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Although brain network analysis in neurodegenerative disease is still a fairly young

discipline, expectations are high. The robust theoretical basis, the straightforward

detection and explanation of otherwise intangible complex system phenomena, and the

correlations of network features with pathology and cognitive status are qualities that

show the potential power of this new instrument.We expect “connectomics” to eventually

better explain and predict that essential but still poorly understood aspect of dementia:

the relation between pathology and cognitive symptoms. But at this point, our newly

acquired knowledge has not yet translated into practical methods or applications in the

medical field, and most doctors regard brain connectivity analysis as a wonderful but

exotic research niche that is too technical and abstract to benefit patients directly. This

article aims to provide a personal perspective on how brain connectivity research may

get closer to obtaining a clinical role. I will argue that network intervention modeling,

which unites the strengths of network analysis and computational modeling, is a great

candidate for this purpose, as it can offer an attractive test environment in which positive

and negative influences on network integrity can be explored, with the ultimate aim to find

effective countermeasures against neurodegenerative network damage. The virtual trial

approach might become what both dementia and connectivity researchers have been

waiting for: a versatile tool that turns our growing connectome knowledge into clinical

predictions.
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INTRODUCTION

Neuronal connectivity as explicatory model of brain function has been around for quite some
time, and it has offered valuable perspectives, but has never reached the status of inevitable clinical
tool. The classical “disconnection syndromes” as proposed by legends like Wernicke and Dejerine
elegantly explained neurological symptoms (Catani and ffytche, 2005; Catani and Mesulam, 2008),
but have had a hard time surviving the neophrenological dominance in the neurological practice of
the past decades, where advancing imaging techniques and lesion studies have fueled our intrinsic
tendency to localize every (dys)function of the brain, even though we know that particularly our
cognitive abilities are heavily dependent on distributed circuits.

But connectivity is making a comeback. The convergence of technical advances in brain imaging,
and improved signal analysis methods for non-linear brain dynamics enables a new perspective on
the connectivity and communication between brain regions. On top of that, major breakthroughs
in the field of complex network analysis in the late nineties, introduced novel ways to understand
brain connectivity: it is not just a matter of “what is connected to what,” but it is the insight
that connection patterns themselves can actually determine network function to a large extent.
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The power of modern complex network analysis is the manner
in which it focuses on the meaningful core of complex systems,
and offers powerful yet easy to grasp insights that can be
quantified with a large arsenal of measures (Rubinov and Sporns,
2010; Fornito et al., 2015). This has offered not just theoretical
but crucial practical solutions in a wide range of fields, such
as infrastructure, economy, telecommunication, social science,
and more (Newman, 2003; Boccaletti et al., 2006; Mitchell,
2006). In humans and other animals, studies have convincingly
demonstrated that structural and functional brain networks
indeed possess smart organizational principles, and, regarding
neurodegenerative disease, that the link between connectivity,
pathology, physiology of the brain, and cognition is real,
suggesting connectomics to be a powerful new tool to understand
and perhaps predict disease (Pievani et al., 2011; Tijms et al.,
2013; Stam, 2014).

The enthusiasm of the connectivity research community is
met with skepticism from more clinically oriented peers, who
point to the fact that all the theoretical beauty and power has not
yet cured a single person with dementia, or any other disease.
The clinician who faces patients with cognitive decline and
has practically nothing to offer but empathy, care and a few
symptomatic drugs, will shrug his shoulders when confronted
with the latest correlation between network hubs and amyloid
plaques. Are we too optimistic? Well, probably it is too early to
judge, and naïve to expect that a complex system like the brain
will reveal its fundamental principles so quickly, when many
technical and methodological hurdles have to be taken, and there
are still so many unknown routes to explore.

Can we envision a more practical application of brain
connectivity research to the clinical domain of neurodegenerative
disease? One potential use is the development of diagnostic and
prognostic biomarkers. However, in this paper I will take a
different, more ambitious stance and argue that connectomics
may even directly contribute to the development of new
treatments for dementia. To clarify this idea, several stages
can be recognized. First, I will briefly summarize the results
of brain network analysis in dementia; how do we get
from neurodegenerative disease data to a “connectopathy.”
Subsequently, we move to a phase in which the observed
network damage is incorporated into a dynamic, virtual
disease simulation; from connectopathy to computational
neurodegenerative network model.

