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introduction: Research into the prevention of ventilator-associated lung injury (VALI) in 
patients with acute respiratory distress syndrome (ARDS) in the intensive care unit (ICU) 
has resulted in the development of a number of lung protective strategies, which have 
become commonplace in the treatment of critically ill patients. An increasing number of 
studies have applied lung protective ventilation in the operating room to otherwise healthy 
individuals. We review the history of lung protective strategies in patients with acute 
respiratory failure and explore their use in patients undergoing mechanical ventilation 
during general anesthesia. We aim to provide context for a discussion of the benefits and 
drawbacks of lung protective ventilation, as well as to inform future areas of research.

Methods: We completed a database search and reviewed articles investigating lung 
protective ventilation in both the ICU and in patients receiving general anesthesia through 
May 2015.

results: Lung protective ventilation was associated with improved outcomes in patients 
with acute respiratory failure in the ICU. Clinical evidence is less clear regarding lung 
protective ventilation for patients undergoing surgery.

conclusion: Lung protective ventilation strategies, including low tidal volume ventilation 
and moderate positive end-expiratory pressure, are well established therapies to min-
imize lung injury in critically ill patients with and without lung disease, and may provide 
benefit to patients undergoing general anesthesia.

Keywords: lung protective ventilation, low tidal volume ventilation, ventilator-induced lung injury, ventilator-
associated lung injury, acute respiratory distress syndrome, general anesthesia

iNtrODUctiON

Atelectasis is a common adverse effect of general anesthesia associated with both hypoxemia and 
postoperative respiratory complications (1–3). Mechanical ventilation (MV) may be used to combat 
atelectasis by prescribing relatively large tidal volumes (VT) [up to 15 mL/kg predicted body weight 
(PBW)] (4, 5). However, we now know that using high VT ventilation in the intensive care unit (ICU) 
increases mortality (6), and that MV itself can cause lung injury, through a process referred to as 
ventilator-induced lung injury (VILI) (7). VILI occurs through a number of different mechanisms.
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Barotrauma, defined as pulmonary injury from elevated 
transpulmonary pressures, was the first widely recognized ele-
ment of VILI (7, 8). Since it was subsequently demonstrated that 
humans could generate high airway pressures without causing 
lung injury, clinical focus shifted to volutrauma, hyperaeration 
caused by high VT leading to lung injury (7, 8). Conversely, atelec-
trauma occurs when tidal ventilation at low airway pressures 
causes cyclic opening and collapse of unstable lung units (7, 9). 
This repeated cycling generates disruptive forces on the alveolar 
basement membranes and augments lung injury (7). Since the 
early 1990s, numerous studies have shown that MV can trigger 
the release of pro-inflammatory cytokines and the recruitment 
of neutrophils (10–13). This biological reaction in response to 
mechanical forces is known as biotrauma (8, 9, 14, 15).

Clinically, it can be difficult to delineate MV as the precise 
cause of lung injury. Therefore, when lung injury is concurrent to, 
but not necessarily caused by, MV, the term ventilator-associated 
lung injury (VALI) is used (7). The potentially detrimental effects 
of MV were recognized as early as 1960s (16) when canine studies 
demonstrated that lung overdistension resulted in an absence of 
surfactant and subsequent atelectasis (17). Attempts to prevent 
lung overdistention by therapeutically reducing VT in humans in 
the ICU became feasible with acceptance of permissive hyper-
capnia (18).

Over the past 15 years, studies of patients with acute respira-
tory failure have resulted in the development of a number of lung 
protective strategies applied to minimize VALI. These strategies 
include low VT to limit volutrauma, higher positive end-expira-
tory pressure (PEEP) to prevent atelectrauma, and recruitment 
maneuvers (i.e., application of temporary high airway pressures 
to reinflate collapsed lung units) (19). The successful application 
of these strategies in acute respiratory failure has led to increased 
interest in applying these principles to other patient populations. 
What remains controversial is whether the principles of lung 
protective ventilation derived from ICU patients with acute res-
piratory failure have applicability to otherwise healthy patients in 
the operating room.

