual
genes. These edges are directional: transfers are inferred from
a group of donor genomes to a single recipient genome. No
comparison with an external topology is required, although
inference quality may be improved if the group structure reflects
phylogeny (Cong et al., 2016b).

Direct access to edges that represent only the lateral
component of genetic relationships greatly simplifies the
interpretation of such graphs: they are natively LGT networks.
Skippington and Ragan (2011) defined a genetic exchange
community (GEC) as a densely connected region of an LGT
network. Recognizing the limitations of then-existing methods
and data, these authors operationally defined a GEC as “a
set of entities, each of which has over time both donated
genetic material to, and received genetic material from, every
other entity in that GEC, via a path of lateral transfer.”
These GECs do not exist a priori in nature, but rather are
“actively fashioned (and continually refashioned) by the complex
ongoing interplay among habitats, donors, vectors, recipients,
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mechanisms, sequences, population structures and selection”
(Skippington and Ragan, 2011). Biological problems that could
be modeled as involving dense edge sets in LGT graphs include
the number, size, geospatial extent, taxonomic or habitat diversity
of GECs in the microbial biosphere, and the role of vectors in
mediating the exchange of pathogenicity, virulence or resistance
factors among pathogens, primary hosts and secondary hosts
(Halary et al., 2010; Popa et al., 2011; Skippington and Ragan,
2011, 2012).

Skippington and Ragan (2011) further proposed that dense
regions in LGT graphs might be described using concepts
from graph theory, including cliques (complete subgraphs, i.e.,
groups of nodes that are all connected directly to each other),
paracliques (cliques missing a few edges: Chesler and Langston,
2007; Hagan et al., 2016), other forms of near-cliques, or looser
structures such as transitively closed sets, cycles, paths or walks.
They were not, however, in a position to recommend one of
these notions over the others. Our previous results make it
clear that edges, hence dense edge sets in LGT graphs and
their biological interpretations, can be sensitive to the choice
of TF-IDF parameters. Notably, precision and recall can be
sensitive to the size of k (Cong et al., 2016a), and edges to
the structure and delineation of groups (Cong et al., 2016b).
It may be that different values of k are more sensitive to
different assumptions or biological processes; because of this,
we are interested in inferences of GECs that are robust to
change of k. In the present work, three empirical genome-
scale datasets we studied in detail earlier (Cong et al., 2016b)
provide a solid foundation for addressing these issues. We add
a fourth dataset to control further for balance across taxa, while
removing a few poorly represented and/or anomalous taxa; and
present the alignment-free LGT network analytical workflow
end-to-end, including extraction of maximum and maximal
cliques.

Specifically, here we examine (a) whether and how k affects
cliques in LGT networks; (b) whether core nodes, stable to
variation of k within biologically reasonable bounds, exist in
different cliques; and (c) whether and how our biological
process (functional) interpretation is consequently affected. More
broadly, we believe that the approach pioneered here will
provide a framework for understanding the extent and biological
significance of LGT in complex environments.

MATERIALS AND METHODS

Datasets and Groups
Here we analyze four datasets, three of which we introduced
earlier (Cong et al., 2016b): 20 Escherichia coli and seven Shigella
genomes (ECS dataset), 110 enteric bacterial genomes (EB) and
143 genomes from BA. To these we now add a dataset of 144
bacterial genomes (BAC) purpose-built for this analysis. When
this latter dataset was constructed, 24 bacterial orders in 12
classes were represented by at least one genus from which at
least six genomes had been sequenced to high quality. Within
each of these orders we selected one genus at random, and
if that genus was represented by more than six genomes we

chose six of them at random, thereby constituting BAC with 144
genomes in 24 genera. In this way we attempt to achieve as broad
and balanced selection of genomes across Bacteria as possible,
given the available data, a synthetic classification (NCBI) and the
underlying biology.

As noted above, TF-IDF infers transfers from identified groups
of donor genomes into a single recipient genome. It is therefore
necessary to delineate groups prior to analysis. Here we recognize
groups within the ECS dataset according to multi-locus sequence
type (MLST; Gordon et al., 2008); within EB by genus, sometimes
combining Escherichia and Shigella genomes into a single group;
within BA by phylum, or alternatively by class; and within BAC by
order. Other approaches to grouping are possible, some of which
we explored earlier (Cong et al., 2016b).

