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INTRODUCTION
The need to develop novel crop protection
treatments that can be used in agriculture
has driven much research into induced
plant defense and is used as a justification
for it. Plant defense elicitors could provide
novel agrochemicals to protect crops from
pests and diseases. However, in order to
achieve this, treatments have to give con-
sistent, reliable reductions in pest infesta-
tion or pathogen infection levels (Stephen
Skillman, Syngenta, personal communica-
tion). When moving beyond controlled
laboratory conditions one issue encoun-
tered has been the high variability of the
induced defense approach—sometimes an
effect is observed and sometimes it is not
(Anderson et al., 2006; Wu and Baldwin,
2010). Inducing plant defenses is complex
because the effect is via the plant, depen-
dent on plant genetics and physiology
and can be altered by the environmental
context. This contrasts with conventional
pesticides that have a direct toxic effect
on target organisms and therefore more
predictable effects.

This short opinion article will consider
the role of plant genotype, environment
and the interaction between genotype
and environment in causing variation in
induced plant defense responses.

GENOTYPE
Clearly not all plants are the same and
some respond to defense elicitors better
than others (Vallad and Goodman, 2004).
The genotype of the plant can play a huge
role in how well it responds to treat-
ment. If particular inducible defense traits
are absent in a given genotype nothing
can be “switched on” by the treatment.
Conversely, if a cultivar possesses inducible

traits there is a “loaded gun” attached to
the trigger (Figure 1). Many studies have
revealed differences between plant geno-
types in induced defense capacity and
I will briefly review selected examples
below.

There is natural variation between
Arabidopsis thaliana accessions in resis-
tance to Botrytis cinerea involving
differences in B. cinerea induced camalexin
accumulation and SA-dependent
defenses (Denby et al., 2004; Rowe
and Kliebenstein, 2008; Narusaka et al.,
2013). Van Hulten et al. (2009) found
natural variation in defense responsive-
ness amongst Arabidopsis accessions.
Likewise, transcription profiling of wild
Solanum species has revealed variation in
induced defense responses between geno-
types (Smith et al., 2014). Sharma et al.
(2010) found that six tomato accessions
varied significantly in inducibility of

FIGURE 1 | Responsiveness of different plant genotypes to defense elicitors. Over a period of
stress (Time 1–Time 3), Genotype 1 has low initial and final expression levels of a stress response
gene and is susceptible to attack; Genotype 2 has increasing expression levels because the gene is
inducible and Genotype 3 has high initial and final expression levels because it is constitutively
expressed.

resistance against Phytophthora infestans.
Natural variation in basal defense respon-
siveness to disease is reviewed by Ahmad
et al. (2010).

Broekgaarden et al. (2007) found differ-
ences in transcriptional responses of two
Brassica oleracea cultivars in response to
induction by Pieris rapae attack. Of all
the genes induced at any time point, only
one third was induced in both cultivars
tested. Similarly, Wu et al. (2008) found
large differences between two Nicotiana
attenuata accessions in signaling induced
by oral secretions of the specialist herbi-
vore Manduca sexta. Genotypic variation
was observed in tomato when the culti-
var “Carousel” responded to a seed treat-
ment designed to induce defense whereas
tomato cultivar “Moneymaker” did not
(Smart et al., 2013). Some maize culti-
vars have a higher constitutive level of jas-
monic acid (JA) based defenses as shown
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by Shivaji et al. (2010) which means
there is less scope for further induction
of them. The resistant inbred Mp708 had
approximately 3-fold higher levels of jas-
monic acid (JA) prior to herbivore feeding
than the susceptible inbred Tx601. Han
et al. (2009) found that wheat cultivars
which were more resistant to aphids had
greater constitutive levels of phenylalanine
ammonia-lyase, polyphenol oxidase and
peroxidase activity than susceptible ones.
Aphid infestation also induced activity of
these enzymes in all cultivars, especially in
susceptible ones. However, resistant vari-
eties sometimes have higher levels of both
constitutive and induced defenses.

Herbivore induced volatile (HIPV)
emission plays an important role in
indirect defense whereby natural ene-
mies are attracted to plants after expo-
sure to insect attack. Schuman et al.
(2009) found variation between acces-
sions of Nicotiana attenuata in HIPV
emission. Variation in (HIPV) emission
between Arabidopsis accessions has been
demonstrated and this influenced the
behavior of the parasitoid Diadegma semi-
clausum when offered headspace volatiles
in two-choice experiments (Snoeren et al.,
2010). Certain maize lines respond to
elicitors in stemborer eggs that induce
HIPV emission to attract natural ene-
mies of the herbivore but most commer-
cial hybrid maize cultivars have lost this
trait (Tamiru et al., 2011). Furthermore,
Degen et al. (2012) found big differences
in HIPV emission between six different
maize lines and in a field trial there were
significant differences between the lines
in the numbers of Spodoptera frugiperda
recovered from the plants, their average
weight gain and parasitism rates. There
is also variation among genetic lines of
Datura wrightii in herbivore and methyl
jasmonate-induced volatiles (Hare, 2007):
volatile emission from some lines after
insect damage or MeJA treatment was
lower than from other lines even before
damage or MeJA treatment. Kappers et al.
(2011) found variation in HIPV emis-
sion between cucumber varieties after
infestation of the plants with herbivo-
rous spider mites (Tetranychus urticae) and
this influenced the attraction of carnivo-
rous natural enemies. They suggested that
the foraging success of natural enemies
of pests can be enhanced by breeding

for crop varieties that release specific
volatiles.