MAteriALs AND MetHODs

A systematic literature search was performed to identify clinical 
studies of lung protective ventilation strategies. We searched 
PubMed, EMBASE, and the Cochrane Library from inception to 
May 2015 with restriction to human studies published in English 
using a combination of standardized search terms and keywords 
to cover the topics of acute lung injury, acute respiratory distress 
syndrome (ARDS), MV, lung protective ventilation, low VT 
ventilation, and general anesthesia. We reviewed articles that 
investigated the effects of lung protective ventilation strategies. 
We included randomized controlled trials (RCT), cohort, cross-
sectional, and before-and-after studies. References of all studies 
were inspected for additional articles that were not identified 
by the electronic database search. We removed non-human 
studies, case reports, abstracts, and any other study where the 
full text was unavailable. Additionally, we excluded studies that 
specifically examined one-lung ventilation.

resULts

Origin of Lung Protective strategies: 
Patients with ArDs and Acute respiratory 
Failure in the icU
In 1998, Amato et al. described a lung protective strategy, which 
included a VT of <6  mL/kg, PEEP above the lower inflection 
point, and permissive hypercapnia, was associated with improved 
survival at 28 days, an improved rate of weaning from MV, and 
a lower rate of barotrauma in patients with ARDS (20). In 2000, 
The Acute Respiratory Distress Syndrome Network reported that 
lower VT (6 mL/kg of PBW) resulted in decreased mortality and 
increased ventilator-free days compared with VT of 12 mL/kg of 
PBW (6). An increase of 1 mL/kg PBW in initial VT has been asso-
ciated with a 23% increase in ICU mortality risk (21). In patients 
without ARDS, a retrospective cohort study demonstrated the use 
of large VT was the main risk factor associated with the develop-
ment of lung injury (odds ratio 1.3 for each milliliter/kilogram 
above 6 mL/kg PBW, p < 0.001) (22). And a prospective study 
conducted by the same group concluded that initial ventilator 
settings of high VT (odds ratio 2.6 for VT > 700 mL) and high 
peak airway pressure (odds ratio 1.6 for peak airway pressure 
>30 cmH2O) were associated with the development of ARDS in 
patients without ARDS at the onset of MV (23).

Lung Protective ventilation during General 
Anesthesia in Operating room
Although lung protective ventilation strategies are widely used in 
the ICU, it remains unclear if these strategies can be directly trans-
lated into use in the operating room. Respiratory complications are 
low in patients undergoing general anesthesia, unlike the ICU (24). 
Therefore, it may take a much larger number of patients to improve 
outcomes using lung protective strategies, and there are risks 
associated with lung protective ventilation, including increased 
alveolar collapse (25), increased right ventricular afterload (26), 
hypercapnia and respiratory acidosis (27), and worsened metabolic 
acidosis (27). Studies on intraoperative MV can be divided into 
those that target surrogate markers of lung inflammation/injury, 
clinical outcomes, or systemic reviews and meta-analyses. We 
examine these studies to better understand the risks and benefits 
of lung protective ventilation in the operating room (Table 1).

Lung Protective Ventilation, Pulmonary  
Biomarkers, and Lung Mechanics
Inflammatory biomarkers can be used as surrogate outcomes 
for  lung inflammation or injury in patients receiving MV. For 
example, one RCT compared 40 patients undergoing elective 
coronary artery bypass grafting (CABG) receiving high VT/low 
PEEP or low VT/high PEEP (28). After 6  h of MV, interleukin 
(IL)-6 and IL-8 levels were elevated in bronchoalveolar lavage 
(BAL) fluid and plasma in patients who received higher VT/low 
PEEP, suggesting alveolar lung inflammation (28). The attenua-
tion of IL-8, but not IL-6 levels by lung protective ventilation has 
been replicated in other surgical patients undergoing cardiopul-
monary bypass (29) as well as elective surgery (30) but not in 
major abdominal, thoracic (31), or spinal surgery (32). IL-10 has 
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tABLe 1 | randomized controlled trials comparing lung protective strategies with low tidal volumes to conservative ventilation in operating room.