Inference of Lateral Segments Using
TF-IDF
The TF-IDF method per se proceeds in four steps, as follows:
for each dataset we (A) extract unique k-mers and construct
a k-mer dictionary; and (B) build a relationship matrix R in
which rows represent individual genomes, columns represent the
identified groups of genomes, and elements count the number of
identical k-mers present in a genome and in each group other
than its own. These counts are then normalized, and the mean
element value computed over R. Unless indicated otherwise, this
mean is used as the threshold for recognizing that a genome
in the dataset may contain k-mers donated by a group in the
dataset. (C) Within each genome, we then construct segments
from neighboring k-mers that are present in the same donor
group. We further merge these segments if they are separated by
less than a gap thresholdG, yielding potential lateral segments. (D)
If the average frequency of k-mers in a potential lateral segment
is less than that of all k-mers in the target genome’s own group,
then we consider it an inferred lateral segment. Step B implements
the IDF component, and step D the TF component (Cong
et al., 2016a,b). Pseudocode is available in the Supplementary
Material to Cong et al. (2016a), and the TF-IDF source code at
https://github.com/congyingnan/TF-IDF.git.

Because the TF component requires a potential lateral segment
to be infrequent in genomes of its own group, TF-IDF is expected
to identify recent LGT events, i.e., those affecting one or a very
few genomes in a target group. By contrast, k-mers descendant
from transfers more ancient than the common ancestor of a target
group would tend to occur widely within that group, and thus fail
to be inferred as lateral.

Mapping Inferred Lateral Regions to
Genes
We consider a gene to be lateral if it contains, or is overlapped
by, at least one inferred lateral segment such that two distinct
length thresholds are met. The inferred lateral segment must
itself contain at least a specified minimum number of k-mers
(including k-mers in any intervening gaps up to G = 2k); this
minimum number is 10 for the BA dataset, 100 for EB, 500
for ECS (Cong et al., 2016b) and 10 for BAC. These values
approximate the average length of all LGT detections in each
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dataset, thereby controlling in part for differences in sequence
diversity among the datasets. In addition, the overlap must
extend for at least a specified minimum number of k-mers (again
including k-mers in gaps up to G = 2k); this minimum number
is 10 for BA, 100 for ECS and EB (Cong et al., 2016b) and 10 for
BAC.

End-to-End Workflow: Overview
As introduced above, GECs might variously be described as paths,
transitively closed sets, paracliques or cliques (Skippington and
Ragan, 2011). The first two structures fail to capture the density of
connectivity, and many such structures of nearly equivalent size
or value can often be found in relatively highly connected graphs
such as the LGT networks we derive above. Paracliques differ
from the corresponding cliques by relaxing the strict requirement
that all edges be present, and in this way might better ameliorate
the effects of incomplete or imperfect data. In the absence of
theory or established practice, paraclique parameters would have
to be optimized for each dataset, requiring intense computation.
Constrained by these considerations, here we adopt the strictest
yet clearest definition of GEC, as a set of vertices that share (donate
or receive) genetic material from all other nodes within this set.
That is, there must be at least one direct path between each node
and every other node. Using this definition, GECs correspond to
cliques in the LGT network.

The discovery and analysis of such cliques proceeds in four
main steps:

(a) construct LGT networks based on the results of TF-IDF;
(b) consolidate these networks by collapsing recipient genomes

to recipient groups;
(c) extract maximum and maximal cliques from the LGT

network; and
(d) perform enrichment tests on biological processes

underlying the cliques.

Construction of LGT Networks
From our previous work (Cong et al., 2016a,b) we know that k
can strongly affect the detection of LGT, hence potentially the
topologies of LGT networks. For that reason, we explore different
values of k to test the stability of clique topology. In step (a) we
explore values of k from 20 to 40. Depending on the data, false
positives can predominate at k ≤ 20, while at k ≥ 40 shared
k-mers become too rare, resulting in diminished performance.
For consistency with earlier studies on the ECS, EB and BA

datasets (Cong et al., 2016b), gap size G was fixed at 2k. The step
size is 10 for the ECS and EB datasets, while for BA (where LGT
signal is much weaker) and BAC (not studied heretofore) we set
step size as 5 for improved resolution against k.

