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It is well known that a specific set of genetic and non-genetic risk factors contributes to the
onset of Alzheimer disease (AD). Non-genetic risk factors include diabetes, hypertension
in mid-life, and probably dyslipidemia in mid-life. This review focuses on the vascular and
metabolic components of non-genetic risk factors. The mechanisms whereby non-genetic
risk factors modify cognitive dysfunction are divided into four components, short- and
long-term effects of vascular and metabolic factors. These consist of (1) compromised
vascular reactivity, (2) vascular lesions, (3) hypo/hyperglycemia, and (4) exacerbated
AD histopathological features, respectively. Vascular factors compromise cerebrovascular
reactivity in response to neuronal activity and also cause irreversible vascular lesions.
On the other hand, representative short-term effects of metabolic factors on cognitive
dysfunction occur due to hypoglycemia or hyperglycemia. Non-genetic risk factors also
modify the pathological manifestations of AD in the long-term. Therefore, vascular and
metabolic factors contribute to aggravation of cognitive dysfunction in AD through short-
term and long-term effects. β-amyloid could be involved in both vascular and metabolic
components. It might be beneficial to support treatment in AD patients by appropriate
therapeutic management of non-genetic risk factors, considering the contributions of these
four elements to the manifestation of cognitive dysfunction in individual patients, though
all components are not always present. It should be clarified how these four components
interact with each other. To answer this question, a clinical prospective study that follows
up clinical features with respect to these four components: (1) functional MRI or SPECT
for cerebrovascular reactivity, (2) MRI for ischemic lesions and atrophy, (3) clinical episodes
of hypoglycemia and hyperglycemia, (4) amyloid-PET and tau-PET for pathological features
of AD, would be required.
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INTRODUCTION
The number of dementia patients is over 30 million worldwide
(Dartigues, 2009). Alzheimer disease (AD) accounts for about
50% of cases. Though AD is a progressive neurodegenerative dis-
order, clinical therapy for this devastating disease is still limited
to choline esterase inhibitors and N-methyl-D-aspartate activated
receptor antagonists. AD is pathologically characterized by cere-
bral atrophy, particularly of the hippocampus as well as temporal
and parietal lobes, and microscopically by senile plaques, neu-
rofibrillary tangles (NFT), and neuronal cell death. β-amyloid
(Aβ), a peptide consisting of 38–43 amino acids, was discov-
ered in cerebral amyloid angiopathy (CAA; Glenner and Wong,
1984) and senile plaques. Subsequently, amyloid precursor protein
(APP) was cloned based on the Aβ sequence. Familial AD has

Abbreviations: APP, amyloid precursor protein; CAA, cerebral amyloid angiopathy;
IGF-1, insulin-like growth factor-1; IRS-2, insulin receptor substrate-2; LRP-1, LDL
receptor related protein-1; NSY, Nagoya-Shibata-Yasuda mouse; RAGE, receptor for
advanced glycation end products.

been found to be caused by mutations in APP and presenilin
(Levy-Lahad et al., 1995; Rogaev et al., 1995; Sherrington et al.,
1995). Both mutations cause overproduction of Aβ, particularly
its longer form, Aβ42, which is more prone to aggregate, although
the mechanism whereby presenilin mutations increase Aβ42/Aβ40
ratio is still under investigation (De Strooper et al., 2012; Haass
et al., 2012; Sato et al., 2012a). On the other hand, sporadic cases
comprise more than 95% of AD. Although some drugs based on
the Aβ hypothesis are in clinical trials, the search for alterna-
tive therapeutic targets against AD should be encouraged. Such
targets could emerge from an understanding of the mechanisms
whereby risk factors increase the incidence of sporadic AD. Genetic
and non-genetic risk factors contribute to sporadic AD (Fotuhi
et al., 2009). APOEε4 is the strongest genetic risk factor for spo-
radic AD. APOEε4 promotes the development of senile plaques,
although its mechanism is yet to be determined. On the other
hand, non-genetic risk factors include diabetes (Ott et al., 1999),
hypertension (Takeda et al., 2008) and dyslipidemia in mid-life
(Shepardson et al., 2011a). However, the mechanisms by which
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these non-genetic risk factors may modify cognitive function have
not been coordinately understood. Here, we summarize these
mechanisms by dividing them into four components (Figure 1),
and propose clinical application of this concept in order to under-
stand the pathogenesis of cognitive dysfunction in individual
patients. These are short- and long-term effects of vascular and
metabolic factors: (1) compromised vascular reactivity, (2) vas-
cular lesions, (3) hypo/hyperglycemia, and (4) exacerbated AD
histopathological features, respectively. Vascular factors compro-
mise cerebrovascular reactivity in response to neuronal activity
and also cause irreversible vascular lesions. On the other hand,
representative short-term effects of metabolic factors on cognitive
function occur due to hypoglycemia and hyperglycemia. Non-
genetic risk factors also modify the pathological manifestations of
AD in the long-term. Therefore, vascular and metabolic compo-
nents contribute to aggravation of cognitive dysfunction in AD
through short-term and long-term effects.