type of 
surgery

source Patients’ population Lung protective 
ventilation (vt)

conservative  
ventilation (vt)

Primary outcome

Cardiac 
surgery

Chaney et al.
(36)

Adults patients undergoing elective 
on-pump CABG surgery (n = 25)

6 mL/kg with 5 cmH2O of 
PEEP (n = 12)

12 mL/kg with 5 cmH2O of 
PEEP (n = 13)

Pulmonary mechanics

Koner et al. 
(34)

Adult patients undergoing elective 
on-pump CABG grafting surgery 
(n = 44)

6 mL/kg with 5 cmH2O of 
PEEP (n = 15)

10 mL/kg with 5 cmH2O of 
PEEP (n = 14) or zero PEEP 
(n = 15)

TNF-α and IL-6 levels

Zupancich 
et al. (28)

Adult patients undergoing elective 
on-pump CABG surgery (n = 40)

8 mL/kg with 10 cmH2O of 
PEEP (n = 20)

10–12 mL/kg with 
2–3 cmH2O of PEEP (n = 20)

IL-6 and IL-8 in BAL fluid 
and plasma

Reis Miranda 
et al. (29)

Adult patients undergoing elective 
on-pump CABG or valve surgery 
(n = 62)

4–6 mL/kg with 10 cmH2O of 
PEEP during (n = 22) or after 
(n = 18) surgery

6–8 mL/kg (n = 22) with 
5 cmH2O of PEEP

IL-6, IL-8, IL-10, TNF-α, and 
interferon-γ

Sundar et al.
(43)

Adult patients undergoing elective 
cardiac surgery (n = 149)

6 mL/kg with PEEP 
according to ARDS Network 
investigators (6) (n = 75)

10 mL/kg with PEEP 
according to ARDS Network 
investigators (6) (n = 74)

Time to extubation

Abdominal 
surgery

Wrigge et al. 
(31)

Adult patients undergoing major 
abdominal surgery (n = 30)

6 mL/kg with 10 cmH2O of 
PEEP (n = 15)

12 or 15 mL/kg with zero 
PEEP (n = 15)

TNF, IL-1, IL-6, IL-8, IL-10, 
and IL-12

Weingarten 
et al. (37)

Adult patients aged >65 years 
undergoing major open abdominal 
surgery under general anesthesia 
(n = 40)

6 mL/kg with 12 cmH2O 
of PEEP and recruitment 
maneuvers (n = 20)

10 mL/kg with no PEEP and 
no recruitment maneuvers 
(n = 20)

Oxygenation, pulmonary 
mechanics, hemodynamic 
stability

Treschan  
et al. (40)

Adult patients undergoing elective 
upper abdominal surgery lasting 
≥3 h under combined general and 
epidural anesthesia (n = 101)

6 mL/kg with 5 cmH2O of 
PEEP (n = 50)

12 mL/kg with 5 cmH2O of 
PEEP (n = 51)

Lung function

Severgnini 
et al. (38)

Adult patients undergoing elective 
open abdominal surgery ≥2 h 
(n = 55)

7 mL/kg with 10 cmH2O 
of PEEP and recruitment 
maneuvers (n = 28)

9 mL/kg with zero PEEP 
(n = 27)

Modified Clinical Pulmonary 
Infection Score, gas 
exchange, and pulmonary 
functional tests

Futier  
et al. (5)

Adults patients at intermediate 
to high risk of pulmonary 
complications undergoing major 
abdominal surgery (n = 400)

6–8 mL/kg with 6–8 cmH2O 
of PEEP and recruitment 
maneuvers (n = 200)

10–12 mL/kg with no 
PEEP and no recruitment 
maneuvers (n = 200)