Consolidation of the LGT Network Graph
Our TF-IDF procedure infers LGT from a donor group to a
recipient sequence, so at this point the vertices in our inferred
networks are of two types: individual genomes when they are
recipients of LGT, and groups of genomes when they are donors.
Of course, members of a group may individually be (and often
are) recipients of LGT from outside that group. Edges are
directional, so we depict them using an arrow from donor to
recipient (Figure 1).

We aim to delineate GECs, introduced above as sets of nodes
that have both donated genetic material to, and received genetic
material from, each other. However, it is unclear how to extract
these relationships when nodes are of two types, individual
sequences and groups. For this reason we take only groups as
nodes in our network analysis. In step (b) we subsume each
genome into its respective own-group identity, and merge all
directed edges into those sequences into a single directed edge
from the donor group to the recipient group (Figure 1). The
integer weight on each edge gives the total number of genes
inferred in this way to have been affected by LGT from donor
to recipient groups.

Extraction of Maximum and Maximal
Cliques
Extracting cliques [step (c)] is known to be NP-hard (Karp,
1972), although a parameterized complexity approach (Abu-
Khzam et al., 2006) is possible whenever the clique size can be
bounded (Downey et al., 1999). For this we used the Graph
Algorithms Pipeline for Pathway Analysis (GrAPPA) software
suite (Langston Lab, the University of Tennessee1). GrAPPA
integrates multiple graph-theoretical tools for biological data
analysis, including those designed to find cliques and paracliques.
It implements tools to extract patterns efficiently from graphs,
but deals only with undirected and unweighted networks. For
this reason, we reformulated our directed networks as undirected
graphs (i.e., we disregarded the arrowhead), deleted all weight
annotations (number of inferred LGT genes) on each edge, and
merged edges between pairs of nodes that are both donors and

1https://grappa.eecs.utk.edu/

FIGURE 1 | Merger of LGT relationships from group-to-sequence into group-to-group.
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recipients. Such reformulation does not make full use of the
LGT information (e.g., directionality) provided by TF-IDF, but
nonetheless it preserves connectivity information sufficient for
discovery of GECs as currently defined.

Here we use GrAPPA to find, for each dataset, one maximum
clique (a clique with the greatest number of vertices) and all
maximal cliques (cliques that are not included in a larger clique).
We report only those maximal cliques with at least three vertices.

Gene Ontology Enrichment Tests
In step (d) we determine the biological processes that are enriched
in the cliques previously extracted. As we show below (Results),
the cliques inferred for the ECS and EB datasets encompass
almost all the respective lateral genes, so the biological process
enrichments are essentially the same as described previously
(Cong et al., 2016b). Most LGT inferred for BAC involves the EB
genera. Thus, here we report biological process enrichment only
for cliques inferred, at different values of k, for the BA dataset.
These genes are extracted from the GenBank genome record
using GI numbers and coordinates, and collected as a test set.
All genes in the dataset form the respective reference set. The
enrichment statistic is a Fisher’s exact test, for which we set false
discovery rate FDR= 0.05 as the threshold for selecting over- and
under-represented Gene Ontology (Ashburner et al., 2000; Gene
Ontology Consortium, 2004) terms.

RESULTS

Detailed results including LGT networks, maximum and
maximal cliques, gene lists, NCBI accession numbers for
all genome sequences, and group composition are available
as Supplementary Material (Supplementary Figures 1–19,
and Supplementary Tables 1–34). Very large or detailed

Supplementary Figures are also available for download in high
resolution at http://bioinformatics.org.au/tools-data/ under the
category “Other.”

ECS Dataset
We divide the ECS dataset (20 Escherichia coli and seven
Shigella genomes) into six groups according to MLST (Gordon
et al., 2008). In an earlier analysis of this dataset (Skippington
and Ragan, 2012), lateral events identified by topological
incongruence between trees inferred from individual putative
orthogroups and an MRP (Ragan, 1992) reference supertree were
shown to be biased more by phylogeny than by environment or
lifestyle; concern was also expressed that defining GECs as cliques
or paracliques might be too rigorous a standard.