HYPERTENSION AND AD
The number of patients with hypertension is now estimated
to be approximately 40 million. One half of these patients are
untreated, and half of those receiving treatment are poorly
controlled (Prince, 1997). Epidemiological studies showed that
patients who developed dementia showed an increase in blood
pressure from mid-life through to late-life, compared to those
who did not develop dementia (Stewart et al., 2009). Pathological
investigations also indicate that hypertension causes an increase

FIGURE 1 | Variable mechanisms by which AD patients with non-

genetic risk factors manifest cognitive dysfunction. The mechanisms
whereby non-genetic risk factors modify cognitive dysfunction are divided
into four elements: short- and long-term effects of vascular and metabolic
factors. These are (1) compromised vascular reactivity, (2) vascular lesions,
(3) hypo/hyperglycemia, and (4) exacerbated AD histopathological features,
respectively. AD histopathological features include β-amyloidosis and
pathological tau. β-amyloid also compromises vascular reactivity and causes
microhemorrhages due to cerebral amyloid angiopathy. The contribution of
these four elements to manifestation of cognitive dysfunction varies
among patients, though all components must not always be present.

in white matter lesions (Firbank et al., 2007). Therefore, hyperten-
sion causes vascular lesions such as stroke, white matter lesions,
and microhemorhages, which might cause cognitive dysfunction.
In addition, hypertension might cause functional cerebrovascu-
lar abnormalities. Therefore, hypertension mainly modifies AD
through vascular factors, though it might have an influence on
pathological processes in AD as discussed later.

DIABETES AND AD
Numerous epidemiological studies have also demonstrated that
patients with diabetes have a significantly higher risk of developing
AD (Kopf and Frolich, 2009; Maher and Schubert, 2009). However,
the mechanism whereby diabetes increases the risk of AD is not
fully understood. In the Rotterdam study, diabetes almost dou-
bled the risk of dementia and AD (Ott et al., 1999). In a Japanese
cohort, the Hisayama study also indicated that glucose intolerance
increased the incidence of AD two to fourfold. Moreover, a meta-
analysis of 14 studies also confirmed that diabetes increases the
risk of AD (Kopf and Frolich, 2009).

DYSLIPIDEMIA AND AD
Midlife dyslipidemia could also be a risk factor for AD (Shepard-
son et al., 2011a), although it is reported that late-life dyslipidemia
might be protective against AD (Mielke et al., 2005). Though
whether dyslipidemia is a risk for AD is still controversial, it
is noteworthy that statins might have preventive effects against
AD (Shepardson et al., 2011b). Retrospective cohort studies by
Wolozin et al. (2000) and Jick et al. (2000) independently sug-
gested that statin users had a lower prevalence of dementia.
However, a randomized controlled study failed to show ben-
eficial effects on the cognitive decline in AD (Feldman et al.,
2010). On the other hand, the Rotterdam study, a prospective
cohort study, demonstrated that compared to non-statin users
and non-statin lipid-lowing drug users, users of both lipophilic
and hydrophilic statins had a lower incidence of AD by nearly
a half (Haag et al., 2009). Therefore, statins could prevent or
delay the onset of AD, but not slow cognitive decline once
the disease has set in (Sato et al., 2012b). Several studies have
already shown that statins might reduce the Aβ level in the brain
(Fassbender et al., 2001; Burns et al., 2006; Ostrowski et al., 2007;
Kurinami et al., 2008). Thus, dyslipidemia and use of statins could
have opposite influences on cognitive function through different
mechanisms.