A composite of 
major pulmonary 
and extrapulmonary 
complications occurring by 
day 7 after surgery

Others Cai et al. (39) Adults patients aged 20–50 years 
with body mass index undergoing 
elective excision of intracranial 
lesions (n = 16)

6 mL/kg without PEEP (n = 8) 10 mL/kg without PEEP 
(n = 8)

Atelectasis (by CT and ABG)

Memtsoudis 
et al. (32)

Adult patients undergoing elective 
lumbar decompression and fusion 
in prone position under general 
anesthesia (n = 26)

6 mL/kg with 8 cmH2O of 
PEEP (n = 13)

12 mL/kg with zero PEEP 
(n = 13)

Plasma levels of IL-6 and 
IL-8, and urinary levels of 
desmosine

Choi et al.  
(33)

Adult patients undergoing a surgical 
procedure ≥5 h (n = 40)

6 mL/kg with 10 cmH2O of 
PEEP (n = 21)

12 mL/kg without PEEP 
(n = 19)

Markers of coagulation and 
fibrinolysis

Wolthuis  
et al. (30)

Adult patients undergoing a surgical 
procedure ≥5 h (n = 40)

6 mL/kg with 10 cmH2O of 
PEEP (n = 21)

12 mL/kg without PEEP 
(n = 19)

Polymorphonuclear cell 
influx, changes in levels of 
inflammatory markers, and 
nucleosomes in BAL fluid 
and/or blood

Determann 
et al. (35)

Adult patients undergoing a surgical 
procedure ≥5 h (n = 40)

6 mL/kg with 10 cmH2O of 
PEEP (n = 21)

12 mL/kg without PEEP 
(n = 19)

Local and systemic levels of 
Clara cell protein

VT, tidal volumes; CABG, coronary artery bypass grafting; PEEP, positive end-expiratory pressure; TNF, tumor necrosis factor; IL, interleukin; BAL, bronchoalveolar lavage; CPB, 
cardiopulmonary bypass; ARDS, acute respiratory distress syndrome; CT, computed tomography; ABG, arterial blood gas.
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a similarly mixed profile in response to lung protective MV (29). 
High VT/zero end-expiratory pressure (ZEEP) MV does appear 
to lead to procoagulant activation in the alveolar space (33). 
Many other inflammatory markers, including tumor necrosis 
factor-alpha (TNF-α), interferon (IFN)-γ, IL-1, IL-1α, IL-1β, IL-6, 
IL-12, macrophage inflammatory protein 1α, and macrophage 

inflammatory protein 1β, or other markers of lung epithelial 
injury have not been demonstrated to change in response to lung 
protective ventilation (29–31, 34, 35).

Other studies have demonstrated improved perioperative 
pulmonary mechanics as a surrogate outcome. One single-center 
RCT included 25 patients undergoing elective CABG showed a 
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greater reduction in both dynamic and static lung compliance in 
patients receiving conventional MV, suggesting lung protective 
MV resulted in improved pulmonary mechanics (36). RCTs in 
abdominal surgery had varied results showing improved (37), 
unchanged (38, 39), and degraded (40) pulmonary mechanics in 
patients receiving lung protective MV. An improvement in the 
partial pressure of arterial oxygen (PaO2)/Fraction of inspired 
oxygen (FiO2) ratio in abdominal surgery patients appears to 
reflect the use of recruitment maneuvers more than any particular 
lung protective strategy (37, 40).

Lung Protective Ventilation and Clinical Outcomes
Several retrospective studies have investigated the association 
between MV strategies in the operating room and clinical out-
comes. A retrospective evaluation of patients admitted to the 
ICU with postoperative hypoxemic respiratory failure, requiring 
MV, showed that a high VT to ideal body weight (IBW) ratio 
was an independent risk factor for the development of ARDS 
(41). While a retrospective study of billing data for over 69,000 
patients undergoing non-cardiac surgery did not show any effect 
of VT on postoperative respiratory complications (24). Another 
retrospective study of more than 29,000 patients reported that VT 
of 6–8 mL/kg IBW were associated with a significant increase in 
30-day mortality compared with VT of 8–10 mL/kg IBW (hazard 
ratio 1.6, p  =  0.0002) (42). The authors hypothesized that the 
increased mortality may be related to the combination of lower 
VT and low PEEP (≤5 cmH2O) (42).