Here, we use our TF-IDF method to infer LGT networks
(Figure 2). For all k examined here, all six phyletic groups belong
to a single clique, so the whole dataset forms one large GEC.
Indeed, at k = 30 or 40, topologies of the two networks are
identical (as before: Cong et al., 2016b). There is a clear trend
overall of more detections on each edge as k increases, but with
some exceptions: at k= 20 we find three edges not seen at k= 30,
from group D to B2 (257 transfers), from B2 to S (443) and from
B2 to E (3574), while transfers from D to B1 decrease from 4659
at k = 20 to 3200 at k = 30. For all other edges, more genes are
affected by LGT at k = 30 than at k = 20. Likewise, when k is
increased from 30 to 40, three edges show fewer detections (D to
B1, 3200 to 1842; B1 to B2, 3658 to 3563; E to B2, 3804 to 3363)
but all others have more.

Although clique topology is stable for 20 ≤ k ≤ 40, the total
number of lateral genes underlying each clique increases with k
(Figure 3). This increase might appear to contradict our earlier
finding that when k increases, the total number of detections
and detection length should remain the same or decrease (at
G = 2k). However, when k is small, more short segments tend

FIGURE 2 | LGT networks for ECS at (A) k = 20 and (B) k = 30. At k = 40 connectivity is the same as in (B), although values on the edges are usually larger.
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FIGURE 3 | Total number of lateral segments of length ≥500 k-mers
(i.e., not only those mapping to genes), and total number of lateral
genes, within the (maximum) clique inferred for the ECS dataset, as a
function of k. For numerical values see Supplementary Table 32.

to be detected as lateral (Supplementary Table 1). For example,
at k = 20, 26% of lateral segments are ≥500 k-mers in length,
our threshold for selecting the segments for mapping to genes.
This proportion increases to 31% at k = 40. Thus, we infer more
lateral segments of ≥500 k-mers at k = 40, which leads to more
genes being inferred as affected by LGT.

EB Dataset
The enteric bacteria dataset contains 110 genome sequences
from five genera: Escherichia, Shigella, Salmonella, Klebsiella
and Yersinia. Because the delineation of groups affects the
detection results (Cong et al., 2016b), we infer LGT networks
and extract cliques from five variants of this dataset: all genera
present (referred to as EB-1); all genera except Shigella (EB-2)
or alternatively, all except Escherichia (EB-3); with Escherichia
and Shigella combined into a single group (EB-4); and with both
Escherichia and Shigella removed (EB-5). These are five of the six
variants we examined earlier (Cong et al., 2016b).

If we keep all 110 sequences and group them by genus (EB-1
dataset), the LGT network topologies change as k steps from 20
to 30 to 40. At k = 20, Escherichia, Shigella, Klebsiella constitute
a single clique. At k = 30, we find two cliques, one consisting of
Escherichia and Shigella, the other of Escherichia and Klebsiella.
At k = 40 only one clique is found, consisting of Escherichia and
Shigella. We infer many more LGT events between Escherichia
and Shigella than between any other pair of genera. As Escherichia
and Shigella are present in the clique across the examined range
of k, we can say that they are the core nodes of this GEC.

Because genomes from Escherichia and Shigella share many
more identical k-mers than do other groups, the lateral signal
between these genera can drown out weaker lateral signal from
or between other genera. This happens because the IDF values
(elements of the R matrix) for these genomes are much higher
than for the others (Cong et al., 2016a). This pushes up the
IDF threshold, with the consequence that few lateral events are
detected involving the other genera. To explore this effect, we also

analyzed variant datasets which are modified so that Escherichia
and Shigella do not both appear in the dataset as separate genera.

We first removed the Shigella genomes from the dataset while
retaining those from Escherichia, thereby eliminating the effect
of Shigella (EB-2 dataset). We now infer additional lateral events
in both directions between all pairs of Escherichia, Salmonella,
and Klebsiella. Thus we find a GEC composed of Escherichia,
Klebsiella and Salmonella that remains stable with respect to k.
We find similar results when we instead retain Shigella sequences
while removing those of Escherichia (EB-3 dataset); the GEC
here is Shigella, Klebsiella and Salmonella. We do infer lateral
events between Klebsiella and Yersinia in EB-3, but these are
not sufficient for Yersinia to join the GEC. In EB-4 we combine
Escherichia and Shigella into a single group (ES); more lateral
events were inferred from Salmonella to ES, but the GEC
membership remains ES, Salmonella and Klebsiella. Lastly, to
eliminate completely the effects of Escherichia and Shigella on
LGT inference, we use only Klebsiella, Salmonella and Yersinia as
input (EB-5). At k = 20 the sole clique contains all three genera,
but at k = 30 or 40 the previous clique is split into two, one
containing Klebsiella and Salmonella and the other Klebsiella and
Yersinia. We thus conclude that Escherichia, Shigella, Klebsiella
and Salmonella are all members of a larger GEC. Details are
provided in Table 1.