ENVIRONMENT
The expression of induced plant defense
responses is tightly regulated by the eco-
logical context of the plant (Ballare, 2011).
For a plant defense activator treatment to
work well it must be well timed; timing is
more critical than with a conventional pes-
ticide. To induce or prime plant defenses,
the treatment needs to be applied before
the pest or disease attack as a preventative
rather than curative treatment. However, a
previous stress may have already switched
on the defense and this may limit the
magnitude of response to further elicitor
treatment. Furthermore, plant responses
to biotic stress are influenced by responses
to abiotic stress (Suzuki et al., 2014).

The previous history of exposure
can affect plant responsiveness. When
Pseudomonas putida BTP1 infects roots of
Phaseolus vulgaris, plants become more
resistant to Botrytis cinerea on leaves
(Ongena et al., 2005) and Trichoderma
asperellum T203 root colonization of
cucumber induces resistance to pathogens
in above-ground parts of the plant
(Shoresh et al., 2005). Infesting rice
plants with the white-backed planthopper,
Sogatella furcifera, dramatically increased
the resistance of plants to rice blast,
Magnaporthe grisea (Kanno and Fujita,
2003). Poelman et al. (2008) found that
early season herbivory induces plant
defense and differentially affects plant
responses to subsequently colonizing her-
bivores. The specialist Plutella xylostella
was more abundant on Pieris rapae-
induced plants and preferred these plants
over undamaged plants in oviposition
experiments. This could perhaps be
because the specialist is attracted to the
HIPVs from its host plant. In contrast, the
generalist Mamestra brassicae was more
abundant on control plants and preferred
undamaged plants for oviposition. The
order of herbivore attack thus mediates the
expression of plant defense phenotypes.
There is negative crosstalk between plant
defense pathways which means that attack
by a different type of attacker could com-
promise responses to the defense elicitor
(Bruce and Pickett, 2007). For example,
attack that switches on the salicylic acid
defense pathway would make a plant

less responsive to a treatment designed
to switch on the jasmonic acid defense
pathway. For example, Zhang et al. (2009)
showed that whiteflies interfere with indi-
rect plant defense against spider mites in
Lima bean.

INTERACTION BETWEEN GENOTYPE
AND ENVIRONMENT
Plants are responsive to their environment
and can adapt to stressful conditions. As
described in the previous section, prior
biotic or abiotic stress in the environment
can alter how well a plant responds to
subsequent treatment with a defense acti-
vator. Not only are these changes mediated
by changes in metabolite levels and tran-
scription factors but plants also have the
capacity to reprogram expression levels of
stress-response genes via epigenetic stress
imprints (Bruce et al., 2007; Galis et al.,
2009).

Evidence is accumulating that herbi-
vore and pathogen attack can generate
defense induction phenotypes across gen-
erations (Holeski et al., 2012; Kumar
et al., 2013). Epigenetic changes can pro-
vide long lasting effects and even influ-
ence defense gene expression two gen-
erations later if the stress level is high
enough (Luna et al., 2012). Dowen et al.
(2012) profiled the DNA methylomes of
Arabidopsis plants exposed to bacterial
pathogen, avirulent bacteria, or salicylic
acid (SA) and found numerous stress-
induced differentially methylated regions,
many of which were intimately associated
with differentially expressed genes. The
epigenomes of plants thus reflect the his-
tory of local genotype-environment inter-
actions and much remains to be learnt
about this. It is likely that epigenetic pro-
filing can provide information about prior
stress similar to how tree rings (Hughes
and Brown, 1992) have been used to indi-
cate previous drought stress. Although
they would indicate more recent events,
the level of detail about types of stress
could be higher because of differential
imprinting of different types of stress
response genes.

CONCLUSIONS
Reliable and predictable treatment effects
are required for practical use of plant
defense activators by growers and for com-
mercialization of such crop protection
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products. However, the genotype of the
plant, the environmental conditions and
history of stress exposure, influence the
magnitude of any boost in plant defenses
obtained with an activator. Walters et al.
(2013) have also highlighted host plant
genotype and environmental considera-
tions such as prior induction or trade
offs between defense pathways as factors
influence the field performance of induced
resistance. It is not surprising that there is
variation given that the defense activator
treatment is only as good as the inducible
plant defenses that it switches on.

Defense activators or elicitors need to
be developed with the appropriate crop
genotypes that can respond to the treat-
ment. Variation between crop cultivars is
a limitation if activators are developed
ignoring this factor but it is also an oppor-
tunity to develop suitable packages of
seeds and activator agrochemicals. Genetic
variation in inducible defense traits com-
plicates the use of plant defense activa-
tors but there is future potential to use
particular plant activators in a package
with selected crop cultivars that offer the
best genetic potential for induced defense
(Bruce, 2010; Kappers et al., 2011).
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