Prospective RCTs of MV in the operating room have specifi-
cally targeted high-risk surgical groups, primarily cardiac and 
abdominal surgery patients. One single-center RCT investigated 
duration of intubation for cardiac surgery patients by comparing 
ventilation with low vs. high VT ventilation. A higher proportion 
of patients were extubated 6  h postoperatively in the low VT 
group (37.3 vs. 20.3%; p =  0.02) and fewer patients in the low 
VT  group required re-intubation (0.3 vs. 9.5%; p  =  0.03) (43). 
In  two RCTs of patients undergoing open abdominal surgery, 
lower VT ventilation combined with PEEP and recruitment 
maneuvers decreased respiratory complications as measured 
by two different postoperative pulmonary complication scores 
when  compared to higher VT ventilation with ZEEP and no 
recruitment maneuvers (5, 38). The IMPROVE trial also found 
that patients receiving lung protective ventilation and recruitment 
maneuvers had decreased postoperative non-invasive ventilation 
and intubation requirements (5.0 vs. 17.0%, p  =  0.001), and 
shorter length of hospital stay (mean difference, −2.45  days, 
p  =  0.006) (5). However, in 101 patients undergoing upper 
abdominal surgery who were randomized to low VT ventilation 
(6  mL/kg PBW) with 5  cmH2O PEEP or to higher VT ventila-
tion (12  mL/kg PBW) also with 5  cmH2O PEEP, there was no 
significant difference in postoperative pulmonary complications 
(40). In the largest prospective multicenter RCT, conducted by 
the Protective Ventilation (PROVE) Network Investigators, 900 
patients were allocated either to a high level of PEEP (12 cmH2O) 
with recruitment maneuvers (higher PEEP group) or a low level 
of PEEP (≤2  cmH2O) without recruitment maneuvers (lower 
PEEP group) while receiving 8  mL/kg VT (PROVHILO trial). 
In this study, postoperative pulmonary and extrapulmonary 

complications were not significantly different between the two 
groups although hypotension happened more frequently in the 
higher PEEP group (relative risk 1.29; p  =  0.0016) and those 
in the higher PEEP group had a greater need for vasopres-
sors than those in the lower PEEP group ( relative risk 1.20; 
p = 0.0016) (44). The results of these trials suggest an important 
interaction between VT and PEEP affecting clinical outcomes.

Lung Protective Ventilation Meta-Analyses
The recently updated Cochrane meta-analysis evaluated 12 stud-
ies with 1012 participants comparing specifically low vs. high VT 
ventilation in the operating room (45). They found no difference 
in 30-day mortality (risk ratio (RR) 0.79, 95% confidence interval 
(CI) 0.40-1.54), but the low VT cohort did show a decrease in 
postoperative pneumonia and a decreased requirement for 
both invasive and non-invasive postoperative ventilation (45). 
Decreased rates of pulmonary infection have been confirmed 
by other meta-analyses of lung protective ventilation (including 
interventions in addition to low VT) (46–48). These additional 
meta-analyses also failed to demonstrate a mortality benefit to 
intraoperative lung protective ventilation (46, 47).