SHORT-TERM MODIFICATION BY VASCULAR FACTORS
Cognition is closely related to cerebrovascular function (Iadecola
et al., 2009; Dickstein et al., 2010). Short-term modification by
vascular factors is mediated through reversible dysfunction of
vascular reactivity to neuronal stimulation. Non-genetic risk
factors such as hypertension and diabetes compromise vascu-
lar reactivity. Hypertension reduces cerebrovascular reactivity in
humans (Griffith et al., 1978; Maeda et al., 1994). Hypertension
causes deterioration of cerebrovascular function through physi-
cal pressure load and angiotensin-mediated signal transduction.
On the other hand, it is also well known that diabetic com-
plications involve microangiopathy (Muris et al., 2012). Indeed,
diabetes affects vascular reactivity (Caballero et al., 1999; Pasquier
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et al., 2006). Moreover, our study using animals suggested that
diabetes increases Aβ accumulation in the cerebral vasculature
(Takeda et al., 2010b). Therefore, diabetes could aggravate vascular
reactivity through multiple pathways including hyperglycemia,
hyperinsulinemia, and increased Aβ accumulation. In fact, Aβ

itself reduces endothelial function in vitro (Hayashi et al., 2009)
and vascular reactivity in mice (Niwa et al., 2000) and humans
(Dumas et al., 2012). Moreover, we confirmed that an angiotensin
receptor blocker improved cognitive function and restored cere-
brovascular function in an AD mouse model through reduction of
Aβ-induced cellular stress (Takeda et al., 2009a). Therefore, vascu-
lar factors compromise cerebrovascular function through physical
pressure load, osmotic load, angiotensin or insulin signal, and Aβ

load.

LONG-TERM MODIFICATION BY VASCULAR FACTORS
Alzheimer disease with cerebrovascular disease is more common
than previously recognized. It is understandable that cerebrovas-
cular lesions aggravate cognitive function in AD patients (Richard
and Pasquier, 2012). As hypertension and diabetes increase cere-
brovascular lesions, these non-genetic risk factors for AD increase
the risk of AD by increasing cerebrovascular lesions as well.

HYPERTENSION AND VASCULAR LESIONS
It has been indicated that mid-life hypertension is a risk fac-
tor for the development of AD (Skoog et al., 1996; Launer et al.,
2000; Kivipelto et al., 2001; Takeda et al., 2008). As hypertension
increases cerebrovascular necrosis and arteriosclerosis, antihyper-
tensive therapies could suppress cognitive function decline (Peters
et al., 2008; Takeda et al., 2008). In the Syst-Eur study, a ran-
domized controlled study, antihypertensive medication, which
included nitrendipine, enalapril and hydrochlorothiazide, in
elderly hypertensive patients decreased the onset risk not only
for vascular dementia, but also for AD (Forette et al., 2002).
In addition, SCOPE, Study on Cognition and Prognosis in the
Elderly, found that candesartan, an angiotensin receptor blocker,
inhibited cognitive deterioration in patients with mild cogni-
tive impairment (Skoog et al., 2005). A recent meta-analysis of
studies including HYVET-cog (Hypertension in the Very Elderly
Trial cognitive function assessment) indicated that the occur-
rence of dementia is significantly reduced by antihypertensive
treatment (Peters et al., 2008). To determine whether antihyper-
tensive therapy can prevent dementia requires a study setting
dementia prevention as a primary endpoint. The OSCAR study
(Observational Study on Cognitive function And systolic blood
pressure Reduction) was conducted to confirm whether hyper-
tensive patients treated with eprosartan show improvement in
MMSE score (Shlyakhto, 2007). Results from a subgroup of
OSCAR are supportive of the hypothesis that this treatment may
be associated with preservation of cognitive function (Radaideh
et al., 2011). Another report from OSCAR of a retrospective
investigation suggested that blood pressure responses after treat-
ment coincided with stabilization of MMSE in difficult-to-treat
hypertensive patients (Petrella et al., 2012). Therefore, further
clinical studies are warranted to clarify whether antihyperten-
sive drugs could prevent dementia and inhibit progression of the
disease.

