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Mitochondrial dysfunction in
inflammatory bowel disease
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Inflammatory Bowel Disease (IBD) represents a group of idiopathic disorders

characterized by chronic or recurring inflammation of the gastrointestinal tract. While the

exact etiology of disease is unknown, IBD is recognized to be a complex, multifactorial

disease that results from an intricate interplay of genetic predisposition, an altered

immune response, changes in the intestinal microbiota, and environmental factors.

Together, these contribute to a destruction of the intestinal epithelial barrier, increased

gut permeability, and an influx of immune cells. Given that most cellular functions as

well as maintenance of the epithelial barrier is energy-dependent, it is logical to assume

that mitochondrial dysfunction may play a key role in both the onset and recurrence

of disease. Indeed several studies have demonstrated evidence of mitochondrial stress

and alterations in mitochondrial function within the intestinal epithelium of patients with

IBD and mice undergoing experimental colitis. Although the hallmarks of mitochondrial

dysfunction, including oxidative stress and impaired ATP production are known to

be evident in the intestines of patients with IBD, it is as yet unclear whether these

processes occur as a cause of consequence of disease. We provide a current review

of mitochondrial function in the setting of intestinal inflammation during IBD.

Keywords: mitochondrial dysfunction, inflammatory bowel disease, intestinal inflammation, metabolic stress,

reactive oxygen species, inflammasome, gut-barrier function, autophagy

Introduction: Inflammatory Bowel Disease

Inflammatory bowel disease (IBD) is a complex, chronic, relapsing, and remitting inflammatory
condition of the gastrointestinal tract characterized by symptoms such as diarrhea, bloody stools,
abdominal pain, and weight loss (Greco et al., 2011; Indriolo et al., 2011; Rigoli and Caruso,
2014). There are two diseases which fall under the heading of IBD: Crohn’s disease and ulcerative
colitis. Crohn’s disease is characterized by transmural inflammation that may affect any part of the
gastrointestinal tract, and presentation of disease is dependent upon both location and severity of
inflammation (Podolsky, 2002; Indriolo et al., 2011). Inflammation in ulcerative colitis is limited to
the mucosa of the colon and rectum. The pattern of clinical disease in IBD is often cyclical with
periods of active inflammation and subsequent remissions (Indriolo et al., 2011). Additionally,
there is a strong association between IBD and development of colorectal cancer (Persson et al.,
1994; Canavan et al., 2006; Grivennikov, 2013). Although there is no cure for IBD, a range of
therapeutics (e.g., corticosteroids, immunomodulators, antibiotics, aminosalicylates, and biologic
therapies) is employed to help manage the symptoms of disease. The results of medical treatment
are highly variable, and the potential exists for significant morbidity over a long lifetime with
disease.
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In the United States, it is currently estimated that
approximately 1.6 million people suffer from IBD, with as
many as 70,000 new cases reported each year (Crohn’s and
Colitis Foundation of America, 2014). The peak age of onset is
between 15 and 35 years with approximately 5–10% of patients
diagnosed during childhood (<20 years). IBD is a chronic,
lifelong disease that creates a vast financial burden. Previous
studies have estimated that the annual direct health care cost for
a patient with Crohn’s disease is $8265–18,963 and $5066–15,020
per patient diagnosed with ulcerative colitis (Gibson et al., 2008).
Extrapolating these figures onto the current prevalence estimates
of IBD reveals an estimated annual total direct cost of between
11 and 28 billion dollars (Crohn’s and Colitis Foundation of
America, 2014).

While the exact pathophysiology of IBD is not yet understood,
it is known that the disease is triggered by a complex interaction
between genetic, environmental, and immunoregulatory factors.
Studies have delineated a clear genetic link to disease. Children
of parents affected by IBD have an increased risk of developing
the disease (Noble and Arnott, 2008). The risk is significantly
higher when both parents have IBD, with disease developing
in up to 36% of people with two parents previously diagnosed
with IBD (Bennett et al., 1991). Other studies have demonstrated
a much higher disease frequency (5–20% increase) amongst
first-degree relatives of affected individuals compared to the
general population (Russell and Satsangi, 2008). The familial link
appears to be stronger in Crohn’s disease compared to ulcerative
colitis (Tysk et al., 1988; Thompson et al., 1996; Orholm et al.,
2000; Halfvarson et al., 2003). Although genetics clearly play
a role in disease, the exact nature of genetic predisposition
is quite complex, and it is possible that susceptibility to IBD
may involve the interaction of several genes. To date, genome-
wide association studies (GWAS) have identified more than
160 genetic loci that confer susceptibility to disease (Liu et al.,
2015). The fact that genetic polymorphism alone does not predict
disease, but merely confers risk of developing IBD highlights
the importance that other elements, such as environmental
constituents, must also be a contributing factor (Cho and Brant,
2011). Interestingly, the majority of the genetic loci confer
susceptibility to both ulcerative colitis and Crohn’s disease,
calling into question the rigid categorization of IBD subsets.

Although the precise environmental factors that trigger
IBD are not known, several risk factors, including antibiotic
exposure, stress, dysbiosis, and nonsteroidal anti-inflammatory
drug exposure (NSAIDs), are thought to play a role in disease
onset and progression (Loftus, 2004; Bernstein et al., 2006;
Bernstein, 2008; Molodecky and Kaplan, 2010). Research has
demonstrated that IBD is more common in developed countries
compared to developing countries, which suggests that many
factors associated with the “westernized” lifestyle, such as diet,
decreased exposure to sunlight, exposure to pollution and
industrial chemicals, may be associated with disease development
(Hanauer, 2006). Interestingly, the incidence of IBD in some
developing countries (e.g., India and China) is beginning to rise
as they become more industrialized (Desai and Gupte, 2005;
Zheng et al., 2005). Likewise, migrant studies have revealed that
when populations relocate from regions of low IBD prevalence

to regions of higher prevalence, they acquire an increased
risk of developing disease (Bernstein and Shanahan, 2008;
Mikhailov and Furner, 2009). This highlights the importance of
environmental factors in the onset and progression of disease in
susceptible hosts (Hanauer, 2006).

An evolving body of literature would suggest that
predisposing factors converge, resulting in a breakdown of
the intestinal barrier and the translocation of luminal antigens.
In genetically susceptible individuals, this bacterial translocation
triggers a dysfunctional mucosal immune response and promotes
inflammation. Although the theory of increased intestinal
epithelial permeability as a primary cause of IBD has yet to be
proven, it is supported by murine models of experimental colitis
(Madsen et al., 1999; Resta-Lenert et al., 2005; Turner, 2009) and
some human studies (Söderholm et al., 1999; Zeissig et al., 2007).
Since the maintenance of epithelial junction integrity is energy-
dependent, it would suggest that mitochondrial function might
be central for the appropriate preservation of epithelial barrier
function. Interestingly, constituents that have the potential
to contribute to IBD susceptibility, such as gastrointestinal
infection, and nonsteroidal anti-inflammatory drugs, have
also been shown to affect mitochondrial function (Roediger,
1980a; Singh et al., 2009b; Schoultz et al., 2011). Additionally,
structurally abnormal mitochondria have been observed in both
animal models of intestinal disease (Rodenburg et al., 2008)
and in tissues from patients with intestinal inflammation (Nazli
et al., 2004). Moreover, processes which influence mitochondrial
function, such as autophagy (Travassos et al., 2010), endoplasmic
reticulum (ER) stress (Kaser et al., 2008), and the dysregulated
production of reactive oxygen species (ROS) (Pavlick et al.,
2002; Restivo et al., 2004; Beltrán et al., 2010) have all been
implicated in IBD. Despite the present interest in mitochondrial
function in the pathophysiology of diabetes (Chowdhury et al.,
2013), obesity (Rath and Haller, 2011), and neuromuscular
disease (Tarnopolsky and Raha, 2005), little is known about the
biological behavior of mitochondria in intestinal inflammation.
Here, we summarize the current literature that implicates
mitochondrial dysfunction in the pathogenesis of IBD.

