
REVIEW
published: 22 December 2015

doi: 10.3389/fmicb.2015.01463

Edited by:
Hector Mora Montes,

Universidad de Guanajuato, Mexico

Reviewed by:
Floyd Layton Wormley,
The University of Texas

at San Antonio, USA
Vito Valiante,

Leibniz-Institute for Natural Product
Research and Infection Biology –

Hans Knöll Institute, Germany
Anderson Messias Rodrigues,

Federal University of São Paulo, Brazil

*Correspondence:
Joshua D. Nosanchuk

josh.nosanchuk@einstein.yu.edu

Specialty section:
This article was submitted to
Fungi and Their Interactions,

a section of the journal
Frontiers in Microbiology

Received: 19 October 2015
Accepted: 07 December 2015
Published: 22 December 2015

Citation:
Nosanchuk JD, Stark RE

and Casadevall A (2015) Fungal
Melanin: What do We Know About

Structure? Front. Microbiol. 6:1463.
doi: 10.3389/fmicb.2015.01463

Fungal Melanin: What do We Know
About Structure?
Joshua D. Nosanchuk1,2*, Ruth E. Stark3,4 and Arturo Casadevall5

1 Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA,
2 Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA, 3 Department of Chemistry and
Biochemistry, The Graduate Center, The City College of New York, The City University of New York, New York, NY, USA,
4 Institute for Macromolecular Assemblies, The City University of New York, New York, NY, USA, 5 Department of Molecular
Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore,
MD, USA

The production of melanin significantly enhances the virulence of many important human
pathogenic fungi. Despite fungal melanin’s importance in human disease, as well as
melanin’s contribution to the ability of fungi to survive in diverse hostile environments,
the structure of melanin remains unsolved. Nevertheless, ongoing research efforts
have progressively revealed several notable structural characteristics of this enigmatic
pigment, which will be the focus of this review. These compositional and organizational
insights could further our ability to develop novel therapeutic approaches to combat
fungal disease and enhance our understanding of how melanin is inserted into the cell
wall.
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INTRODUCTION

Melanins rank as one of the great natural pigments as they are synthesized by members of
all biological kingdoms, including a wide array of fungi, bacteria, and helminths that cause
disease in humans (Nosanchuk and Casadevall, 2003b). Melanins are polymerized from phenolic
and/or indolic compounds forming negatively charged, hydrophobic pigments of high molecular
weight (White, 1958). We have previously reviewed the broad contributions of melanin to fungal
pathogenesis (Gomez and Nosanchuk, 2003; Nosanchuk and Casadevall, 2003b, 2006), which
includes melanin’s capacity to alter cytokine responses, decrease phagocytosis, and reduce the
toxicity of microbicidal peptides, reactive oxygen species, and antifungal drugs as well as to play
a significant role in fungal cell wall mechanical strength.

Despite the profound impact of melanin on fungal diseases as well as the abundance of
the polymer in the world’s biomass, the structure of melanin remains poorly defined. Classical
biophysical methodologies cannot be applied to decipher the structure of melanin because this
polymer is insoluble in aqueous or organic fluids and any attempt at solubilization disrupts
its structure. Although melanins have ordered local structures their long-range organization is
amorphous, and consequently their structures cannot be solved by X-ray crystallography. Melanins
are typically dark in color (usually black or brown), acid resistant and bleached by oxidizing agents
(Nicholaus et al., 1964; Prota, 1992; Butler and Day, 1998). The inability to define melanin based
on solution-state or crystallographic techniques has prompted the use of alternative approaches to
their structural characterization, including electron paramagnetic resonance (EPR) spectroscopy
that capitalizes on the presence of a stable organic free radical signature (Enochs et al., 1993).