DIABETES AND VASCULAR LESIONS
Diabetes also increases cerebrovascular lesions (van Elderen
et al., 2010), which aggravates cognitive dysfunction in AD. To
understand the mechanism whereby diabetes increases the risk of
AD, we generated AD model mice with a diabetic phenotype by
crossbreeding APP Tg mice and leptin-deficient ob/ob mice. We
examined Aβ burden in the cerebral vessels in APP+-ob/ob and
found that these mice had more severe CAA than did single APP
Tg mice (Takeda et al., 2010b). CAA is one of the major characteris-
tics observed in AD and vascular aging. CAA triggers hemorrhagic
(Greenberg and Vonsattel, 1997) and contributes to the clinical
presentation of dementia (Pfeifer et al., 2002). We also found that
APP+-ob/ob mice showed up-regulation of RAGE, the receptor for
AGE (Brownlee et al., 1988), in the vasculature. It is reported that
RAGE mediates amplification of inflammatory responses (Basta
et al., 2002). Indeed, inflammatory cytokines such as IL-6 and
TNFα were upregulated around the cerebrovasculature in APP+-
ob/ob (Takeda et al., 2010b). Therefore, diabetes also could affect
cerebrovascular vascular lesions through increased expression of
RAGE and subsequent chronic inflammation.

STATINS AND VASCULAR LESIONS
Dyslipidemia is also a risk factor for vascular disease, especially
cardiovascular disease. Whether dyslipidemia is a risk for cere-
brovascular disease is relatively unclear, probably because the
power of dyslipidemia to promote cardiovascular disease is too
strong. Anti-dyslipidemia statins are protective against vascular
change. In clinical studies, statins have been shown to prevent sec-
ondary stroke (Ni Chroinin et al., 2013). Several published studies,
including ours, demonstrated that statins restored cognitive func-
tion after experimental stroke through their pleiotropic effects
(Shimamura et al., 2007; Mayanagi et al., 2008). Because hyper-
tension and diabetes, in addition to dyslipidemia, increase the risk
of stroke, statins could prevent worsening of cognitive dysfunction
in AD patients with these common diseases.

SHORT-TERM MODIFICATION BY METABOLIC FACTORS
Diabetic patients experience hyperglycemia or hypoglycemia dur-
ing dietary and drug control of plasma glucose levels. Both these
conditions have an influence on patients’ cognitive dysfunction.
Because the brain uses mainly glucose as an energy source, hypo-
glycaemia causes defects of neuronal function, though lactate can
also be used in this situation (Rasmussen et al., 2011; Wyss et al.,
2011). Failure of neuronal networking including cholinergic and
GABAergic pathways also might contribute to cognitive impair-
ment in a hypoglycemic state (Sherin et al., 2012). On the other
hand, hyperglycemia also compromises cognitive dysfunction, due
to ketoacidosis and a hyperglycemic hyperosmotic state. Cognitive
dysfunction due to hyperglycemia or hypoglycemia is reversible.
However, repeated episodes of severe hypoglycemia are reported
to also be a risk for the development of dementia (Whitmer et al.,
2009).

LONG-TERM MODIFICATION BY METABOLIC FACTORS
HYPERTENSION AND AD PATHOLOGY
Hypertension could possibly modify AD risk by increasing the
pathological progression of AD in addition to ischemic lesions.
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In a study of autopsied brain, the incidence of senile plaques
and NFT in hypertensive patients was approximately 2 and 4
times higher than control, respectively (Sparks et al., 1995). Inter-
estingly, it is reported that valsartan, an angiotension receptor
blocker, improved cognitive deterioration in AD model mice
through anti-Aβ effects; that is, inhibition of Aβ oligomeriza-
tion and promotion of Aβ degradation by an insulin-degrading
enzyme (Wang et al., 2007). However, the mechanism by which
hypertension increases AD risk needs further investigation because
the underlying mechanisms are not so straightforward.