Mitochondrial Homeostasis

Mitochondria are membrane-bound organelles that maintain
cellular energy production through oxidative phosphorylation
(Mitchell and Moyle, 1967). Mitochondria contain a circular
genome that encodes 13 proteins and the 22 tRNAs and 2 rRNAs
needed to translate those proteins within the mitochondrial
matrix. All 13 proteins encoded by mitochondrial DNA
(mtDNA) form essential subunits of the respiratory complexes I,
III, IV, and V (Anderson et al., 1981; Taanman, 1999). The small
mitochondrial genome necessitates that nuclear-encoded genes
provide the majority of proteins required for the respiratory
apparatus as well as all of the enzymes involved in other
cellular biosynthetic and oxidative functions (Anderson et al.,
1981; Taanman, 1999). Despite the limited coding-capacity of
the mtDNA, mitochondria regulate vital cellular functions aside
from energy production, such as the generation of ROS and
reactive nitrogen species (RNS), the induction of programmed
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cell death, and the transduction of stress and metabolic signals
(Galluzzi et al., 2012; Tait and Green, 2012). Thus, it is necessary
that mitochondrial dynamics be tightly controlled in order to
maintain overall cellular homeostasis.

Mitochondrial biogenesis, the process by which new
mitochondria are generated and repaired, plays a significant
role in maintaining cellular metabolic homeostasis. Through
the growth and division of established mitochondria, the
transcription and assembly of newmitochondrial proteins, or the
de novo synthesis of newmitochondria, mitochondrial biogenesis
provides the cell with an adequate pool of healthy mitochondria.
This process is influenced by numerous cellular environmental
stresses, such as caloric restriction, hypothermia, exercise,
cell division, and oxidative stress (Wenz, 2013). Variations in
mitochondrial number, size, and mass exist between all cells and
are reflective of the current cellular metabolic state (Leary et al.,
1998; Leverve and Fontaine, 2001; Pfeiffer et al., 2001; Kunz,
2003). Mitochondrial biogenesis is a complex process, utilizing
mitochondrial proteins encoded by both the mitochondrial and
nuclear genomes; thus, precise communication between the
mitochondria and nucleus is extremely important. Peroxisome
proliferator-activated receptor gamma coactivator 1-α (PGC1-
α) is a co-transcriptional regulation factor that is a central
modulator of mitochondrial biogenesis (Puigserver et al.,
1998). It drives biogenesis by activating various transcription
factors, such as nuclear respiratory factor-1 (NRF-1) and
nuclear respiratory factor-2 (NRF-2), which not only control
the expression of nuclear genes that encode mitochondrial
proteins, but also interact with mitochondrial transcription
factor A (Tfam) (Jornayvaz and Shulman, 2010), which promotes
the transcription and replication of the mitochondrial genome
(Virbasius and Scarpulla, 1994).

The competing processes of mitochondrial fusion and
fission operate to preserve mitochondrial function or eliminate
irreparably damaged mitochondria, respectively. Through their
role in regulating mitochondrial dynamics, fusion and fission
events fine-tune biological processes central to cell survival,
such as ATP generation, calcium homeostasis, and ROS
generation. Consequently, they also play a role in apoptosis,
mitophagy, cell-cycle progression, and oxygen sensing (Archer,
2013). Highly conserved guanosine triphosphates (GTPases)
regulate both processes of fusion and fission (Youle and van
der Bliek, 2012; Ishihara et al., 2013). Fusion is regulated
by isoforms of two proteins in the outer mitochondrial
membrane (OMM), mitofusion-1 and mitofusion-2, and by a
dynamin family member, optic atrophy 1 (Opa1) protein, in
the inner mitochondrial membrane (IMM) (Youle and van der
Bliek, 2012). Mitofusions initiate fusion between neighboring
mitochondria through the formation of homodimeric or
heterodimeric linkages (Santel and Fuller, 2001; Chen et al., 2003;
Hoppins et al., 2007). Opa1 then facilitates the merging of the
IMMs (Alexander et al., 2000; Hoppins et al., 2007). Mitofusion-
2 also localizes to the ER, where it alters mitochondrial and
ER morphology and encourages ER-mitochondria tethering,
which enhances calcium signaling (Rojo et al., 2002; de
Brito and Scorrano, 2008). Fusion allows for mitochondrial
complementation by permitting two mitochondria to fuse and

compensate for the defects of each other, thereby generating all
of the compulsory machineries for a functional mitochondrial
organelle (Archer, 2013). Mitochondria with mtDNA mutations
are allowed to fuse with other mitochondria as long as the total
mutation burden remains below 80–90% for the cell (Yoneda
et al., 1994; Nakada et al., 2001). Mitochondrial fusion is an
attempt to buffer brief stresses and fractional defects through the
exchange of components in the matrix and intermembrane space
(Nunnari et al., 1997; Ono et al., 2001; Chan, 2006; Youle and van
der Bliek, 2012).

When mitochondrial damage extends beyond a critical
threshold, the quality control mechanisms of fission are initiated.
Both ER-mitochondria interactions (Friedman et al., 2011) and
the cytosolic protein dynamin-related protein 1 (Drp1) (Chen
et al., 2003; Cribbs and Strack, 2009) are conserved features of
mitochondrial fission. ER-mitochondria contact points mark the
location of mitochondrial division where ER tubules physically
wrap around and constrict the mitochondria, presumably to a
diameter comparable to the Drp1 helices (Ingerman et al., 2005;
Friedman et al., 2011). After ER constriction and upon activation,
Drp1 translocates to and multimerizes around the OMM, where
it pinches and severs both the IMM and OMM (Legesse-Miller
et al., 2003; Lee et al., 2004; Zhu et al., 2004). Fission functions to
isolate damaged components of mitochondria by segregating the
damaged components of the organelle. After fission, the healthy
mitochondrion is able to reincorporate into the network while
the damaged mitochondrion is inhibited from reincorporation
by a reduction in expression of fusion mediators, such as Opa1.
This allows the damaged mitochondria to then be packaged
into autophagic vacuoles that are delivered to the lysosome for
disposal by the autophagic mechanism of mitophagy (Archer,
2013).

