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Understanding the biology of intracranial aneurysms is a clinical quandary. How these 
aneurysms form, progress, and rupture is poorly understood. Evidence indicates that 
well-established risk factors play a critical role, along with immunologic factors, in their 
development and clinical outcomes. Much of the expanding knowledge of the inception, 
progression, and rupture of intracranial aneurysms implicates inflammation as a critical 
mediator of aneurysm pathogenesis. Thus, therapeutic targets exploiting this arm of 
aneurysm pathogenesis have been implemented, often with promising outcomes.
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inTRODUCTiOn

Intracranial aneurysms are common abnormalities of the brain (1–30). The reported prevalence 
was 3.2% in a homogeneous Finnish population and up to 5% in others (31, 32). The overall risk of 
rupture is about 1% (33, 34). At 40–65%, the overall lethality of subarachnoid hemorrhage (SAH) 
resulting from cerebral aneurysm rupture is significant (31, 35, 36). Thus, SAH remains a challeng-
ing clinical issue (31, 32, 37–43). Of patients who survive the initial ictus, ≤50% face significant 
morbidity (31, 38, 40, 44, 45).

The true natural history of cerebral aneurysms is incompletely understood. Types of cerebral 
aneurysms include giant, fusiform, and saccular. In this review, we focus on saccular aneurysms. 
Although much of the aneurysm biology remains unknown, a growing body of literature addresses 
their formation, progression, and rupture.

CLiniCAL RiSK FACTORS

Risk factors for intracranial aneurysms include the epidemiological risk factors of female sex, 
smoking, hypertension, and family history, which is the strongest indicator of rupture among non-
modifiable risk factors. Compared to the general population, first-degree relatives of persons with 
intracranial aneurysms or previous SAH have a risk 3–7 times higher and tend to have ruptured 
aneurysms at younger ages than those with sporadic aneurysms (37, 38, 40, 42, 46–48). In a cohort 
of 142 patients with 181 unruptured aneurysms followed from the 1950s until 1997–1998 for death 
or SAH, the annual incidence of hemorrhage was 1.3% (36). Cumulative rates of bleeding were 11% 
at 10 years, 23% at 20 years, and 30% at 30 years. Associated risk factors were aneurysm diameter 
and age. Smoking was an independent covariate related to rupture risk.

Abbreviations: IL, interleukin; NF-κB, nuclear factor-κB; SAH, subarachnoid hemorrhage; TNF, tumor necrosis factor; VSMC, 
vascular smooth muscle cell.
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AnATOMiCAL AnD CiRCULATORY 
FACTORS

Aneurysms develop at branch points of high intravascular 
turbulence and abnormal vessel wall shear stress. They arise 
in areas with complex arterial vascular geometry, particularly 
bifurcations and curvatures that contribute to increases in wall 
shear stress. Although formation is linked to diffuse genetic/
familial, environmental, and immunologic risk factors, saccular 
aneurysms seldom occur in random locations (31, 43). They tend 
to arise in sites similar to where giant and fusiform aneurysms 
form, with comparable and predictable geometric and anatomi-
cal properties. Vascular flow is turbulent or laminar. Turbulent 
flow has random variations in temporal and spatial components, 
with inconsistent predictability (43). Laminar flow typically 
occurs in large, straight vessels and is synonymous with normal 
physiological conditions but can be more complex or “disturbed,” 
occurring in areas of arterial bifurcations or poststenotic areas 
(49–52). These perturbations in flow often result in endothelial 
dysfunction, aiding aneurysm formation (31, 43). The endothelial 
response to wall shear stress appears to cause a cascade of gene 
signaling, morphological, and phenotypic changes that result in 
the initiation, progression, and rupture of intracranial aneurysms.

The locations of aneurysms are relatively consistent, with 
most cerebral aneurysms in the circle of Willis (43). However, 
considerable anatomical variability results from population-level 
differences in the individual geometry of the circle of Willis. 
Only 40% of people have a characteristic “complete” circle of 
Willis (43, 53). Unlike most large extracranial arteries, the 
bifurcation apex in cerebral vessels does not have consistent 
histologic media. Furthermore, the cerebral bifurcation apex 
has significantly less structural support from perivascular tissue 
(43, 54). Hemodynamic data suggest that deviations from opti-
mal geometric constructs predispose specific vessels to aneurysm 
formation.