DIABETES AND Aβ

Epidemiological and neuropathological studies have provided
many important insights into the mechanism whereby diabetes
increases the risk of AD. A cohort study indicated that insulin
resistance in mid-life is associated with the development of senile
plaques in later life (Matsuzaki et al., 2010). In contrast, retro-
spective studies suggested that the magnitude of senile plaques
and NFT was comparable between AD patients with and with-
out diabetes (Kalaria, 2009). These results seem to contradict each
other. Several groups reported that a high-fat diet caused Aβ accu-
mulation in the brain of wild type rabbits (Sparks et al., 1994)
and APP Tg mice. There are several proposed mechanisms for
this phenomenon, such as compromised autophagy in an insulin-
resistant condition (Son et al., 2012) and upregulation of BACE1,
which cleaves APP, in a diabetic condition (Guglielmotto et al.,
2012). Although feeding a high-fat diet caused severe memory
deficit in APP Tg with NSY background (Nagoya-Shibata-Yasuda)
mice, which are established as an inbred animal model with spon-
taneous development of diabetes (Shibata and Yasuda, 1980; Ueda
et al., 2000), we observed no increase in brain Aβ load by a high-
fat diet (Takeda et al., 2010b). Similarly, we found no difference in
brain Aβ accumulation between APP+-ob/ob and APP mice with-
out diabetes (Takeda et al., 2010b). These findings as to whether
diabetes increases Aβ accumulation in the AD mouse brain seem
to be inconsistent. The magnitude of inflammation evoked by dia-
betes, which activates microglia to clear Aβ, might be involved in
this inconsistency.

DIABETES AND BRAIN INSULIN SIGNALING
Insulin signaling might be impaired in the AD and diabetic
brain. Insulin receptors are ubiquitous in the cortex and hip-
pocampus (Havrankova et al., 1978; Hill et al., 1986; Wickelgren,
1998), and circulating insulin accesses the brain by crossing the
blood–brain barrier (Banks, 2004). In the advanced AD brain, the
levels of insulin and IGF (insulin-like growth factor)-1 were sig-
nificantly reduced relative to controls (Rivera et al., 2005). After
insulin binds to the insulin receptor, which activates its tyro-
sine kinase, IRS-1 protein undergoes tyrosine phosphorylation
and binds phosphatidylinositol 3-kinase (PI3K; Sun et al., 1991),
which activates AKT and glycogen-synthase kinase-3β (GSK3β;
Sutherland et al., 1993; Cross et al., 1995; Neumann et al., 2008).
In vitro, Aβ increases tau phosphorylation through AKT-GSK3β

(Tokutake et al., 2012). Consistent with this result, the AD brain
manifested reduced responses to insulin and IGF-1 signaling
(Talbot et al., 2012). The levels and activities of the insulin-
PI3K-AKT pathway were also reported to be decreased in AD

and diabetic brains (Liu et al., 2011). Consistent with these
human studies, our APP+-ob/ob mice also manifested impaired
insulin signaling in the brain (Takeda et al., 2010b). These results
raise the possibility that impaired insulin signaling might be
involved in the pathogenesis of AD with or without diabetes
(Sato et al., 2011; Takeda et al., 2011). Similarly, IGF-1, IGF-2
and their receptors also exist in the CNS (Shemer et al., 1987;
Rotwein et al., 1988; Araujo et al., 1989; Chen et al., 2011). Impor-
tantly, brain-specific insulin receptor knockout mice showed no
alteration in the brain (Schubert et al., 2004), suggesting com-
pensation of IGF receptor signaling for insulin signaling. Taken
together, these findings indicate that insulin/IGF signaling might
be impaired in the AD with diabetes brain, and this signal-
ing might have an impact on aging and disease-related brain
dysfunction.