Severely damaged or superfluous mitochondria are degraded
by the mitophagy—a specialized form of autophagy that
targets individual mitochondria. During mitophagy, whole
mitochondria are sequestered into autophagosomes and sent
to lysosomes for degradation. Mitophagy is regulated by both
the mitochondrial phosphatase and tensin homolog (PTEN)-
induced kinase 1 (Pink1) and the cytosolic E3 ubiquitin ligase
Parkin (Pellegrino and Haynes, 2015). In healthy mitochondria,
expression of Pink1 is repressed by its transport into the IMM
and subsequent degradation (Yamano and Youle, 2013; Thomas
et al., 2014). However, in damaged mitochondria, Pink1 fails to
be imported into the IMM, and instead integrates into the OMM
(Geisler et al., 2010; Narendra et al., 2010) with its kinase domain
exposed to the cytosol (Zhou et al., 2008), which subsequently
recruits Parkin from the cytosol (Geisler et al., 2010; Narendra
et al., 2010). Once recruited, Parkin ubiquitinates proteins on the
OMM, targeting the mitochondrion for autophagic elimination
(Narendra et al., 2008). Thismitophagy pathway is also intimately
connected with mitochondrial mobility. A major component of
mitochondrial transport is mitochondria Rho-GTPase (Miro),
a mitochondrial adaptor protein that attaches kinesin motors
to the surface of mitochondria. Pink1 and Parkin associate
with Miro upon depolarization of the mitochondrial membrane
potential, triggering Pink1 to phosphorylate the mitochondrial
adaptor protein, subsequently resulting in Parkin-dependent
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proteosomal degradation of Miro. Degradation of Miro causes
the mitochondrion and the kinesin motor complex to separate,
arresting mitochondrial motility (Wang et al., 2011). Arrest
of mitochondrial motility, like degradation of mitochondrial
fusion proteins, potentially functions to quarantine damaged
mitochondria from reincorporating into the mitochondrial
network, since static mitochondria are less prone to undergo
fusion with other mitochondria (Twig et al., 2010). Homeostasis
of the mitochondrial network as well as the proper functionality
of the mitochondria is dependent on the cooperation of these
cellular functions.

The mitochondrial population must be sustained in order
to maintain cellular bioenergetic homeostasis and ensure
cellular energy demands are being fulfilled. The plasticity of
mitochondrial function and structure is an essential feature
to maintaining cellular homeostasis, and indeed, changes in
mitochondrial mass have been documented in both health and
disease. For example, mitochondrial biogenesis increases in
muscle cells upon exercise (Holloszy, 1967). Conversely, research
has shown that as mammals age, there is a general decline in both
mitochondrial mass and function (Yan and Sohal, 1998; Liu et al.,
2002; Chistiakov et al., 2014). There is a wide range of clinical
conditions that result frommitochondrial dysfunction, including
muscular disorders, cardiomyopathy, diabetes, cancer, deafness,
lactic acidosis, and skeletal myopathy (Vafai and Mootha, 2012).
In addition, studies show that 1 in every 5000 individuals
is affected by a mitochondrial disease (Pfeffer et al., 2012).
Mitochondrial dysfunction can affect cell signaling through
ROS and metabolites, and can interrupt the intimate physical
connections between themitochondria and other organelles (e.g.,
ER, etc.). Additionally, mitochondrial dysfunction has severe
consequences on the bioenergetics of the cell. Understanding the
complex responsibility mitochondria carry in the biology of cell
processes and how mitochondrial dysfunction leads to disease
can help target specific cellular mechanisms for the treatment
and/or prevention of disease.

A variety of conditions and stimuli can alter mitochondrial
function. Any disruption of mitochondrial performance can
affect overall cellular function and eventually tissue/organ
function. Here we review data supporting a role for
mitochondrial dysfunction in the development and/or
progression of IBD (Figure 1). Although a causative role of
mitochondrial stress in IBD has not yet been established, the
current literature would support a key correlation between
mitochondrial function and intestinal inflammation. While we
discuss several potential mechanisms by which mitochondrial
function may impact disease, it is important to note that all of
these processes are interconnected themselves. For example, an
alteration in mitochondrial morphology can lead to defective
mitochondrial function and communication, build-up of ROS,
and activation of the inflammasome, potentially culminating
in a disruption of the intestinal barrier, increased permeability,
and ultimately intestinal inflammation. Additionally, some of
the mechanistic links of mitochondrial dysfunction discussed
are more strongly supported by scientific and clinical research
(e.g., ROS generation, NLRP3 inflammasome, and autophagy).
Nonetheless, it is important to understand how any alteration

in the multifaceted functionality of the mitochondrion may
contribute to the initiation and propagation of an inflammatory
insult.

Mitochondrial Dysfunction in IBD

Form and Function
Mitochondrial form and function are intimately connected
in normal cells. The mitochondria are compartmentalized
organelles surrounded by two protein-containing phospholipid
bilayers. The OMM encloses the entire organelle, and in
conjunction with the IMM, separates the IMS and matrix
compartments (Perkins and Frey, 2000; Strauss et al., 2008).
Both the OMM and IMM contain translocases that function
as mitochondrial protein entry ports, directing proteins to the
correct subcompartment. The OMM also serves as a central
signaling hub for several signal transduction pathways in the cell
(Nunnari and Suomalainen, 2012). For example, innate antiviral
immunity modulated by mitochondria is dependent upon
mitochondrial antiviral signaling (MAVS), an OMM adaptor
protein (Seth et al., 2005; Koshiba, 2013); and mitochondria-
associated membranes (MAMs) are areas on the OMM where
the ER and mitochondrion physically and functionally interact
(Pizzo and Pozzan, 2007). The OMM is freely permeable to small
molecules, and as such, the intermembrane space contains the
same concentration of small molecules (e.g., ions, sugars, etc.)
that are also present in the cytosol (Stowe and Camara, 2009).
Cytochrome c, a protein that is integral to respiration as well
as the induction of apoptosis, localizes to the intermembrane
space (Koehler et al., 2006; Webb et al., 2006). The IMM, an
impermeable membrane that allows for the gated exchanged
of metabolites and proteins and undergoes intense folding into
cristae to increase the membrane surface area, encloses the
matrix compartment. The IMM facilitates lipid trafficking and
respiratory complex formation (five complexes in mammals)
(Perkins and Frey, 2000; Strauss et al., 2008), which are involved
in oxidative phosphorylation and ATP production (Arco and
Satrústegui, 2005). The matrix houses numerous copies of the
circular mitochondrial genome as well as the machinery needed
for its replication, transcription, and subsequent translation
of the encoded proteins. Additionally within the matrix is a
diverse set of enzymes required for cellular metabolic processes,
including fatty-acid synthesis, the Tricarboxylic Acid Cycle
(TCA), heme-synthesis, and iron-sulfur cluster formation (Ryan
and Hoogenraad, 2007).

There are five primary functions of the mitochondria that
are pivotal to mitochondrial form-function dynamics. First,
mitochondrial biogenesis regulates the mitochondrial population
in order to meet the energy requirements of the cell (Archer,
2013). Second, the cell maintains the health of mitochondria
through the process of mitophagy, which eliminates damaged,
depolarized mitochondria via lysosomal vacuoles. Mitophagy
is facilitated by both the process of fission, which isolates
depolarized mitochondria and suppresses fusion mediators, and
by inhibiting the reorganization of the damaged mitochondria
back into the network (Archer, 2013). Third, mitochondria
are mobile organelles that transverse a dynamic network
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FIGURE 1 | IEC function and intestinal homeostasis can be influenced by mitochondrial dysfunction. (A) During intestinal homeostasis, goblet cells produce

a healthy mucus layer that protects the IECs from the contents of the lumen, and Paneth cells produce and release antimicrobial peptides to protect IECs.

Mitochondria are dense and contain well-formed cristae. The tight junctions inhibit translocation of luminal antigens across the epithelial barrier. Any basal ROS

produced is negated by cellular antioxidants. Leukocytes survey the laminia propria for threats. (B) Studies have shown that during the inflammatory conditions of IBD,

the mucus layer is reduced and production of antimicrobial peptides is decreased, exposing the intestinal epithelium to the intestinal microbiota and luminal antigens.