The final stage and main focus of this paper, the “virtual trial,”
deals with the challenge to predict successful interventions by
testing strategies that restore network integrity in the model,
based on the assumption that this will be beneficial for cognitive
performance. A practical example of this approach will be
demonstrated, backed by previous publications and current
research projects, and taking into consideration potential pitfalls
and improvements.

FROM NEURODEGENERATIVE DISEASE
TO CONNECTOPATHY

Early reports of connectivity analysis applied to dementia already
date back several decades (De Lacoste et al., 1984; Leuchter et al.,

1992). As expected, the loss of neurons and synapses results
in an overall breakdown of connectivity, prompting authors to
label its most common form, Alzheimer’s disease (AD) as a
“disconnection syndrome” (Delbeuck et al., 2003). The notion
that the gradual disconnection between brain regions is the
cause of the cognitive deterioration is interesting, but it is not
very specific. Fortunately, several breakthroughs in complex
network theory in the late 90’s caused an explosive growth of
interest in complex system analysis: now there were new tools to
understand connectivity patterns, not just describe them (Watts
and Strogatz, 1998; Barabasi and Albert, 1999; Strogatz, 2001;
Newman, 2003; Boccaletti et al., 2006). Complex network analysis
applied to human brain data started slightly over a decade
ago, with the first evidence of small-world network topology
in human resting-state magneto-encephalography (MEG) data
(Stam, 2004). This illustration of efficient network topology in
the human brain has since then been demonstrated in many
studies (Sporns and Zwi, 2004; Bassett and Bullmore, 2006; He
et al., 2007; Kwok et al., 2007; Stam et al., 2007; van den Heuvel
et al., 2008; Stam, 2010). Furthermore, the repeated finding
that in neurodegenerative disease this structure is gradually lost
sparked the quest for further determination of network damage
patterns in structural and functional networks on different scales
(Supekar et al., 2008; Bassett and Bullmore, 2009; de Haan et al.,
2009; Sanz-Arigita et al., 2010; Pievani et al., 2011; Xie and
He, 2011; Stam, 2014). With network theory, we could start
to explain why the observed brain changes were bad for its
function.

Soon, other fascinating findings were reported: the striking
overlap between patterns of amyloid pathology and the presence
of highly connected areas (hubs), as reported by Buckner
et al. (2009), or different types of dementia producing different
network damage patterns (de Haan et al., 2009; Seeley et al.,
2009; Zhou et al., 2010). Since then, neurodegenerative disease
(and particularly AD) has been a frequent focus of network
research. The combined results so far offer the following picture:
“connectopathy” occurs at an early stage, progresses gradually,
is fairly dementia-specific, and correlates with disease severity
and pathology (Pievani et al., 2011; Tijms et al., 2013; Stam,
2014). It is therefore reasonable to acknowledge the potential
of this type of analysis. Of course, since brain network research
is still a very young field, the reliability and reproducibility
of many results has to be confirmed. There is a lot of
discussion about network measure definition, applicability of
graph theoretical analysis to brain networks of limited size,
methods to compare different networks in an unbiased way,
network-specific statistical problems, and more (Deuker et al.,
2009; vanWijk et al., 2010; Zalesky et al., 2010;Wang et al., 2011).

In search of a practical use of this knowledge, biomarker
development is an obvious next step. At present however, the
sensitivity and specificity of network and connectivity-related
measures as diagnostic markers do not seem to perform better
than more commonly known structural or functional measures,
like atrophy rate, cerebral spinal fluid (CSF) protein levels or
oscillatory slowing (Damoiseaux and Greicius, 2009; He et al.,
2009; Koch et al., 2012; Gomez-Ramirez and Wu, 2014; Fornito
et al., 2015). Similarly, the use of these markers to monitor
or predict disease course has not been demonstrated. Perhaps,
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combinations of markers may improve their accuracy (Poil et al.,
2013; Dauwan et al., 2016; Khazaee et al., 2016).