Melanin in fungi, bacteria and helminths is produced via the polyketide synthase pathway
or catalyzed by phenoloxidases [reviewed in (Wheeler and Bell, 1988)]. Melanins formed by
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the polyketide synthase pathway are called
dihydroxynaphthalene [DHN] melanins. A variety of diverse
enzymes, including phenoloxidases, tyrosinases, catecholases,
and laccases, can generate melanins. Mammalian melanin
is synthesized by a tyrosinase (Sanchez-Ferrer et al., 1995).
Eumelanin formation is catalyzed by phenoloxidases from
DOPA substrates. We have utilized Cryptococcus neoformans
extensively in our studies of fungal melanin because this
yeast-like fungus requires the addition of exogenous phenolic
substrates to form eumelanin via laccase, and thus melanization
can be closely observed by altering the quantity and type of
substrate. Notably, disruption of genes essential for melanin
production in C. neoformans results in both a reduction in
fungal dissemination (Noverr et al., 2004) and lethality (Salas
et al., 1996) in murine infection models. Similarly, disruption of
genes associated with melanin synthesis in Aspergillus fumigatus
results in attenuation (Heinekamp et al., 2012). Moreover, we
have previously shown that chemical or antibody inhibition
of C. neoformans melanization results in a reduction in fungal
burden and prolonged survival in a murine cryptococcosis model
(Nosanchuk et al., 2001; Rosas et al., 2001).

Since melanin is believed to contribute to fungal virulence
by reducing the pathogen’s susceptibility to killing by host
antimicrobial mechanisms and by influencing the host immune
response to infection, melanin and melanin synthesis pathways
are indeed potential targets for antimicrobial drug discovery.
Hence, a deeper understanding of melanin structure will
facilitate the identification of innovative approaches to target this
enigmatic polymer. This review discusses our current knowledge
on the structure of fungal melanin.

FUNGAL MELANIN AND THE CELL WALL

The fungal cell wall is a complex and dynamic construct
of branched polysaccharides (particularly β-linked glucans),
mannoproteins and proteins (Nimrichter et al., 2005; Latge and
Beauvais, 2014). Fungal melanin is typically located within the
cell wall, but the distribution and quantity varies widely between
species. C. neoformans melanin is first detectable along the
plasma membrane and fills throughout the cell wall over time
(Nosanchuk and Casadevall, 2003b). In contrast, melanin can be
found along the outer regions of the cell wall and/or clustered on
the cell wall surface of several other pathogenic fungi, including
Candida albicans (Morris-Jones et al., 2005; Walker et al., 2010),
Aspergillus sp. (Rosas et al., 2000b; Bayry et al., 2014), Sporothrix
schenckii (Morris-Jones et al., 2003), Fonsecaea pedrosoi (Franzen
et al., 1999, 2006), Paracoccidioides brasiliensis (Gómez et al.,
2001; Taborda et al., 2008), Coccidioides sp. (Nosanchuk et al.,
2007), and Histoplasma capsulatum (Nosanchuk et al., 2002).
These cited publications and other reports utilizing electron
microscopic techniques have indicated that the layers or clusters
of melanin are formed by granules of the polymer.

The most detailed study of fungal melanin localization was
achieved using a combination of scanning electron and atomic
force microscopy of melanin extracted from C. neoformans
(i.e., melanin “ghosts”) (Eisenman et al., 2005). This work

revealed that cryptococcal melanin is formed by a complex of
different sized spherical particles ranging from 40 to 130 nm
in diameter. The ovoid nature of the particles was consistent
with that reported for eumelanin produced by the cuttlefish
Sepia officianalis (Clancy and Simon, 2001) and supportive of
the granules observed in melanin in Hortaea werneckii (Kogej
et al., 2007) and F. pedrosoi (Franzen et al., 2006). Additionally,
the particulate nature of this organization suggested amechanism
by which macromolecules can pass through the melanin, which
appears in many images as an impenetrable layer. In fact, studies
using size exclusion methods or nuclear magnetic resonance
cryoporometry have revealed that there are pores in melanin
layers (Eisenman et al., 2005; Jacobson and Ikeda, 2005). The
NMR cryoporometry results indicated pores that were mainly 1–
4 nm in diameter and less commonly ∼30 nm (Eisenman et al.,
2005). Significantly, pore sizes become smaller with increased cell
age consistent with increased amounts of melanin deposited in
the cell wall.