Mitochondria are swollen and abnormal, and cristae are irregular, resulting in a reduction in ATP production and an increase in ROS. Cellular antioxidants are also

decreased, causing a buildup of cellular ROS. There is an increase in epithelial permeability (both transcellular and paracellular) and translocation of bacteria and

luminal antigens. This results in an infiltration of immune cells, which also causes an increase of ROS. Both IL-8 and IL-1B are released by immune cells, and immune

cell-bacterial interactions further instigates the release of pro-inflammatory mediators, which can feedback onto the IECs and influence other cellular components of

the intestinal epithelium.

of dynein and kinesin within the cytosol (Wang et al.,
2011). While the relationship between mitochondrial mobility
and form and function is not clear, the dynein/dynactin
complex is known to regulate the process of fission by
recruiting Drp1 to the OMM (Varadi et al., 2004). Fourth,
mitochondria are important oxygen-sensing beacons in the
cell, and the initial steps in the mechanism of redox signaling
depend upon mitochondrial dynamics (Marsboom et al.,
2012; Hong et al., 2013). Lastly, mitochondria are linked
to the ER through MAMs, enabling these two organelles to
communicate through calcium signaling, which has affects
on oxidative metabolism and apoptosis (Szabadkai et al.,
2004; Denton, 2009; Patergnani et al., 2011). Hence, a minor
perturbation in mitochondrial structure or function can lead to
mitochondrial dysfunction, which can have deleterious effects on
the cell.

Supporting the importance of mitochondrial form and
function, enterocytes isolated from patients with IBD have been
reported to exhibit swollen mitochondria with irregular cristae
(Delpre et al., 1989; Söderholm et al., 2002b; Nazli et al., 2004).
Abnormal mitochondrial structure is also seen in intestinal
epithelial cells (IECs) from mice subjected to experimental
models of colitis (Rodenburg et al., 2008). These morphological
changes are suggestive of cellular stress and bioenergetic failure.
Indeed, patients with IBD have reduced ATP levels within the
intestine (Roediger, 1980a; Kameyama et al., 1984; Schürmann

et al., 1999). As would be expected, morphological changes in
mitochondria have been shown to result in deficiencies in the
β-oxidation of short-chain fatty acids (SCFA) (Halestrap and
Dunlop, 1986). It remains unclear, however whether observed
changes in mitochondrial structure come as a result of disease
or whether they may play a role in the pathogenesis of
inflammation.

Intestinal Epithelial Barrier Function
Numerous cellular processes are dependent upon healthy
mitochondria for an adequate energy supply. The intestinal
mucosa of IBD patients has been demonstrated to be in a
state of energy deficiency characterized by low ATP levels
and low energy charge potential, (Roediger, 1980a; Kameyama
et al., 1984; Söderholm et al., 2002a), calling into question
the functionality of this organelle during disease. Indeed,
the colonic epithelial cells of patients with ulcerative colitis
exhibit mitochondrial alterations before other ultrastructural
abnormalities in the epithelium are apparent and before the
onset of mucosal inflammation (Delpre et al., 1989; Hsieh et al.,
2006). The integrity of the intestinal epithelium, tight junction
maintenance, and β-oxidation are key cellular processes within
the intestinal epithelium that are not only dependent upon
properly functioning mitochondria, but are also known to be
altered in animal models of intestinal inflammation and in
humans with IBD.
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Intestinal Epithelial Cells (IECs)
It is known that IBD is a multifactorial disease, involving
the interplay of immune dysregulation, genetic susceptibility,
environmental factors, and microbial dysbiosis. The intestinal
epithelium comprises the interface between these factors, and
thus, may play a vital role in governing this interplay. A key
feature of IBD is recurrent damage of the intestinal epithelium
concomitant with disruption of the intestinal barrier function
(Roda et al., 2010; Henderson et al., 2011; Salim and Söderholm,
2011). The intestinal epithelium is the host’s defensive barrier
against the luminal microenvironment with discriminatory
absorption of nutrients and antigen permeability. The intestinal
epithelium is in a constant state of turnover, renewing every
4–5 days and necessitating a considerable supply of energy.
The epithelium is comprised of a single layer of different
subtypes of IECs, including absorptive enterocytes, mucus-
producing goblet cells, enteroendocrine cells, and defensin-
producing Paneth cells—all of which differentiate from intestinal
epithelial Lgr5+ stem cells (Gibson et al., 1996; Crosnier et al.,
2006; van der Flier and Clevers, 2009). The intestinal stem cells
are believed to undergo asymmetric division to give rise to
transit amplifying (TA) progenitor cells, which are rapidly cycling
cells that amplify the progeny of the stem cells, undergoing a
limited number of divisions before terminally differentiating into
a mature cell lineage and being sloughed off at the villus tip.
The cellular structure of the epithelium is organized in space,
such that the proliferating stem cells are buried in the crypts
and the differentiated mature cells migrate up the surface of
the villi (Gibson et al., 1996; Crosnier et al., 2006; van der
Flier and Clevers, 2009). Each subset of IECs serves a unique
purpose within the epithelium, yet all are critical for intestinal
homeostasis and modulating the crosstalk between the microbial
community and the circulating immune cells (van der Flier and
Clevers, 2009; Noah et al., 2011; Dupaul-Chicoine et al., 2013).
Consequently, dysregulation of IEC differentiation has serious
effects on the pathogenesis of IBD, and several genes for IEC
differentiation have been shown to be perversely expressed in
the setting of inflammation (Ahn et al., 2008; Zheng et al., 2011;
Coskun et al., 2012). Indeed, depletion of mucus and goblet
cells is a characteristic of patients with ulcerative colitis (Jass
and Walsh, 2001; Danese and Fiocchi, 2011). Muc2-deficient
mice, which lack the gene encoding the major component of
mucin, spontaneously develop colitis (Van der Sluis et al., 2006).
Likewise, several IBD susceptibility genes are associated with
Paneth cell dysfunction. For example, the Nod2 risk allele for
Crohn’s disease is associated with a decrease in α-defensin
production by Paneth cells in humans (Wehkamp et al., 2004,
2005), and NOD2-deficient mice also exhibit a decrease in
α-defensin production (Kobayashi et al., 2005). Paneth cell
dysfunction in both humans and mice is also associated with
autophagy related 16-like 1 (ATG16L1) (Cadwell et al., 2008,
2009) and X-box binding protein 1 (XBP1) (Kaser et al., 2008),
both of which are associated with increased risk of Crohn’s
disease (Rioux et al., 2007; Kaser et al., 2008). Adolf et al. has
shown that by deleting both ATG16L1 and XBP1, mice develop
spontaneous CD-like ileitis, which may be a consequence of
Paneth cell dysfunction (Adolph et al., 2013). Furthermore, mice