INSULIN SIGNALING AND Aβ

The next question is whether impaired insulin signaling has
any influence on Aβ metabolism. In vitro studies suggested that
insulin/IGF signaling is involved in Aβ generation, clearance, and
trafficking (Gasparini et al., 2001; Carro et al., 2006; Freude et al.,
2009b). While soluble Aβ oligomers and Aβ aggregates are in equi-
librium (Sato et al., 2006), reduced IGF signaling is reported to
decrease soluble Aβ oligomers, increasing Aβ aggregates (Cohen
et al., 2009). In contrast, another group reported that a reduction
of IGF signaling decreased Aβ deposition, suggesting an opposite
shift (Freude et al., 2009a). Similarly, loss of a downstream medi-
ator of insulin/IGF signaling, IRS (insulin receptor substrate)-2,
is reported to reduce Aβ deposition (Freude et al., 2009a; Killick
et al., 2009). Moreover, it is also reported that suppression of the
insulin receptor also decreased Aβ deposition (Murakami et al.,
2011). Our APP+-ob/ob mice manifested a reduction in insulin
signaling with no change in brain Aβ level, but increased Aβ depo-
sition in the cerebral vasculature (Takeda et al., 2010b). Therefore,
although the effects of insulin signaling on Aβ metabolism are not
so simple, we speculate that reduced insulin signaling might affect
control of protein quality and quantity in diabetic AD mice.

DIABETES AND TAU
Diabetes could also exacerbate tau phosphorylation and formation
of NFT. Although tau physiologically promotes the assembly and
stabilization of microtubules, hyperphosphorylated tau sequesters
normal tau, and disrupts microtubules (Iqbal et al., 1994, 2009).
Retrospective clinicopathological studies suggested that the mag-
nitude of NFT is comparable in AD with and without diabetes
(Kalaria, 2009), though a retrospective study might reflect the fea-
tures at the end stage of the disease. On the other hand, many
groups reported that diabetes increased tau phosphorylation in
mouse models. Importantly, in the human diabetic brain, tau
phosphorylation is increased at the same sites as hyperphospho-
rylated in AD (Liu et al., 2009). These studies indicate that diabetes
could increase tau phosphorylation, leading to the development
of NFT.

INSULIN SIGNALING AND TAU PHOSPHORYLATION
Indeed, impaired insulin signaling could cause tau phosphorylation.
As mentioned above, insulin signaling is well known to be
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mediated through the PI3K-AKT pathway, with downstream
involvement of GSK3β (Sutherland et al., 1993; Cross et al.,
1995; Neumann et al., 2008). Because GSK3β phosphorylates
tau, insulin inhibits tau phosphorylation in neurons through the
inhibition of GSK3β via AKT (Hong and Lee, 1997). In con-
trast, loss of insulin (Schechter et al., 2005), insulin receptor
(Schubert et al., 2004), or IRS-2 (Schubert et al., 2003; Freude
et al., 2009a; Killick et al., 2009) results in an increase of tau
phosphorylation. These findings indicate that impaired insulin
signaling might increase tau phosphorylation. In general, pro-
tein phosphorylation is also regulated by phosphatases. Tau is
reported to be dephosphorylated by protein phosphatase 2A
(Sontag et al., 1996). Moreover, disruption of IRS-2 also down-
regulates protein phosphatase 2A (Sontag et al., 1996). There-
fore, impaired insulin signaling might cause tau phosphorylation
by influencing both kinases and phosphatases. Taken together,
these findings indicate it is possible that diabetes could pro-
mote tau phosphorylation via impaired insulin signaling in the
brain.