The pore formation is also significant as these pathways
provide a mechanism for macromolecular transport in terms
of the formation of layers of melanin rather than a single,
uniform polymeric mass. Transmission electron microscopy of
thin cross-sections of fungi, especially C. neoformans, revealed
layers of melanin within the cell wall, with individual layers
that are similar in dimension to that of individual melanin
particles (Eisenman et al., 2005). X-ray diffraction studies using
purified fungal melanins have confirmed the presence and further
elucidated details of these layers (Casadevall et al., 2012). For
instance, X-ray diffraction revealed a consistent presence of a
basic stacked planar sheet structure in melanins isolated from
C. neoformans, Wangiella dermatitidis, A. niger, and Coprinus
comatus (a common mushroom), and these data were similar
to those observed studying other natural melanins. Interestingly,
stacking differences varied, such that the stacking distance of
melanin layers in Sepia officinalis (cuttlefish) melanin was 3.46 Å
compared to 4.15 Å forW. dermatitidis or 4.45 Å for A. niger, and
C. neoformans stacking was 4.39 Å. The differences in stacking in
these fungi may be due to subtle variations in composition as well
as differences in the other structures within their individual cell
walls. Nevertheless, this consistent finding of layering suggests
that X-ray diffraction may be an additional means to define
melanins. Moreover, it further raises the question of whether cell
wall constituents influence the deposition and organization of
melanin in fungi.

FUNGAL VESICLES: “MELANOSOMES”

The discovery of fungal vesicle transport through the complex
fungal cell (Rodrigues et al., 2007) provided an explanation
for melanin deposition within the cell wall. Several studies
have now shown that diverse fungi produce heterogeneous
extracellular vesicles that contain lipids, carbohydrates and
proteins (Rodrigues et al., 2007, 2008, 2014; Albuquerque et al.,
2008, 2012; Eisenman et al., 2009; Oliveira et al., 2009, 2010;
Panepinto et al., 2009; Kmetzsch et al., 2011; Rizzo et al., 2014;
Peres da Silva et al., 2015; Vargas et al., 2015), many of which
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are associated with fungal virulence. To reach the extracellular
space, intracellularly synthesized macromolecules are targeted to
the cell surface for release to the extracellular milieu (Wickner
and Schekman, 2005). Notably, vesicle secretion enhances
cryptococcal virulence in a murine disease model (Panepinto
et al., 2009). However, these vesicles can also be captured
within the cell wall. Laccase is a component of C. neoformans
vesicles (Rodrigues et al., 2008) and vesicle melanization has
been confirmed (Eisenman et al., 2009). Although there were
variations in vesicle size, a population of melanized vesicles
was observed with comparable diameters to those measured
in C. neoformans melanin (Eisenman et al., 2009). Fungal
melanosomes were subsequently described inC. albicans (Walker
et al., 2010). Hence, it appears that laccase-loaded vesicles can be
methodically trapped within the cell wall where they form into
layers of melanin.

In combination with these observations, there is now
overwhelming evidence from several independent groups that
fungal melanization occurs in a specialized vesicle that is
analogous to the mammalian melanosome (Franzen et al., 2008;
Eisenman et al., 2009; Walker et al., 2010). In hindsight, the
need for melanization in a vesicle in C. neoformans is obvious
because the reaction is catalyzed by a single enzyme that generates
a plethora of highly reactive, toxic intermediates that self-react
to create melanin. Melanization in vesicles explains much of
the biology of fungal melanin: morphology of relatively uniform
microspheres with dimensions similar to those of extracellular
vesicles (resulting from synthesis therein), the presence of
aliphatic components in melanin ghosts resulting from early
steps of synthesis in vesicles [described below and in (Zhong
et al., 2008)], and budding through melanin (Nosanchuk and
Casadevall, 2003a), wherein these vesicles can be simply displaced
laterally for the daughter cell to emerge.

CHITIN: A MELANIN ANCHOR

The mechanism(s) for localizing laccase-loaded vesicles to the
cell wall have not been resolved; however, several studies
suggest that chitin is a primary effector for melanin deposition
within the fungal cell wall. Chitin is a long-chain polymer
comprised by subunits of β(1,4)-linked N-acetylglucosamine,
which is commonly cross-linked to diverse cell wall proteins
and polysaccharides. The molecular composition of specific
forms of chitin can affect intramolecular and intermolecular
interactions of lipid bilayers (Fang et al., 2001), which may
facilitate chitin-vesicle engagement. In 1970, Bull reported that
melanin was “associated particularly with the chitin” in cell wall
fractions of A. nidulans (Bull, 1970). This first recognition of
the interplay between chitin and melanization in A. nidulans has
been followed by additional findings in other fungi consistent
with the importance of chitin-melanin interactions. For example,
deletion of the chitin synthesis WdCHS4 gene in the black fungus
Exophilia (Wangiella) dermatitidis resulted in a significantly
reduced ability to deposit melanin within the cell wall as
demonstrated by the accumulation of extracellular pigment
(Wang et al., 1999). Mutations of C. neoformans chitin synthases,