lacking caspase-8, a cysteine protease involved in mediating
cellular apoptosis, had reduced numbers of goblet cells, no Paneth
cells, and also spontaneously developed ileitis (Günther et al.,
2011). Thus, defects in intestinal epithelial homeostasis results in
an inadequate intestinal barrier defense, whichmay allow luminal
antigens and/or microbes to interact with or violate the intestinal
epithelium and consequently cause inflammation (Gersemann
et al., 2011). However, the role of mitochondrial dysfunction
during IEC differentiation needs to be further evaluated in
order to understand the role it may play in the development of
intestinal inflammation. Interestingly, Bär et al. demonstrated
that altered mitochondrial oxidative phosphorylation activity
influences intestinal inflammation in models of experimental
colitis using strains of conplastic mice, which have identical
nuclear genomes but diverse mitochondrial genomes (Bär et al.,
2013). Two strains of conplastic mice, which had increased
concentrations of intestinal ATP and augmented oxidative
phosphorylation complex activity, were protected from dextran
sodium sulfate (DSS)- and trinitrobenzene sulfonate (TNBS)-
induced colitis. These mice also had increased proliferation
of enterocytes, suggesting that increased intestinal ATP levels
(which were due to mtDNA polymorphisms) caused a surge in
the turnover rate of the intestinal epithelium—a process that is
central to the renewal of the epithelium after exposure to harsh
conditions and noxious provocations, such as DSS and TNBS
(Bär et al., 2013). This study suggests that increased regeneration
of the intestinal epithelium (bymeans of increasedmitochondrial
function) is a key factor in combating intestinal inflammation.
Indeed, recent clinical evidence has demonstrated that complete
mucosal healing is associated with long-term remissions and
decreased risk of operative intervention in IBD patients. Mucosal
healing also results in the improved mitochondrial structure
in the IECs of patients with ulcerative colitis (Fratila and
Craciun, 2010). Aside from the providing energy supplies for cell
differentiation, there is accumulating evidence that mitochondria
play additional roles in cellular differentiation (Maeda and
Chida, 2013; Xu et al., 2013; Weinberg et al., 2015). Thus, it
is possible that mitochondrial dysfunction could impact IEC
differentiation either through energy production or signaling
networks, adversely affecting the integrity of the epithelial cell
barrier and potentially influencing the development of disease

Tight Junctions
The capacity of the intestinal epithelium to function as a physical,
protective barrier is dependent upon tight junctions (TJs),
which seal the paracellular space between epithelial cells and
polarize the cell membrane. TJs contribute to the integrity of the
gut barrier by controlling paracellular permeability and barrier
competence of the intestinal epithelium as well as contributing
to mucus layer production and infection control (Peterson and
Artis, 2014). There are studies that provide a strong link between
the development of IBD and altered expression and structural
modifications of TJs. Indeed, evidence shows an association
between aberrant intestinal permeability and intestinal mucosal
inflammation in IBD (Schmitz et al., 1999; Heller et al.,
2005; Zeissig et al., 2007). Reports have correlated increased
intestinal permeability in first-degree relatives of patients with
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IBD, and interestingly, studies have also demonstrated that
the spouses of patients with IBD can experience increased
gut permeability (May et al., 1993; Söderholm et al., 1999;
Breslin et al., 2001; Thjodleifsson et al., 2003). Maintenance
of TJ integrity is energy-dependent, and it is not surprising
that disruption of the barrier by toxins, pathogens, or noxious
stimuli can be initiated by damaged mitochondria (Dickman
et al., 2000; He et al., 2000). Certain insults, such as NSAID
exposure, are known to disrupt the structure and function of
mitochondria, and at least transiently, increase gut permeability
(Somasundaram et al., 1997, 2000; Söderholm et al., 1999;
Zamora et al., 1999; Basivireddy et al., 2002). Additionally,
it has been reported that some patients with Crohn’s disease
develop immune reactivity against components of their gut
microbiome (Pirzer et al., 1991; Duchmann et al., 1996).
Consistent with these reports, Nazli et al. demonstrated that
treating a cell monolayer with dinitrophenol (an oxidative
phosphorylation uncoupler) resulted in cellular internalization
of a non-invasive strain of Escherichia coli. From this, the
authors hypothesized that under metabolic stress resulting from
mitochondrial dysfunction, the enteric epithelium loses its ability
to distinguish between commensals and pathogens, and as a
result, begins internalizing commensal organisms, which can lead
to an exacerbated intestinal inflammatory response (Nazli et al.,
2004). The mechanism behind developing reactivity to one’s own
microbiota is not understood, and more research is needed to
delineate the role of metabolic stress (e.g., energy deprivation
as a result of decreased mitochondrial function) in this process.
Studies do suggest that both mitochondrial dysfunction (Lewis
andMcKay, 2009) and increased gut permeability (De-Souza and
Greene, 2005; Deitch et al., 2006) affect the overall competence of
the intestinal epithelial barrier, but the stimuli that initiates either
process is not known. Nonetheless, these studies lend credence
to the implication of epithelial mitochondrial dysfunction as a
predisposing factor for an increase in gut epithelial permeability
and a loss of gut barrier function, resulting in intestinal
inflammation.

β-oxidation
IBD has been suggested to involve a state of energy-deficiency,
whereby oxidative metabolism is altered within IECs (Fukushima
and Fiocchi, 2004; Saitoh et al., 2008). The SCFA butyrate
is the preferred energy source of colonic epithelial cells
(Roediger, 1980a; Hamer et al., 2008) and also plays a role
in maintaining colonic mucosal health (Hamer et al., 2008).
It is a natural nutrient both found in food and produced as
an intestinal fermentation by-product of dietary fiber by gut
bacteria (Santhanam et al., 2007). Butyrate undergoes catabolic
degradation through β-oxidation in the mitochondrial matrix
of colonocytes, providing over 70% of the energy demand of
the colonic epithelium (Roediger, 1980b). Butyrate metabolism
was demonstrated to be impaired in an animal model of colitis
(Ahmad et al., 2000), and numerous studies have reported
impaired metabolism in the intestinal mucosa of patients with
IBD (Roediger, 1980a; Kameyama et al., 1984; Harig et al.,
1989; Ramakrishna et al., 1991; Chapman et al., 1994). Similarly,
intestinal mucosal inflammation results when butyrate oxidation

is inhibited in experimental animals (Roediger and Nance, 1986).
Santhanam et al. showed that the mitochondrial acetoacetyl
CoA thiolase, which catalyzes the critical last step in butyrate
oxidation, was significantly impaired in the colonic mucosa of
patients with ulcerative colitis. Furthermore, they conclude that
an increase in mitochondrial ROS may trigger this enzymatic
defect (Santhanam et al., 2007). Polymorphisms in SLC22A5,
the gene that encodes for the carnitine transporter OCTN2,
is a known risk factor for IBD (Barrett et al., 2008; Singh
et al., 2009a). IECs utilize carnitine as a transporter of long-
chain fatty acids into the mitochondria for β-oxidation (Rinaldo
et al., 2002). Furthermore, genetic ablation of OCTN2 as well
as pharmacologic inhibition of intestinal fatty acid β-oxidation
results in murine experimental colitis (Roediger and Nance,
1986; Shekhawat et al., 2007). Studies involving the treatment of
epithelia cells with dinitrophenol to induce mitochondrial stress
resulted in decreased transepithelial resistance and increased
bacterial translocation (Lewis et al., 2010)—both of which are
features of gut barrier dysfunction. Thus, defective β-oxidation
in the mitochondria has deleterious effects beyond energy
requirements. Likewise, a dysfunctional gut microbiome or a
poor diet may also result in a decrease of butyrate metabolism
in the colonic epithelium. Enhanced production of butyrate
may potentially benefit the colonic epithelial cells by stimulating
an enhancement in cellular homeostasis, including antioxidant
and anti-inflammatory roles as well as protective gut-barrier
functions.