Lung Protective Ventilation in Anesthetic Practice
While the data to support lung protective ventilation in the 
operating room remains unclear, it is worthwhile to examine the 
current state of anesthetic practice regarding MV. One cross-
sectional analysis of intraoperative ventilation during elective 
abdominal surgery in the United States showed that ventilator 
settings were non-uniform and ventilation with VT > 10 mL/ kg 
PBW is still common (17.5%). BMI ≥30, female gender, and 
height <165 cm may predispose certain patients to receive large 
VT during general anesthesia as providers likely overestimate 
PBW in this patient group (49). Despite the high prevalence of 
high VT ventilation in the operating room, a targeted study of 
the management of hypoxemic patients (defined by P/F ratio) 
in the operating room found VT, and peak inspiratory pressure 
(PIP) have been decreasing annually while PEEP has been 
increasing (50). Unfortunately, worsened hypoxemia (lower 
P/F ratio) correlated most closely with higher FiO2 and PIP, 
suggesting that patients who would most benefit from lung 
protective ventilation are not receiving it (50). Investigators in 
Australia performed an audit in 272 patients undergoing general 
anesthesia for three consecutive days in 2013. They showed that 
a median VT was 9.5 mL/ kg PBW, suggesting that the practice of 
MV in the operating room does not always reflect recent studies 
(51). There are several ongoing studies investigating variation of 
MV setting within/between centers (52)1.

DiscUssiON

The translation of research from the ICU to the operating room 
can be difficult for several reasons. Patients receiving MV in the 

1 IVENT. International Survery on VENTilation Practice (iVENT). In: PROVEnet 
[Internet]. Available from: https://sites.google.com/site/iventsurvey/.
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operating room during general anesthesia commonly lack the 
derangements in gas exchange and pulmonary mechanics seen 
in the ICU. While general anesthesia does induce atelectasis, the 
atelectasis is well-tolerated and relatively short-lived (1–3). Rates 
of respiratory complications remain low in most populations 
and the short duration of MV likely affects lung compliance less 
than a prolonged course of ventilation in ICU. Furthermore, 
ICU patients are more likely to have comorbid illnesses, such 
as cardiovascular instability and shock, acid–base abnormalities, 
and pro-inflammatory states, such as sepsis, which affect the 
goals of MV.

Based on published ICU data, studies of lung protective 
ventilation in the operating room generally have used 6–8 mL/
kg PBW as low VT ventilation (Table 1), which may not be the 
ideal VT for surgical patients (42). Furthermore, studies in the 
perioperative setting have used low VT combined with PEEP 
and/or recruitment maneuvers as the lung protective strategies. 
Although low VT ventilation is clearly an important factor of the 
lung protective ventilation (53), it is still unclear how we should 
combine these “lung protective strategies,” including PEEP and 
recruitment maneuvers, into a unified best practice for MV in 
the operating room (44). A subsequent ongoing international 
multicenter RCT, aims to compare a ventilation strategy using 
higher levels of PEEP with recruitment maneuvers to one using 
lower levels of PEEP without recruitment maneuvers in obese 
patients at risk of postoperative pulmonary complications2. This 
study design hints at the holy grail for intraoperative ventilation: 
targeted interventions for specific patients. While still heterogene-
ous themselves, patients with acute respiratory failure and ARDS 

2 Technische Universität Dresden. Protective Ventilation with Higher Versus Lower 
PEEP during General Anesthesia for Surgery in Obese Patients (PROBESE). In: 
ClinicalTrials.gov [Internet]. Available from: http://clinicaltrials.gov/show/
NCT02148692.

in the ICU are substantially more homogeneous than the morass 
of patients undergoing general anesthesia in the operating room. 
This heterogeneity may, in part, explain the disparate findings in 
previous studies. However, as we gain a better understanding of 
the risks and benefits of the various aspects of lung protective 
strategies, we can more effectively target-specific patient popula-
tions for intervention.

cONcLUsiON

As lung protective strategies, including low VT ventilation, higher 
PEEP, and/or recruitment maneuvers, continue to evolve, they 
may also provide benefit to patients undergoing general anesthe-
sia. Larger trials of specific ventilator strategies across different 
populations are required to evaluate different lung protective 
strategies and their interaction with different groups of surgical 
patients to clarify the benefit or harm of lung protective ventilation 
in the operating room. Furthermore, we need investigations into 
current practice strategies of clinical anesthesiologists, in order to 
help shape how new data are applied in the operating room.
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