Brain network analysis in dementia may not tell the whole
story, but at least it seems capable of examining a poorly
understood and (perhaps therefore) underestimated aspect of
dementia. And, with a steady stream of scientific studies,
gradually producing a more nuanced view of longitudinal
changes in both structural and functional connectivity patterns
in dementia, we can now start to ask ourselves the following
questions: canwe take advantage of this abstract realm of network
analysis, integrate damage features into an explicatory model,
and find general principles of damage that can point us toward
the core of the disease mechanism, and possible targets for future
interventions?

FROM CONNECTOPATHY TO
NEURODEGENERATIVE NETWORK
MODEL

Ideally, from the combined findings of brain connectivity studies
in neurodegenerative disease a clear and consistent picture of
disease-specific damage should emerge. However, since there
are different types of dementia, different modalities, different
stages of disease severity, and different hypotheses, bringing
together all the evidence is not an easy task.Moreover, underlying
patterns, mechanisms and causal relations in complex network

data may be completely invisible to the naked eye. Therefore,
interpretation of network damage should be backed up by
appropriate analysis. One way to do this is by a digital variant of
lesion studies: simulating brain network damage. By mimicking
different types of damage in a brain network model, one can
test if certain “damage principles” apply: what is the minimal
assumption that we have to make to replicate AD network
damage? These “virtual lesions” can be focal, global, structural
and/or dynamic (Kaiser et al., 2007; Honey and Sporns, 2008;
Alstott et al., 2009; Stam et al., 2010), resembling focal vs. more
global neurological pathology. For example, to characterize the
type of network damage in AD, a resting-state MEG study
compared two different damage types: “targeted attack,” which
selectively weakened hub regions, and “random error,” which
applied random network damage (Stam et al., 2009). Since the
first damage algorithm turned out to resemble the patient data
more closely, this appeared to confirm the earlier described hub
vulnerability in AD. Somehow, highly connected regions were
prone to AD.

To investigate this intriguing finding further, in a recent
modeling study we hypothesized that the reason for this was the
high mean levels of activity in hubs, since neuronal hyperactivity
and -excitability are increasingly reported in early AD stages
(Doble, 1999; Celone et al., 2006; Dickerson and Sperling, 2009;
Palop and Mucke, 2009, 2010; Santos et al., 2010; de Haan et al.,
2012; Mehta et al., 2013; Busche and Konnerth, 2015; Busche
et al., 2015; Oh et al., 2015; Yuan and Grutzendler, 2016). For this

FIGURE 1 | General overview of the brain network analysis and computational modeling process described in this article, with the special focus

indicated in red text. Once a representative network disease model has been constructed, many properties (regarding neuronal behavior, functional or structural

connectivity) can be altered as a way to introduce a defense mechanism: intervention modeling. The underlying assumption is that retaining “normal” network

organization is beneficial. Intervention scenarios can then be compared statistically, and serve as a guide for future clinical trial design. For this purpose, model

validation and translation to specific clinical treatment options presents a considerable challenge.

Frontiers in Neuroscience | www.frontiersin.org 3 March 2017 | Volume 11 | Article 110

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


de Haan Network Intervention Modeling in Neurodegenerative Disease

purpose, we used a dynamic model with neural masses coupled
according to human large-scale topology, to be able to simulate
global network function while altering neuronal excitability (see
Figure 1). Under the assumption of activity dependent damage,
we reproduced all major AD functional network hallmarks
(including initial hyperactivity and hyperconnectivity in the early
stage, as has been reported in MCI patients; Pijnenburg et al.,
2004; Celone et al., 2006; van Deursen et al., 2008; Maestu et al.,
2011; Maestú et al., 2015), supporting the view that neuronal
hyperactivity may play more than just a supporting role in the
disease process itself. Whether this particular study truly reveals
a pathophysiological principle of AD remains to be confirmed,
but here it mainly serves to illustrate the potential of network
modeling.