Reactive Oxygen Species (ROS) and Reactive
Nitrogen Species (RNS)
Oxidative stress within the intestinal epithelium is thought to
play a key role in the pathogenesis of intestinal inflammation
(Grisham, 1994; Elson et al., 1995; Conner et al., 1996). Although
ROS and RNS are important signaling intermediates involved
in a variety of homeostatic molecular pathways (Brown and
Griendling, 2009; Gillespie et al., 2009), excessive oxidative
stress can provoke cellular damage through the oxidation of
proteins, lipids, and DNA, altering their biological functions
and potentiating cell death (Andersen, 2004). At baseline, the
deleterious effects of ROS generation are negated by a plethora
of endogenous antioxidants (Haddad, 2002; Gillespie et al.,
2009). The intestinal lumen and epithelium are continuously
exposed to noxious stimuli, such as ingested nutrients, local
microbes or infections, gastric acid production, and periods of
ischemia/reperfusion that have the potential to stimulate the
generation oxygen and nitrogen radicals (Parks et al., 1988; Parks,
1989; Young and Woodside, 2001; Sánchez et al., 2002; Biswas
et al., 2003; Mazalli and Bragagnolo, 2009). Additionally, the
infiltration of leukocytes, monocytes, and neutrophils during
inflammation can further enhance intestinal ROS production
through both respiratory burst enzymes and prostaglandin and
leukotriene metabolism (Babbs, 1992). Several studies have
demonstrated increased ROS/RNS levels within the intestinal
epithelium of patients with IBD (Kruidenier and Verspaget,
2002; Pravda, 2005; Rezaie et al., 2007) and in murine models
of experimental colitis (Girgin et al., 1999; Tham et al., 2002;
Narushima et al., 2003; Sundaram et al., 2003; Oz et al., 2005;
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Siddiqui et al., 2006; dos Reis et al., 2009; Kajiya et al., 2009;
Abdolghaffari et al., 2010; Yao et al., 2010; Lenoir et al., 2011; Ock
et al., 2011; Sengül et al., 2011; Borrelli et al., 2013; Arab et al.,
2014). High concentrations of oxidized molecules have also been
measured in the plasma, serum, exhaled air, and saliva of patients
with IBD (Tüzün et al., 2002; Rezaie et al., 2006). Others have
shown a positive correlation between oxidative stress and disease
severity, suggesting a role in the development and potentiation
of inflammation (Rachmilewitz et al., 1995, 1998; Herulf et al.,
1998).

In addition to changes in the generation of reactive species,
several studies have shown an overall reduction in endogenous
antioxidants, such as ascorbate, β-carotene, α-tocopherol, and
reduced glutathione, in patients with IBD (Buffinton and Doe,
1995; McKenzie et al., 1996; Schorah, 1998; Sido et al., 1998;
Geerling et al., 2000). Interestingly, mice lacking an important
antioxidant enzyme, glutathione peroxidase, spontaneously
develop symptoms and histologic features similar to those in
IBD patients (Esworthy et al., 2001). Moreover, in a murine
DSS-induced colitis model, mice subjected to DSS exhibited
diminished blood levels of reduced glutathione, which were
restored to normal after treatment with various antioxidants
(Oz et al., 2005). Levels of catalase, glutathione peroxidase,
and superoxide dismutase at baseline have been shown to be
lower in the human colonic mucosa, submucosa, and serosa
as compared to the human liver (Grisham et al., 1990; Mulder
et al., 1991; Buffinton and Doe, 1995) and small intestine
(Blau et al., 1999), suggesting a limited capacity to combat
oxidative stress in the setting of inflammation. Furthermore,
treatment with a mitochondria-targeted antioxidant, MitQ,
reduced mitochondrial ROS and protected against experimental
colitis in mice subjected to DSS (Dashdorj et al., 2013).
Likewise, Wang et al. reported that mitochondrial superoxide
was the principal initiator of internalization and transcytosis of
a commensal microbes across metabolically stressed epithelium
in cell lines and human colonic tissue analyzed ex vivo,
and that treatment with mitochondrially-targeted antioxidants
countered this epithelial barrier defect (Wang et al., 2014).
However, it is not yet fully understood if the correlation between
ROS/RNS and IBD predicts an actual etiologic relationship
for oxidative stress in intestinal inflammation, or if reactive
molecular species are merely a consequence of the inflammatory
process.

Oxidative stress is thought to exert deleterious effects largely
though direct DNA damage and lipid oxidation. Multiple studies
have reported increased oxidative DNA damage in the blood
and mucosa of patients with IBD (Lih-Brody et al., 1996; D’Incà
et al., 2004; Dincer et al., 2007). It has been suggested that
these changes may contribute to the increased susceptibility to
colorectal cancer that is seen in IBD later in life (Persson et al.,
1994; Canavan et al., 2006; Grivennikov, 2013). Colonic mucosal
biopsies and plasma from IBD patients also demonstrate an
increase in lipid peroxidation products, implying increased ROS
production (Pereira et al., 2015). Mice deficient in the antioxidant
not only show evidence of increased lipid peroxidation products
in both the colon and ileum, but also spontaneously develop
colitis (Esworthy et al., 2001), indicating that the ability to combat

the oxidative degradation of lipids may be critical in maintaining
intestinal homeostasis.

Mitochondria are the most abundant source of ROS in the
cell (Beltrán et al., 2010). Under healthy cellular conditions, low
levels of ROS are generated and neutralized by the endogenous
antioxidant machinery (Haddad, 2002; Gillespie et al., 2009).
However, when mitochondria are destabilized by damage or
mutations, excessive oxidative stress may result, leading to a
reduction of ATP, inhibition of the respiratory chain, andmtDNA
damage (Du et al., 1998). Prolonged oxidative stress reduces
mitochondrial bioenergetics and homeostasis, promoting cellular
damage and ultimately cell death (Scherz-Shouval and Elazar,
2007; Chen and Gibson, 2008). Recent studies have proposed
mitochondria as significant cellular drivers and mediators of
the inflammatory process (Lee and Hüttemann, 2014). The
mitochondria are also a major target of the deleterious effects
of oxidative stress, but little is known about how this may lead
to inflammation. Understanding the role of mitochondrially-
derived ROS in the pathogenesis of IBD may offer key insights
into the initiation and propagation of disease.

NLRP3 Inflammasome
Mitochondria are capable of regulating the pro-inflammatory
response of the cell through activation of a molecular complex
known as the inflammasome. The inflammasome is a multi-
protein, caspase-1 activating complex. NLRP3 (NLR family,
pyrin domain containing 3) has emerged as critical regulator
of intestinal homeostasis (Davis et al., 2014). Formation of
the NLRP3 inflammasome is activated by pathogen-associated
molecular patterns (PAMPs) as well as damage-associated
molecular patterns (DAMPs) that signify cellular stress, such
as extracellular ATP, mtDNA, and ROS (Martinon et al., 2002;
López-Armada et al., 2013). Once activated, NLRP3 associates
with the adaptor molecule ASC (apoptosis-associated speck-
like protein), which contains a caspase recruitment domain
(CARD). The associated NLRP3-ASC complex oligomerizes
and recruits procapase-1, resulting in formation of the active
inflammasome, which in turn causes autocleavage of caspase-1
and release of activated inflammatory cytokines IL-8 and IL-
1β (Tschopp, 2011; Zitvogel et al., 2012). Data from murine
experimental colitis models and human intestinal specimens
reveal that elevated expression of IL-8 and IL-1β is central to the
pathogenesis of IBD (Sartor, 1994; Ishiguro, 1999; Monteleone
et al., 1999; Kwon et al., 2005; Maeda et al., 2005; Ishihara
et al., 2013). IL-8 induces expression of IL-1β and other pro-
inflammatory cytokines (Kim et al., 2010), which results in
intense intestinal inflammation. IL-1β has been shown to increase
gut permeability, which then allows for increased bacterial
translocation (Al-Sadi et al., 2012). Furthermore, the secretion
of biologically active IL-8 and IL-1β is mediated by caspase-1,
which has been reported to play a role in DSS-induced colitis
(Siegmund et al., 2001). Bauer et al. demonstrate that DSS
induces activation of caspase-1 through NLRP3 inflammasome
activation. They further show that NLRP3-deficient mice are
protected from DSS-induced colitis, exhibiting a significantly
reduced production of pro-inflammatory cytokines as well as
improved clinical assessments and histological scores (Bauer
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et al., 2010). Additionally, polymorphisms in the Nlrp3 gene
are associated with an increased susceptibility to Crohn’s
disease (Villani et al., 2009). Schoultz et al. has reported that
polymorphisms in the genes encoding both Nlrp3 and Card8,
a potent component of the NLRP3 inflammasome, confer
increased susceptibility to developing Crohn’s disease in Swedish
men (Schoultz et al., 2009).