Approximately 90% of cerebral aneurysms occur in the ante-
rior circulation, commonly (30–35%) the anterior communicat-
ing artery complex, followed by the internal carotid artery (30%) 
and associated branches (posterior communicating, ophthalmic 
arteries). Lastly, 22% occur in the middle cerebral artery and 
10% in the posterior circulation (basilar apex, superior cerebellar 
artery, posterior inferior cerebellar artery) (40). These locations 
correlate with the distribution of intracranial atherosclerosis and 
areas of suboptimal hemodynamic patterns (40, 43). Known 
anatomical differences in familial aneurysms also account for 
approximately 10% of SAHs (38). Familial aneurysms typically 
are multiple and occur in the middle cerebral artery.

AneURYSM FORMATiOn AnD  
THe ROLe OF inFLAMMATiOn

Numerous immunologic factors may influence the formation of 
intracranial aneurysms and their progression and rupture.

Pathology
The pathophysiological underpinnings of a saccular cer-
ebral aneurysm may lie in an atherosclerotic pathway. Animal 

modeling points to damage of the internal elastic lamina that 
may define early aneurysm formation and change (55–60). 
Further atherosclerotic changes within the aneurysm wall are also 
described (61, 62). Structural differences occur in both small and 
large saccular aneurysms. Small aneurysms have diffuse intimal 
thickening, with proliferating vascular smooth muscle cells 
(VSMCs) and a preponderance of macrophages and lymphocytes. 
Larger aneurysms have more advanced atherosclerotic changes, 
particularly with phenotypic changes in VSMCs, lipid-laden 
macrophages, and lymphocytic infiltration.

Our current understanding of atherosclerosis as a contributor 
to cerebral aneurysm formation and progression is rooted in 
efforts to define abdominal aortic aneurysms (63–66). Individuals 
with both cerebral and abdominal aneurysms share comorbid risk 
factors, such as smoking and arterial hypertension. Immunologic 
response and chronic inflammation are key pathogenic features 
of atherosclerosis (67–73). These immunologic responses suggest 
that inflammatory mediators could be linked to the formation, 
progression, and rupture of cerebral aneurysms (31).

vessel wall Changes
Histologic changes in aneurysm formation include vessel wall 
damage as a precursor. Normal vessel walls are organized into 
distinct layers, while aneurysmal vessel walls have fewer distinct 
layers characterized by disintegration of the internal elastic lam-
ina, progressive disorganization of the muscular media, intimal 
hyperplasia, and progressive irregularity of the luminal surface 
(74–79). Healthy cerebral vessels have a mix of collagen and con-
nective tissue (type I, III, and IV), fibronectin, and laminin. Type 
I collagen exists mostly in adventitia and fibronectin in the media 
of normal vessels (80). However, vascular remodeling changes the 
vessel wall. Type I collagen increases and fibronectin is dispersed 
in the wall, while the levels of type III and IV collagen and laminin 
decrease (54).

Structural and pathological changes occur in the endothelium 
and VSMCs. Functioning vascular endothelium promotes vaso-
dilation and is antiatherogenic; it also inhibits platelet adhesion 
and accumulation, VSMC proliferation and leukocyte adherence, 
and pro-inflammatory cascades. Recent evidence points to dam-
age of the vascular endothelium as the inciting event, leading to 
the creation, inflammatory cascade, progression, and rupture 
of intracranial aneurysms (81–83). The key inciting event in 
endothelial injury may be hemodynamic stress (76).

Perturbations in the vascular endothelium appear constant in 
both experimental and human intracranial aneurysms (75, 77, 81, 
84–89). Damage to the vascular endothelium incites morphologic 
and pathologic changes likely occurring in stages. The earliest 
changes (e.g., partial loss of endothelium) occur upon aneurysm 
formation and the latest (e.g., intimal swelling) upon progression. 
Initial morphologic and functional changes in the endothelium 
could be a response to shear stress. Endothelial cells become elon-
gated and realign with directional blood flow. Changes also occur 
in the development of actin stress fibers that may alter endothelial 
cell density or migration (90, 91). Hemodynamic stress may 
alter acute and chronic inflammatory signaling pathways. Shear 
stress appears to activate mediating pathways of inflammation 
within endothelial cells [prostaglandin E(2)–E-prostanoid(2) 
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FiGURe 1 | environmental factors and immunologic pathways and mediators involved in aneurysm formation. Shading emphasizes the contribution of 
inflammation to the process of aneurysm formation. VSMC, vascular smooth muscle cell; NF-κB, nuclear factor-κB; Ets, E-twenty-six family transcription factors; 
PGE2, prostaglandin E2; MCP1, monocyte chemoattractant protein 1. Used with permission from Barrow Neurological Institute, Phoenix, AZ, USA.
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(PGE(2)–EP(2))]. It also may amplify the chronic inflammatory 
pathway via nuclear factor-κB (92).