MODIFICATION OF DIABETIC PHENOTYPE BY AD
It is also noteworthy that AD could affect diabetic phenotype.
Several clinical reports have suggested that AD patients mani-
fest glucose intolerance (Bucht et al., 1983; Meneilly and Hill,
1993; Janson et al., 2004). Consistent with these clinical obser-
vations, we found that AD aggravated the diabetic phenotype in
two different lines of APP Tg mice with diabetes (Takeda et al.,
2010b; Sato et al., 2011). We can speculate on the mechanisms
whereby AD affects the diabetic phenotype. First, AD could com-
promise central control of peripheral glucose metabolism (van de
Nes et al., 1998), as recent evidence suggests an important role
of the central nervous system in control of glucose homeosta-
sis (Demuro and Obici, 2006; Prodi and Obici, 2006). Second,
plasma Aβ could mediate peripheral insulin resistance. We previ-
ously reported that plasma Aβ level increases after glucose loading
in AD transgenic mice (Takeda et al., 2009b, 2010a), and could
change after oral glucose loading in AD patients (Takeda et al.,
2012). Therefore, increased plasma Aβ might affect insulin signal-
ing directly in peripheral tissues (Sato and Morishita, 2013; Zhang
et al., 2013). Third, Aβ accumulation could occur in the pancreas
(Miklossy et al., 2008) and skeletal muscle (Roher et al., 2009),
thereby impairing insulin secretion and insulin resistance, respec-
tively. In clinical settings, AD patients might have worse glucose
control because they cannot take medication and eat properly.
Indeed, poor cognitive function also increases the risk of severe
hypoglycemia in patients with type 2 diabetes (Punthakee et al.,
2012).

EFFECT OF STATINS ON Aβ PRODUCTION
As mentioned above, anti-dyslipidemia drugs, statins, might have
a preventive effect against AD. We investigated the mechanisms
responsible for the reduction of Aβ in the brain by statins. First,
Aβ reduction is associated with a reduction in the carboxyl termi-
nal fragment of APP (APP-CTF; Shinohara et al., 2010). Statins
reduce the brain Aβ level through increasing APP-CTF traf-
ficking by inhibition of protein isoprenylation. In general, Aβ

level is balanced between its production and clearance. We also

found that statins reduce brain Aβ level through enhanced Aβ

clearance mediated by up-regulation of LRP-1 (LDL receptor
related protein-1) expression. Therefore, we can expect an addi-
tional effect of brain Aβ reduction by statins to decrease vascular
events. There are reports suggesting that statins might transiently
and reversibly impair cognitive function (Orsi et al., 2001; King
et al., 2003; Wagstaff et al., 2003), especially if the drug is firstly
administered to treat patients aged over 75 years. Despite these
several reports of statin-associated cognitive impairment, this
adverse effect remains a rare occurrence (Rojas-Fernandez and
Cameron, 2012). Considering the beneficial effects, statins should
be used with close attention to the emergence of adverse effects
in elderly patients. Recent PET studies of amyloid confirmed
that Aβ begins to accumulate in the brain one or two decades
before the manifestation of memory impairment in AD. Statins
in mid-life might prevent the onset of AD by reducing Aβ pro-
duction by enhancing APP-CTF degradation and up-regulating
Aβ clearance in the brain. There are over 30,000,000 patients
taking statins, and they might benefit from Aβ reduction in the
brain in addition to the cholesterol-lowering effect (Sato et al.,
2012b).

CONCLUSION AND PERSPECTIVE
Non-genetic risk factors, such as diabetes, hypertension, and dys-
lipidemia, modify cognitive dysfunction in AD. The mechanisms
of these consequences are divided into four components. These
are short- and long-term effects of vascular and metabolic fac-
tors: (1) compromised vascular reactivity, (2) vascular lesions,
(3) hypo/hyperglycemia, and (4) exacerbated AD histopatho-
logical features, respectively. β-amyloid could be involved in
both vascular and metabolic components. It might be beneficial
to support treatment in AD patients by appropriate therapeu-
tic management of non-genetic risk factors, considering the
contributions of these four elements to the manifestation of
cognitive dysfunction in individual patients, though all com-
ponents may not always be present. It should be clarified how
these four components interact with each other. To answer
this question, a clinical prospective study that follows up clin-
ical features with respect to these four components: (1) func-
tional MRI or SPECT for cerebrovascular reactivity, (2) MRI
for ischemic lesions and atrophy, (3) clinical episodes of hypo-
glycemia and hyperglycemia, and (4) amyloid-PET and tau-PET
for pathological features of AD, would be required. Under-
standing the interaction of the four components will help to
elucidate the role of vascular and metabolic factors in cogni-
tive dysfunction of AD and provide beneficial knowledge for the
treatment of AD patients with or even without non-genetic risk
factors.
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