The exact mechanism of NLRP3 inflammasome activation
in IBD is not yet known. Several studies have revealed that
the NLRP3 inflammasome is involved in murine experimental
colitis, and that stimulation of the inflammasome was modulated
by mitochondrial ROS (Shimada et al., 2012). However, there
remains controversy about the source of ROS that activates
intestinal inflammation. Mitochondria are a major, but not
the only source of ROS production in the cell. Dashdorj
et al. recently published a study implicating mitochondrial ROS
as the instigator of inflammation activation (Dashdorj et al.,
2013). Consistent with this, other studies have demonstrated
that inflammasome activation occurs in mice deficient in
nicotinamide adenine dinucleotide phosphate (NADPH) oxidase
subunits—amembrane-bound enzymatic complex that functions
to generate superoxide, a type of ROS. Additionally, stimulation
of the inflammasome also occurs in the mononuclear phagocytes
from patients with chronic granulomatous disease, a condition
that stems from mutations in the NADPH oxidase subunits
(Meissner et al., 2010). Thus, it seems likely that mitochondrial
ROS production plays a key role in the intestinal inflammation
associated with IBD. However, more research is needed to
delineate the extent to which the mitochondria and its
concomitant ROS and oxidized mtDNA are involved in
the development and progression of intestinal inflammation.
Recent studies have begun to appreciate the communication
that occurs between mitochondria and pathogen recognition
receptors (PRRs) (West et al., 2011). It is interesting to
consider the role this communication may play in maintaining
immune-microbial homeostasis in the intestinal tract, and
how mitochondrial dysfunction may affect the development of
intestinal inflammation. Studying the molecular behavior of the
inflammasome and its downstream effectors in IBD should add
important insights into the mechanistic pathways relevant to the
pathogenesis and treatment of disease.

Mitochondrial Communication
Sustaining the mitochondrial population in the cell is central
to maintaining cellular bioenergetic homeostasis. Mitochondria
have a dedicated repertoire of quality control machinery
dedicated to maintaining protein-folding homeostasis. They are
composed of four compartments, each of which is a separate
protein-folding environment that must be maintained for proper
function. Chaperone proteins are localized in the matrix and
are required for protein import and promote proper protein
folding. In addition to matrix-localized chaperones, there are
proteases located in the matrix and IMM, which function to
recognize and degrade proteins that fail to fold or assemble
properly (Tatsuta and Langer, 2008). Only approximately 10%
of the proteins that comprise the electron transport chain are
encoded by the mitochondria. The remainder are encoded by

the nucleus, translated in the cytosol, and then transported
into the mitochondria, where they subsequently assemble into
stoichiometric complexes with mitochondrial-encoded proteins
(Haynes and Ron, 2010). Thus, it is apparent how cellular
stress, such as excessive ROS, mutated proteins, or environmental
stress, can negatively affect the protein-folding capacity of
the mitochondria, resulting in an accumulation of misfolded
proteins or misassembled protein complexes (Ron and Walter,
2007; Ryan and Hoogenraad, 2007). The cell has evolved
several quality control pathways to monitor mitochondrial
homeostasis and prevent mitochondrial dysfunction. One of
these pathways, the mitochondrial unfolded protein response
(UPRmt), is a protective response that fosters survival during
times of mitochondrial dysfunction or stress by functioning to
lessen proteotoxic stress and re-establish protein homeostasis
by increasing the population of mitochondrial quality control
proteases and chaperones. The UPRmt is a mitochondrial-
nuclear cross-talk pathway that, upon communication of
unfolded protein stress, activates the transcription factor C/EBP
homologous protein (CHOP) (Papa and Germain, 2014), which
in turn induces expression of UPRmt-responsive genes (Haynes
et al., 2007; Horibe and Hoogenraad, 2007; Baker et al., 2011). It
this thought that the UPRmt functions to stabilize and promote
the recovery of those mitochondria that are not beyond repair,
whereas those organelles that are not salvageable are targeted for
mitophagy (Haynes et al., 2013).

Numerous diseases, particularly metabolic and
neurogenerative diseases are associated with mitochondrial
dysfunction. Some diseases, such as spastic paraplegia, stem
directly from mutations that impair mitochondrial function
and homeostasis (Casari et al., 1998; Hansen et al., 2002). Most
diseases that are associated with mitochondrial dysfunction,
though, display characteristics, such as an accrual of mtDNA
mutations, augmented ROS generation, and a reduction in ATP
output (Haynes and Ron, 2010). All of these features secondarily
affect the protein-folding environment of the mitochondria
and are common to IBD. However, the exact role UPRmt

plays in IBD is just beginning to be uncovered. Rath et al. has
recently demonstrated that UPRmt signaling interfaces with the
ER unfolded protein response (UPRER) pathway via double-
stranded-RNA-activated protein kinase (PKR). Additionally,
IECs were unable to activate cpn60, an UPRmt target gene, in
PKR-deficient mice subjected to DSS, resulting in resistance to
DSS-induced colitis (Rath et al., 2012). This study suggests that
the UPRmt has a role in the pathogenesis of IBD, and since it
seems that PKR integrates UPRmt signaling into UPRER, then
both mitochondrial and ER protein homeostatic responses might
contribute to intestinal inflammation.

The UPRmt is similar to the well-known UPRER. While both
processes contain their own set of chaperones and proteases,
and seem to be two distinct pathways, both signaling pathways
share the transcription factor CHOP (Horibe and Hoogenraad,
2007) and converge together at PKR (Rath et al., 2012).Moreover,
the mitochondria and ER are not only functionally connected,
but also physically connected via MAMs, which play a role
in calcium homeostasis and lipid biosynthesis. Calcium release
at MAMs may advise mitochondria to future apoptotic events
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(Szabadkai et al., 2004; Denton, 2009; Patergnani et al., 2011).
Accumulation of misfolded proteins in the ER has been suggested
to contribute to the development of IBD (Kaser and Blumberg,
2009), and various UPRER modulators have been correlated to
the pathogenesis of IBD (Maloy and Powrie, 2011). Likewise,
patients with active IBD normally express augmented ER stress
markers in the epithelium of ileum and/or colon (Hu et al.,
2007; Shkoda et al., 2007; Heazlewood et al., 2008; Kaser et al.,
2008). Furthermore, mice with IEC-specific expression of a
dysfunctional UPRER signaling protein displayed fragmented ER
and deteriorated mitochondria (Cao et al., 2014), implying both
ER and mitochondrial dysfunction. Both mitochondrial stress
and ER stress have been implicated in a set of diseases associated
with mitochondrial dysfunction (Fukushima and Fiocchi, 2004;
Ozcan et al., 2004; Zhang and Kaufman, 2008; Lim et al.,
2009; Haga et al., 2010; Rath and Haller, 2011). It is not
known if mitochondrial dysfunction is a result of ER stress
and dysfunction; or if a separate, external signal (e.g., diet,
microbiome, ROS, etc.) damages the mitochondria, which then
consequently, influences the functionality of the ER. It is also
remarkable to note that butyrate has been shown to impact
mitochondrial pathways and UPRER signaling in IECs (Fung
et al., 2011; Kolar et al., 2011). Since protein homeostasis is
sensitive to environmental conditions, it is attractive to speculate
that a collaborative UPR (both ER and mitochondria) functions
as an innate response to detect harsh changes in the fluctuating
intestinal environment. Additionally, given that butyrate is a by-
product of themicrobial fermentation of SCFAs, it is possible that
the composition of the gut microbiota (as well as other luminal
antigens) may influence mitochondrial-ER signaling pathways.
Nonetheless, it is imperative to consider the contributing role of
mitochondria-ER communication in intestinal inflammation.