BA Dataset
The BA dataset, 143 genome sequences across BA, has been
studied in our group using classical alignment-based and other
computational methods for more than a decade (Beiko et al.,
2005; Chan et al., 2009a,b). Like many empirical datasets it is
unbalanced, with many more genomes representing some taxa
(e.g., Proteobacteria, Firmicutes) than others. We group these
genomes into fifteen phyla or, alternatively, into 31 classes. With
more nodes than in the two previous datasets, there is potential
for inferred LGT networks to be more complex. On the other
hand, these genomes are more dissimilar to each other (Cong
et al., 2016b), so fewer k-mers are shared and fewer instances of
LGT are inferred.

When groups are delineated by phylum, the number of total
LGT detections decreases significantly as k increases (Figure 4),
and this causes edges in the LGT network to vanish and the
cliques to shrink. At the smallest value of k = 20 six maximal
cliques are found, each with five phyla. Five of these contain the
High G+C Firmicutes, Proteobacteria and Low G+C Firmicutes,
which together represent 14797 lateral genes, 95.5% of the total
inferred over the entire network. Thus these phyla form the
core of the inter-phylum GEC. We also observe a smaller GEC
of Nanoarchaeota, Euryarchaeota and Crenarchaeota; although
based on only 10 lateral genes, it is notable for showing potential
GECs among Archaea. In addition, the Thermus/Deinococcus
phylum contributes 244 lateral events, 1.5% of the total; as our
dataset contains only one strain in this phylum, this particular
genome appears to be more LGT-active than many other bacterial
genomes.

The number of detections drops sharply at k > 20; recall that
our earlier simulations (Cong et al., 2016a) indicate potential
false positives at k ≤ 20, presumably due to identical k-mers
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TABLE 1 | Lateral genes and cliques inferred for variants of the EB dataset at k = 20, 30, or 40.

Dataset k size Nodes in clique Number of lateral genes in cliques Number of lateral genes in network Proportion (%)

EB-1 20 Escherichia, Shigella, Klebsiella 29527 29527 100%

30 Escherichia, Shigella 29258 29264 99.9%

30 Escherichia, Klebsiella 6 29264 0.1%

40 Escherichia, Shigella 16968 16968 100%

EB-2 20 Escherichia, Klebsiella, Salmonella 23964 23970 99.9%

30 Escherichia, Klebsiella, Salmonella 10840 10840 100%

40 Escherichia, Klebsiella, Salmonella 7420 7426 99.9%

EB-3 20 Klebsiella, Salmonella, Shigella 15290 15290 100%

30 Klebsiella, Salmonella, Shigella 6473 6501 99.5%

40 Klebsiella, Salmonella, Shigella 3869 3909 98.9%

EB-4 20 ES, Klebsiella, Salmonella 24806 24811 99.9%

30 ES, Klebsiella, Salmonella 10762 10762 100%

40 ES, Klebsiella, Salmonella 7951 7952 99.9%

EB-5 20 Klebsiella, Salmonella, Yersinia 6721 6721 100%

30 Klebsiella, Yersinia 123 2586 4.8%

30 Klebsiella, Salmonella 2463 2586 95.2%

40 Klebsiella, Yersinia 140 1559 9%

40 Klebsiella, Salmonella 1419 1559 91%

shared between sequences and groups simply by coincidence.
As k increases and LGT detections decrease in number, some
edges in the LGT network vanish, but the core nodes – the High
G+C Firmicutes, Low G+C Firmicutes and Proteobacteria –
remain as members of the maximal cliques.Thermus/Deinococcus
also remains active in sharing LGT with Proteobacteria for all
investigated k.

When these genomes are alternatively grouped by class, the
LGT networks are more complex. Again we see a sharp drop in
detections for k ≥ 20. At k = 20, all but one of the 31 classes
are involved in LGT (30696 genes), and we observe 23 maximal
cliques (≥3 nodes) in the LGT network; however, five classes
form core members of the GEC, with each being present in 17
maximal cliques (≥5 nodes) and in the maximum clique. These
classes are the Actinomycetales (5377 genes with lateral origin),
Bacillus/Clostridium (2277) and the α- (5944), β- (7322) and
γ-Proteobacteria (8596). Together they contain 77.7% of all genes
that contain regions of inferred lateral origin.