Changes in vessel walls are punctuated by changes in the 
vascular endothelium that occur in concert with phenotypic 
and morphologic changes in VSMCs supporting the media layer 
of the intracranial vasculature and providing structural sup-
port to vessel walls. Dynamic changes and eventual loss of the 
media layer contribute to aneurysm formation and rupture (80). 
Histologic evidence suggests that normally contractile VSMCs 
respond to environmental cues by undergoing phenotypic 
changes causing them to resemble a pro-inflammatory, pro-
remodeling, and dedifferentiated phenotype (93–95). Normal 
differentiation of cerebral VSMCs includes high levels of largely 
contractile proteins comprising smooth muscle-myosin heavy 
chains, smooth muscle alpha-actin, and semicarbazide amine 
oxidase, which regulate VSMC differentiation (54, 96–105). An 
early morphologic finding was related to phenotypic changes in 
these proteins. The spindle-like VSMCs change into spider-like 
cells that migrated to and proliferated in the media, resulting in 
myointimal hyperplasia (99). These changes may be punctuated 
by the previously mentioned hemodynamic factors, macrophage 
and endothelial cell-derived mediators [tumor necrosis factor 
(TNF)-α, interleukin (IL)-β, nitric oxide, and growth factors], 
environmental factors, and genetic changes (54, 100, 102, 104). 
This punctuated VSMC transition results in proliferation of a 
pro-inflammatory phenotype of VSMCs. The pro-inflammatory 
phenotype is characterized by reduced levels of the contractile 
elements of VSMCs: smooth muscle-myosin heavy chains, 
smooth muscle alpha-actin, and semicarbazide-sensitive amine 

oxidase (54, 102). Further changes in the increase in transcrip-
tion factors (Ets-1, p47phox, IL-6, monocyte chemoattractant 
protein-1, reactive oxygen species, matrix metalloproteinases, 
cathepsins), promoting inflammation, recruiting reactive oxygen 
species, and matrix remodeling, are identified as potentially pro-
moting aneurysm progression (96, 98, 103, 106). Ultimately, these 
changes result in decreased expression of collagen biosynthesis 
and further loss of VSMCs, weakening the aneurysm wall and 
predisposing to aneurysm rupture (31).

Specific inflammatory Pathways
The specific immunologic pathways and mediators involved in 
aneurysm formation remain partially understood. However, the 
immunologic effect can be divided into three areas linked to 
endothelial cells, VSMCs, and leukocytes. A common pathway 
for aneurysm formation is linked to certain leukocytes with dis-
tinct pathways of influence and known associated inflammatory 
mediators catalyzed by endothelial injury (31). The immunologic 
function is mediated by endothelial dysfunction, and the primary 
inflammatory mediators are NF-κB, Ets-1, MCP1, IL-1β, nitric 
oxide, angiotensin II, phosphodiesterase-4, and PGE(2)–EP(2) 
(Figure 1) (31). Dysfunctional major pathways of VSMCs include 
pro-inflammatory and pro-matrix remodeling, along with pheno-
typic modulation and associated apoptotic cell death. The major 
inflammatory mediators involved in VSMCs are IL-1β, p47phox, 
Ets-1, MCP1, angiotensin II, reactive oxygen species, matrix 
metalloproteinase, and cathepsins (31, 84, 107). Leukocytes, 
particularly mast cells and T-cells, influence aneurysm formation 
via a chronic inflammatory pathway associated with vessel wall 
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remodeling and damage, with subsequent apoptotic cell death. 
Several inflammatory mediators are associated with leukocytes: 
TNF-α, IL-1β, IL-6, TLR4, Fas, nitric oxide, complement, 
IgG, IgM, basic fibroblast growth factor, TGF-α  +  β, vascular 
endothelial growth factor, reactive oxygen species, matrix metal-
loproteinases, and cathepsins (31, 108, 109). Understanding how 
these specific inflammatory mediators function opens the door 
to treatments targeting these major inflammatory pathways (31).

GeneTiC FACTORS

Genetic factors contribute to the formation, progression, and 
rupture of intracranial aneurysms. Several studies have used 
microarray polymerase chain reaction to characterize the nature 
of these lesions. Despite further elucidating the gene expres-
sion profiles of these lesions, these studies have been limited by 
the significant variability of lesion types, stage of progression, 
location, and rupture status of lesions (31). The variability and 
small sample sizes in published gene expression studies impede 
generalizations to the intracranial aneurysm population.