Mitophagy and Autophagy
Defective autophagy pathways have also been associated with
several diseases, including IBD. Cells defective in autophagy
accumulate ROS as well as deformed mitochondria (Mizushima
and Klionsky, 2007; Saitoh et al., 2008). GWAS have implicated
several autophagy genes, including Atg16l1, Lrrk2, and Irgm
in the genetic susceptibility to Crohn’s disease (Rioux et al.,
2007; Barrett et al., 2008; Lees et al., 2011; Umeno et al., 2011).
Additionally, previous studies demonstrate that a deficiency in
Atg16l1 results in an increased susceptibility to experimental
colitis, abnormal appearance and distribution of Paneth cell
granules, and altered mitochondria (Cadwell et al., 2008; Saitoh
et al., 2008). Furthermore, Liu et al. showed Irgm1-deficient
mice exhibited a higher frequency of tubular and swollen
mitochondria and increased LC3-positive autophagic vacuoles
(Liu et al., 2013). This is consistent with studies that report in
humans IRGM localizes to themitochondria, where it plays a role
in mitophagy (Singh et al., 2010). Furthermore, a defect in either
ATG16L1 or IRGM has been associated with reduced Paneth
cell function, increased susceptibility to bacterial infection, and
development of colitis (Cadwell et al., 2008; Saitoh et al., 2008;
Liu et al., 2013).

Additionally, prohibitin 1 (PHB), a protein that is important
in maintaining normal mitochondrial respiratory function,

has been implicated in modulating autophagy. Kathiria et al.
demonstrated that PHB regulates autophagy in IECs via
intracellular ROS signaling. Moreover, diminished expression
of PHB and inhibition of autophagy aggravated mitochondrial
depolarization and reduced cell survival, suggesting PHB is an
indicator that signals inflammatory stress to the cell, which
stimulates autophagy in order to maintain cellular homeostasis
and viability (Kathiria et al., 2012). PHB is primarily located
on the mitochondria in IECs, and several lines of evidence
imply it functions in regulating mitochondrial morphology and
function (Artal-Sanz and Tavernarakis, 2009). Interestingly, PHB
is decreased in patients with active IBD as well as in animals
subjected to experimental colitis (Hsieh et al., 2006; Theiss et al.,
2007). Restoration of PHB expression in colonic epithelial cells
protected mice from experimental colitis and also exhibited
antioxidant properties (Theiss et al., 2009, 2011). Recently, PHB
has been shown to interact with the transcription factor STAT3
in colonic epithelial cells and mediate its downstream apoptotic
effects. Interestingly, STAT3 has been shown to reside in the
mitochondria where it promotes optimal electron transport chain
activity, and its activity as a signal transducer has been implicated
in IBD (Han et al., 2014).

Mitophagy has also been implicated in the pathogenesis of
IBD by a study that revealed an association between single
nucleotide polymorphisms in the gene SMAD specific E3
ubiquitin protein ligase 1 (SMURF1) and IBD (Franke et al.,
2010). As a regulator of mitophagy, SMURF1 is recruited to
damaged mitochondria, where it promotes degradation of the
mitochondria by modulating the transport of the autophagic
substrate to the autophagosome (Ni et al., 2015). SMURF1
was identified as a crucial mediator of viral autophagy and
mitophagy (Orvedahl et al., 2011). However, further studies are
needed in order to unravel the part mitophagy plays, beyond
normal functions, in IBD pathogenesis. Taken together, these
findings suggest autophagy as an important mediator of intestinal
homeostasis. Further research is needed in order to delineate
the mechanisms of autophagy and their role in intestinal
inflammation. Likewise, the interrelation of mitochondrial
dysfunction, autophagy, and IBD is still elusive.

Conclusion

Mitochondrial function is undoubtedly crucial to the
maintenance of the intestinal epithelium (Figure 1). IECs
undergo a constant process of cellular turnover and, as such,
necessitate a high-energy production at baseline. Aside from
supplying the cell with energy, mitochondria also contribute to
a plethora of cellular processes, rendering mitochondria central
to cell and ultimately organ survival. There are several intestinal
inflammatory diseases that involve mitochondrial dysfunction.
For example, several clinically significant enteric pathogens that
cause intestinal inflammation, including enteropathogenic E.
coli (EPEC) (Nagai et al., 2005; Kozjak-Pavlovic et al., 2008),
Helicobacter pylori (Ashktorab et al., 2004; Kozjak-Pavlovic et al.,
2008), and Salmonella typhimurium (Hernandez et al., 2003;
Layton et al., 2005), target effector proteins to the mitochondria
of the host cell. Infection with Citrobacter rodentium has
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been shown to be result in a disruption in mitochondrial
function and structure in mice (Ma et al., 2006). Mutations
in mtDNA and reductions in cytochrome c oxidase activity
have also been reported in human colorectal cancer (Heerdt
et al., 1990; Alonso et al., 1997; Polyak et al., 1998; Payne et al.,
2005; Namslauer and Brzezinski, 2009). IBD, hypothesized
to be an energy-deficient disease of the intestinal epithelium,
has been demonstrated to be associated with mitochondrial
abnormalities of the intestinal epithelium, which occur before
the onset of inflammation. Although there is no evidence for
a causative association between mitochondrial dysfunction
and IBD, here we provide several studies that demonstrate
potential links connecting the two. A variety of stimuli and
environmental conditions can perturb mitochondrial function,
yet the primary stimuli of intestinal mitochondrial stress in
IBD have yet to be determined. Since IBD is theorized to
require two or more “hits” for the development of disease,
it is not illogical to suggest that mitochondrial dysfunction
in the intestinal epithelium is an integral component of the
intestinal inflammatory process, potentially through effects
on epithelial permeability, host-microbiota interactions, or

effects on the signaling processes mitochondria are involved
in. Nonetheless, the findings reviewed here suggest that the
intestinal mitochondria may serve as a novel pharmacological
target in the treatment and prevention of IBD, which is consistent
with studies published recently using mitochondrial-targeted
antioxidants to treat experimental colitis in mice (Dashdorj et al.,
2013; Wang et al., 2014). Our understanding of mitochondrial
dysfunction in intestinal inflammation is still in its infancy, and
there are many more questions than answers. Elucidating the
link between mitochondria and IBD will enable the development
of new therapeutic strategies aimed at treating the cause of
mitochondrial dysfunction, which may potentially prevent
and/or treat disease by maintaining both mitochondrial health
and homeostasis of the intestinal epithelium.
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