Since the sequences within BA are relatively dissimilar from
each other, many fewer k-mers are shared between sequences
than in the ECS and EB datasets. Thus the LGT detections
are very sensitive to k (Figure 4). At k = 30 the γ- and
β-Proteobacteria, Actinomycetales and Bacillus/Clostridium are
hubs and play key roles in most cliques; at k = 40 fewer genes
are inferred as lateral, and only the former two classes remain as
the core.

Deinococcus is inferred to exchange genetic material with β-
and γ-Proteobacteria at 20 ≤ k ≤ 40. Lateral events are also
inferred between Deinococcus and Actinomycetales, and between
Deinococcus and Chlorococcales, at k < 40.

BAC Dataset
With the BAC dataset we again explore a broad phyletic range
(24 orders representing 12 classes across Bacteria); but unlike

FIGURE 4 | Number of inferred lateral genes in the BA dataset at
20 ≤ k ≤ 40, analyzed at the level of phylum or of class. For numerical
values see Supplementary Table 33.

the situation with BA (above), with BAC we maintain numerical
balance (six genomes per order) and a comparable degree of local
sequence diversity (each set of six genomes represents a single
genus) to the extent possible, given the underlying biology and
the availability of high-quality genome sequences. As simulations
(Cong et al., 2016a) indicate a high likelihood of false positive
detections at k = 20, here we vary k from 25 to 40 in steps of
5. As above, the total number of genes inferred to be affected by
LGT events decreases with increased k (Figure 5).

At the smallest value of k = 25 we infer 81 edges in the
LGT network, connecting 17 nodes corresponding to orders
of Proteobacteria (12), Low G+C Firmicutes (four) and High
G+C Firmicutes (one). The largest clique inferred contains seven
orders (Supplementary Figure 16 and Supplementary Table 23).
At k = 30 only four of these orders remain (Neisseriales,
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FIGURE 5 | Number of inferred lateral genes in the BAC dataset at
25 ≤ k ≤ 40. For numerical values see Supplementary Table 34.

Enterobacteriales, Pasteurellales and Lactobacillales) in the
maximum clique, and this clique persists through to k = 40
(Supplementary Figures 17–19 and Supplementary Tables 25, 27,
and 29). Thus these four orders form the core nodes of the GEC
for the BAC dataset. This is in complete agreement with our
results from the BA dataset.

At k = 25, we also infer Enterobacteriales (represented here
by six E. coli genomes) to have donated via LGT to 125 genes
in other orders and to have accepted LGT from other orders
into 111 genes, together 34% of all affected genes across this
dataset. These results support the developing themes of LGT
being more successful among more-closely related genomes, with
enteric bacteria and Firmicutes particularly active.

Other maximal cliques containing more than three orders are
also found in the BAC dataset (Supplementary Tables 24, 26, 28,
and 30) at different k. Some are subsets of the maximum clique,
and reflect the fractions of the maximum clique in specific parts of
the LGT network, while others are independent of the maximum
clique and indicate other regions of dense connection among
bacterial orders.

Enrichment of Biological Processes
within Cliques
In addition to clique membership and topology, we are also
interested in the biological processes enriched among the
genes affected by inferred lateral events, as these may point
to physiological, ecological and other processes that help
to construct and maintain bacterial communities in nature.
Analyses of the LGT networks inferred for the ECS and EB
datasets reveal that more than 90% of the genes affected by
LGT are represented in the corresponding cliques. In the ECS
dataset, all vertices are in the maximum clique. In such cases
there is no need to carry out enrichment tests: biological processes
contributing to clique formation will be indistinguishable from
those of the whole LGT network to which the cliques belong,
i.e., the total LGT edge sets (Cong et al., 2016b). For the
BAC dataset (Supplementary Table 31), genes annotated for
involvement in metabolic processes (e.g., small-molecule and
amino acid biosynthesis) are about twice as numerous as those

in the next most-numerous category, ribosomal proteins: see
the Supplementary Material for Cong et al. (2016b), particularly
Section 4.2.