Microarray data have yielded more than 500 differentially 
expressed genes in intracranial aneurysm tissue (31, 110). The 
two most significantly associated gene ontology terms identified 
were in antigen processing and immune response. Additional 
processing of aneurysm tissue revealed significant involvement, 
confirmed by real-time polymerase chain reaction, in integrin 
signaling, chemokine signaling, complement and coagulation 
cascades, nitric oxide signaling, and IL-10 signaling. These stud-
ies showed a convincing correlation of major histocompatibility 
complex II gene overexpression in aneurysm tissue that associated 
antigen-presenting cells, particularly macrophages and mono-
cytes, with intracranial aneurysm formation (31). Gene analysis 
of a rodent aneurysm model has shown associations in pathways 
involved with proteinases, reactive oxygen species, chemokines, 
complement, adhesion molecules, and apoptotic pathways in 
both the intima and media of aneurysm walls (31, 111). These 
data also showed differential expression of endothelial cells and 
VSMCs, suggesting a different role in the process of aneurysm 
formation (31, 112).

Gene expression patterns were more recently studied in 
groups of ruptured and unruptured aneurysms (31, 113), with 
686 upregulated and 740 downregulated genes identified in the 
ruptured cohort. Upregulated pathways were numerous, most 
notably in response to turbulent blood flow, chemotaxis, leuko-
cyte migration, oxidative stress, extracellular matrix degradation, 
and vascular remodeling. Additionally, enriched genes encoding 
TLR, NF-κB, hypoxia-induced factor 1A, and Ets transcription 
factor-binding sites were identified. These findings suggest that, 
although both aneurysm groups have an immunologic pedigree, 
ruptured and unruptured aneurysms likely have different immu-
nologic biology.

Known genetic conditions and familial relationships are 
also associated with higher rates of intracranial aneurysms. 
Autosomal polycystic kidney disease, Ehlers–Danlos syndrome, 
neurofibromatosis 1, and alpha1-antitrypsin deficiency are 
linked with aneurysm formation (31, 40). Thus, if there are defin-
able immunologic pathways and common identifiable genomic 

markers, then multiple avenues may be available for preictal 
intervention.

FUTURe DiReCTiOnS AnD TReATMenTS

Given our expanding understanding of the contribution of 
inflammatory factors to aneurysm formation, great efforts have 
been made in investigating non-interventional treatments. Much 
of the non-interventional therapeutic research to date has been 
conducted in animals, with the most promising data from studies 
on inhibiting the NF-κB pathway.

Multiple animal trials have sought to exploit the anti-
inflammatory effect of statins. Statins can block different stages 
of the inflammatory reaction, decrease degeneration in the ves-
sel, and slow intracranial aneurysm progression (3, 31, 85, 114). 
Unfortunately, other data indicate variable results with differ-
ent doses of pravastatin (88). At lower doses (5  mg/kg/day), 
pravastatin reduced overall endothelial damage and inhibited 
aneurysm formation in rats (88). The reverse was noted at higher 
doses of pravastatin (25 and 50 mg/kg/day) and at lower doses 
of simvastatin (5 mg/kg/day), where there was enhancement of 
aneurysm growth, and with high-dose pravastatin, even induc-
tion of aneurysm rupture (31, 88). The adverse effects of statins 
were accompanied by increased apoptotic caspase-3 levels and 
TUNEL-positive cells. Positive but disparate results have also 
been found with a phosphodiesterase-4 inhibitor and several 
angiotensin II receptor blockers (3, 31, 81, 85, 115).

The most impressive animal data involve NF-κB inhibition 
in rats. A drastic decrease in inflammatory response and a 60% 
decrease in aneurysm incidence were found with NF-κB inhi-
bition (31, 116). Whether the litany of animal data will have a 
translational impact remains to be seen. Retrospective data from 
the International Study of Unruptured Intracranial Aneurysms 
showed that patients who used aspirin three times weekly had 
a lower risk of aneurysm rupture versus those who did not use 
aspirin (117), perhaps because of the known anti-inflammatory 
effects of aspirin.

There are multiple, largely rat, studies of cathepsin inhibitors, 
MCP1 inhibitors, matrix metalloproteinase inhibitors, mast 
cell degranulation inhibitors, and free radical scavengers. These 
agents have diversely positive effects on factors, such as aneurysm 
incidence, size, media thickness, and internal elastic lamina 
score (2, 31, 97, 114, 118). The positive animal data continue to 
mount, prompting great hope it will translate into positive clinical 
therapies.

COnCLUSiOn

There is still much to learn about aneurysm biology. Experimental 
animal data support inflammatory pathways as a key factor in 
aneurysm formation, progression, and rupture, but concrete non-
surgical therapeutic targets remain elusive. Continued research 
and understanding of the biology and immunology of aneurysms 
have been pivotal in broadening our current understanding and 
will play an important role as we continue to improve the treat-
ment of this pathology.
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