chitin regulatory genes and chitin deacetylases (Banks et al., 2005;
Walton et al., 2005; Baker et al., 2007) impede melanization
of the cell wall with concomitant detection of melanin in the
medium and agar. Additionally, the inhibition of chitinases
by methylxanthines results in a ‘leaky melanin’ phenotype in
C. neoformans (Tsirilakis et al., 2012). C. albicans produces
granular melanin (Morris-Jones et al., 2005), and deletion of
chitin synthase inhibits melanization along the cell wall with
concomitant accumulation of melanin particles within the yeast
cells (Walker et al., 2010). The effects of defects in chitin
that result in either secretion of melanin in E. dermatitidis
and C. neoformans or accumulation of melanin granules in
C. albicans are consistent with the requirement for vesicle
interaction with the chitin. It is noteworthy that an intimate
association between chitin and melanin has been described in
marine invertebrates (Hwang et al., 2013) as well as insects
(Stavenga et al., 2012), suggesting that this scheme for the
anchoring of these macromolecular structures extends to other
species.

It is highly probable that additional diverse constituents
are involved in the localization and maintenance of melanin
within the complex cell wall structure. For instance, comparative
analyses of F. pedrosoi cells cultivated with or without the
DHN melanin-specific inhibitor tricyclazole (5-methyl-1,2,4-
triazol[3,4] benzothiazole) indicated thatmelanin was involved in
cross-linking diverse cell wall compounds (Franzen et al., 2006).

MICROANALYTICAL CHARACTERISTICS
OF FUNGAL MELANIN

As melanin is insoluble, information on melanin structure
gleaned in the prior century derives largely from spectroscopic
analyses of melanin and characterization of melanin
degradation products (Wakamatsu and Ito, 2002). HPLC
microanalysis approaches have been particularly useful in
the characterization of both pheomelanin and eumelanins
(Wakamatsu and Ito, 2002; Wakamatsu et al., 2002). For
instance, oxidation of melanized C. neoformans cells from
cultures or infected mice revealed that both melanins
contained PTCA and PDCA (Williamson et al., 1998; Liu
et al., 1999), which indicates that cryptococcal melanin is
formed of 3,4-dihydroxyphenylalanine (DOPA) oligomers or
polymers.

Antibodies (Rosas et al., 2000a; Youngchim et al., 2004; Urán
et al., 2011) and peptide ligands (Nosanchuk et al., 1999) have
been generated to fungal melanin. Immunofluorescence studies
utilizing some of these reagents reveal that there is diffuse,
homogeneous binding along the surface of melanins isolated
from different fungi, which suggests that there are conserved
repeating units serving as epitopes to react with these reagents.
Additionally, the peptides that bind melanin are highly positively
charged (Nosanchuk et al., 1999), consistent with the finding
that melanin is negatively charged (Nosanchuk and Casadevall,
1997; Eisenman et al., 2007; Frases et al., 2011). Moreover, the
most reactive melanin-binding peptides are comprised of several
aromatic amino acids (Nosanchuk et al., 1999), suggesting that
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FIGURE 1 | A conceptualization of melanin organization and identified interactions with macromolecular structures in the cell wall of Cryptococcus
neoformans.

similar aromatic and positively charged structures are present on
melanin.

RECENT INSIGHTS FROM NEW
ANALYTIC APPROACHES

Themolecular structure of fungal melanin remains unknown, but
significant insights have recently been obtained using advanced
nuclear magnetic resonance (NMR) and imaging techniques.
By exploiting the requirement of C. neoformans for exogenous
phenolic substrates to form melanin, pigments generated using
natural 12C or stable-isotope enriched 13C forms of L-DOPAwere
subjected to high-resolution solid-state magic-angle spinning
(MAS) 13C NMR to reveal a rich assortment of chemical
bonding patterns consistent with alkane, alkene, alcohol, ester,
and indole functional groups (Tian et al., 2003). These initial
insights have been pursued with site-specific 13C-enriched
substrates to deduce that developing fungal melanins incorporate
additional non-L-DOPA constituents, such as aliphatic groups
consistent with triglycerides or phospholipids, and that these are
components capable of facilitating interactions between melanin
and structures within the fungal cell wall (Zhong et al., 2008).
Notably, this latter result is in full accord with the above-
mentioned proposal that melanin forms a spatially expanded
rather than a discrete layer within the cell wall.