For the BA dataset, however, clique topologies change
significantly with k. Few LGT events are detected at k > 30,
particularly when sequences are grouped by phylum (Figure 4).
For optimal comparison, we carried out enrichment tests
on lateral genes of maximum cliques in each network at
k = 20, 25 or 30, with genomes grouped either by phylum
or by class. These tests identify biological processes related
to metabolism, transport and regulation as over-represented
when sequences are grouped by phylum. The term translational
elongation (GO:0006414) ranks in first position at k = 20,
and seventh at k = 25, among over-represented terms. The
most significantly under-represented biological processes relate
to transposition and to RNA modification at k = 20, and to
RNA processing and biosynthetic processes at k = 25. The only
term under-represented at k = 30 describes the modification of
macromolecules.

When the genomes are grouped instead by class, the main
categories of GO terms significantly over-represented remain
those describing metabolism, transport and regulation. Those
most under-represent relate to transposition, RNA metabolisms
and regulation at k = 20 and 25; at k = 30, processes of protein
modification are under-represented.

In general, the patterns of over-representation are similar
between analyses at phylum and class levels. Interestingly,
translation elongation is significantly over-represented at phylum
level, but much less so at class level. Transposition (GO:0032196)
is significantly under-represented in most cases.

DISCUSSION

Here we inferred LGT networks for four datasets of different
phyletic breadth, hence evolutionary depth. For the ECS dataset,
the entire LGT network is captured within a single clique
encompassing all nodes, consistent with previous research
(Skippington and Ragan, 2012). Interplay with the IDF threshold
is seen clearly with the EB dataset and its variants. For the full EB
dataset (EB-1), the LGT signal between Escherichia and Shigella
is much stronger than that of any other pairwise comparison
and dominates the lateral signal, with the result that the only
community that can be found is Escherichia and Shigella. If we
remove Escherichia or (alternatively) Shigella, or combine them
into a single group, we detect LGT events from (and/or to)
Klebsiella and Salmonella. This reveals a larger clique containing
either Escherichia or Shigella, plus Klebsiella and Salmonella
(Supplementary Figures 2–5). By contrast, Yersinia is relatively
silent to LGT, and contributes little to the community.

Particularly in the BA dataset, we see that different parts of the
LGT network are differentially sensitive to change of k. When k is
small (here k= 20), many k-mers are shared by chance, resulting
in many false positive inferences (Cong et al., 2016a,b). Edges
supported by large numbers of lateral events (e.g., those with
high weights) tend to persist, whereas those representing smaller
numbers of events may disappear as k is incremented. Even so,
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when the sequences are grouped by phylum, the High-G+C
Firmicutes, Low-G+C Firmicutes and Proteobacteria are found
in all cliques inferred across the investigated range of parameter
values (Supplementary Figures 6–10, Supplementary Tables 2–
11). For this reason we identify them as core nodes of the GEC for
the BA phyla. Although it does not contribute many LGT events,
Thermus/Deinococcus is also a member of most communities.

When the BA dataset is grouped into 31 classes, many more
clique structures are found. The α-, β- and γ-Proteobacteria,
Actinomycetales and Bacillus/Clostridium are always present in
at least one clique (Supplementary Figures 11–15, Supplementary
Tables 12–21), i.e., are core nodes. This agrees with an earlier
conclusion, based on classical alignment-based phylogenomic
methods, that these groups are connected by major highways of
LGT (Beiko et al., 2005). By contrast, the ε-Proteobacteria appear
relatively silent to LGT, with fewer inferred events per genome
(Supplementary Table 22). In the class-level LGT network, the
soleDeinococcus genome is also involved in many (maximum and
maximal) cliques, linked through a lateral edge with subdivisions
from Proteobacteria. Stronger connectivity might be expected
if more sequences from Deinococci and its immediate relatives
were represented in this dataset.

Although many fewer instances of LGT are inferred involving
archaea, we nonetheless recognize one clique among them.
The low frequency of inferred LGT events may arise because
these genomes are relatively diverse in gene content and
phylogenetically distant from each other, and/or because in
reality these genomes have exchanged little genetic material, for
example because they live in specialized environments (Beiko
et al., 2005; Popa et al., 2011). In the former case TF-IDF should
find instances of LGT but the pairwise values may not pass the
IDF threshold, whereas in the latter case there would be little true-
positive LGT to be found and lowering the IDF threshold would
lead only to false-positive inferences. Comparing the results of
TF-IDF with those of classical alignment-based methods may
help distinguish between these alternative explanations.