These findings of aromatic and aliphatic structures were
followed by a detailed examination of the cell wall and pigment

architecture in C. neoformans melanin using 2D 13C-13C
correlation solid-state NMR methods (Chatterjee et al., 2015).
Consistent with the concept of cell wall constituents comprising a
scaffold for the pigment, NMR analyses revealed that the aliphatic
moieties of C. neoformans melanin included polysaccharide and
chitin constituents. It is notable that the chemically resistant
melanized C. neoformans cell walls exhibit a plethora of proximal
and bonded 13C-13C pairs comprising an aliphatic scaffold
consisting of an intimately associated composite of glucan, chitin,
mannan,mannoprotein, and phospholipid. In fact, the NMRdata
support complex architectural networks that include uncyclized
aliphatic structures, closely interacting indole-indole pairs, and
covalently bound pyrrole-chitin pairs. Moreover, during melanin
synthesis, our spectroscopic evidence indicates an early (by day
4) aliphatic scaffold that subsequently incorporates the aromatic
components (by day 14). This process is in accord with the
increase in negative cell charge (Nosanchuk and Casadevall,
1997; Eisenman et al., 2007; Frases et al., 2011) and reduction
in porosity (Eisenman et al., 2005) that occur during aging in a
melanizing C. neoformans yeast cell.

Fundamental structural differences among melanins
derived from L-DOPA, methyl-L-DOPA, epinephrine, and
norepinephrine precursors have been demonstrated by 13C
and 1H MAS NMR (Chatterjee et al., 2012). For example,
the melanins generated with epinephrine and norepinephrine
are observed as thinner by TEM (Garcia-Rivera et al., 2005)
and MAS NMR revealed that these melanins also have lower
aromatic-to-aliphatic ratios than the more robust melanins
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formed from L-DOPA and methyl-L-DOPA (Chatterjee et al.,
2012). Additionally, the MAS NMR data showed that the EPR
signal used historically to define melanin is correlated with the
presence of prominent aromatic resonances and that the negative
charge of the polymer can be associated with the presence of
polar oxygenated aliphatic molecular structures (Chatterjee et al.,
2012).

High-field, two-dimensional NMR of 13C- and 15N-enriched
materials was further used to demonstrate that both fungal
melanin and synthetic eumelanins share a common indole-
based aromatic core (Chatterjee et al., 2014). This investigation
provides new information about the supramolecular organization
of melanin. For example, Double Cross Polarization and Proton
Assisted Insensitive Nuclear Cross Polarization (PAIN-CP) NMR
revealed four magnetically distinct indole-like 13C-15N pairs
(Chatterjee et al., 2014) that suggest multiple modes of polymeric
assembly involving DHICA and DHI building blocks. The
formation of heterogeneous oligomers and polymers is also
consistent with assembly of melanins via multiple polymerization
pathways.

CONCLUSION

Although the molecular structure of fungal melanin remains
enigmatic, significant progress has been made in understanding
particular aspects of its macro- and microstructure during the
past 20 years. A representation of our current view of melanin
in C. neoformans is summarized in Figure 1. The increased
interest in the structure of melanin has been driven in large

part by a remarkable increase in the incidence of diseases
due to melanotic fungi. The identification of melanosomes
has opened up rich avenues for research that have expanded
our appreciation of localization and production of cell wall
melanin. The application of NMR techniques has revealed
that a chemically resistant aliphatic matrix is assembled prior
to significant deposition of indole-based pigments, showing
that cell wall composites could serve as a supporting scaffold
that fosters eumelanin buildup and presenting opportunities
to map out this framework as well as define interlayer
stacking interactions and melanin-cell wall interactions. All
together, these advances provide a broad platform to gain
new insights leading to innovative approaches to combat
fungal diseases in which melanin plays a role in pathogenesis.
Moreover, these findings can translate into enhanced ability
to combat pigment disorders such as melanoma, respond to
environmental disasters such as radioactive spills, and generate
novel therapeutics such as melanin nanoparticles to ameliorate
radiation injury.
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