Enrichment tests on the BA data reveal that a wide range
of biological processes are over-represented in the LGT events
that underpin the cliques identified. As expected (Jain et al.,
1999, 2003), metabolic processes, gene regulation, and trans-
membrane and intracellular transport are broadly represented.
For example, at k = 25 with genomes grouped by class, 39 of the
50 most over-represented processes describe metabolism. Terms
associated with transposition or antibiotic resistance are not seen:
these genes are usually transferred within-phylum or within-class
(or indeed more narrowly) and often occur on plasmids, which
are not represented in the genome data files we used. As expected,
few terms describing processes of transcription, translation or
DNA replication (Jain et al., 1999, 2003) are overrepresented.

Fewer biological process terms are under-represented among
the LGT events that underpin the BA cliques, although
transposition (GO:0032196) is very significantly under-
represented. A similar result was also found for the ECS
dataset (Supplementary Table 4). From previous research (Cong
et al., 2016b) we know that genes annotated with this term
are widespread in the ECS genomes, making it difficult for
genes annotated with this term to pass the TF threshold for

detection. In the BA dataset, genomes of E. coli and Shigella are
a major source of genes associated with transposition; as these
are members of the same group (γ-Proteobacteria), they are not
detected by TF-IDF. In the EB dataset, when Escherichia and
Shigella are not treated as separate groups, transposition is not
significantly under-represented (Supplementary Table 5). Thus
TF-IDF is not blind to such mobile biological processes, but the
way groups are delimited can limit their discovery.

This work represents the first systematic exploration of
the sensitivity of densely connected structures (maximum and
maximal cliques) in LGT graphs to choice of parameter values
in an alignment-free framework. Our workflow is the first to
implement alignment-free and other highly scalable methods
end-to-end, from whole genome sequences to delineation GECs
and functional analysis of the genes affected by LGT. Our results
confirm the promise of this approach, notably the robustness
of clique structure and membership at sufficiently large k, here
k ≥ 25. Nonetheless, important challenges remain.

Computational simulations and empirical studies
demonstrate that approaches based on k-mer count can
support the scalable inference of phylogenies (Chan et al., 2014;
Bernard et al., 2016a,b) and identify regions of lateral transfer
within a dataset (Cong et al., 2016a,b). Parameters including k
can be adjusted to minimize the effects of sequence divergence
and genome rearrangement. However, word-count methods
are less robust to sequence loss or truncation (Chan et al.,
2014). As is the case with classical phylogenetics, other scenarios
likely to erode the performance of word-count methods include
compositional bias and/or rate variation within genomes or
across lineages, including convergent processes in distantly
related sequences. Methods will need to be developed such that
alignment-free approaches, including TF-IDF, can mitigate or
avoid these situations.

Graph-theoretical research has primarily concentrated on
difficult combinatorial problems posed on finite, simple graphs.
Graph analytical software packages such as GrAPPA (Langston
Lab, the University of Tennessee2), therefore, are designed mainly
for undirected, unweighted graphs. This has required us to
ignore both directionality (by merger of incoming and outgoing
edges) and weights. Such simplifications represent a classic pre-
processing step for a directed network (Seidman and Foster,
1978). While other strategies have been introduced to find
cliques in directed networks, all involve weakening the edges,
and none can guarantee a better interpretation of properties
of the original directed network (Seidman, 1980; Palla et al.,
2007). Comparing these approaches across various application
domains remains an open problem. Despite this limitation, some
features of the role played by LGT in the evolution of microbes
are still accessible. A good example is the frequent exchange
inferred among Escherichia and Shigella contrasted with the
relative isolation of Yersinia.

It is noteworthy that we have defined GECs as cliques, because
the clique is a rigorous graph-theoretical structure that maps
particularly well onto numerous biological concepts, in the
present case the sharing of genetic information via LGT. While

2https://grappa.eecs.utk.edu/
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this makes sense in the quest for biological fidelity, in mapping
GECs onto LGT graphs Skippington and Ragan (2011) expressed
concern that missing data might make clique too rigorous a
definition. We share this reservation, and observe that noise-
resilient options such as paraclique may fare better. We need only
a criterion, e.g., paraclique’s glom term (Hagan et al., 2016), by
which to estimate the number or proportion of “missing” edges.
An exploration of such criteria may be the subject of future work.
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