When investigating brain network lesions and disease
mechanisms, modeling should not be regarded as an interesting
side step to real experiments; it is indispensable, because
disturbance of complex, dynamical, non-linear systems never
produces strictly local, simple effects, and examination or
prediction of cause-effect relations is therefore almost impossible
without it. By incorporating relevant variables in a computational
model, which produces output that can be directly compared to

and analyzed with the same network analysis tools as patient
data, a much more reliable grasp on system-wide effects can
be achieved than by making educated guesses (Raj, 2015). The
flexibility of network modeling means it can be tailored to
specific hypotheses or questions, but it can also be a pitfall:
with endless parameters to adjust, anatomical details to add
and neuronal behavior to incorporate, one can easily “get
lost in modelspace” and never return. This is why clinicians
are important: realistic biological questions, hypotheses and
observations are needed to feed into and constrain these
models.

FROM NEURODEGENERATIVE NETWORK
MODEL TOWARDS THERAPY: THE
VIRTUAL TRIAL

If network modeling is an appropriate tool to simulate
neurodegenerative disease, why not reverse our thinking, and
test potentially positive influences, to learn how to preserve
adequate connectivity and slow down or even reverse dementia?
Can we implement a general principle to make the network

FIGURE 2 | Overview of the “Virtual Trial” procedure in the computational model mentioned in the text. Regional neural dynamics are based on 78 neural

mass models, and are connected according to human, DTI-derived topology. The resulting dynamic network generates EEG-like data, which can be analyzed in the

same way as patient data. During the simulation negative (degeneration algorithm) and positive influences (intervention scnearios) can be introduced by altering

neuronal behavior characteristics or connectivity. The subsequent effect on the network level over time can be assessed, and quantitatively compared between

scenarios.
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react differently, for example by adjusting oscillatory properties?
Can we make the network survive? In our example, where
we coupled neural mass models according to human topology
to simulate a dynamic human large-scale network (that
produces EEG-like output), we can alter the excitability of
neurons and see the resulting network behavior. This way,
the intervention mechanism of medication or other ways of
stimulation/inhibition can be simulated: for example, we can
inhibit excitatory neurons in the case of a hyperactive network
that collapses due to hyperexcitation.

This is precisely the strategy we adopted when trying to
restore network properties in our AD simulation (de Haan ea,
under review, see Figure 2). We compared it with 5 other
strategies, in which inhibitory and excitatory neurons were
either stimulated or inhibited simultaneously or selectively. We
ran these strategies and tracked network status by assessing
commonly used parameters to describe functional and structural
connectivity, network topology, hub status and oscillatory
behavior. Although global inhibition appeared to be a fairly
successful strategy, to our surprise the best way to defend the
network was by stimulating excitatory neurons. Apparently, on a
network level this strategy shifts the excitation-inhibition balance
in a positive way; the intervention more than doubled the time
before network collapse, independent of intervention starting
delay, which can be considered a success.

Of course, this exploratory study may still suffer from
methodological limitations. For example, we did not include any
plasticity effects, which may have underestimated the potential
of the interventions. Or we could have added a greater level
of detail (more neural masses, anatomical landmarks). Still, it
does demonstrate a few noteworthy things: first, subtle small-
scale adjustments (that don’t cause notable changes in “healthy”
network simulations) can profoundly influence the large-scale
network reaction to degeneration; with the right strategy, we
may be able to counter pathological processes in an elegant
way. Second, the counter-intuitive success of stimulation in a
hyperactive network underscores the complex behavior of non-
linear systems, and thus the need for modeling.

Network intervention modeling is not limited to the
neurophysiological domain. Any model that incorporates a
fairly plausible degeneration process and defense mechanism
can be used for the same purpose. For example, there could
be an algorithm describing amyloid deposition, spreading in
a spatiotemporal pattern as observed in clinical studies, and
exerting a toxic effect on its surroundings. Then, an amyloid
clearance intervention may be introduced to test network
preservation. Although it may take time to develop adequate and
insightful models, attacking the ADmystery with both top-down

(clinical studies) and bottom-up (modeling) approaches that
hopefully inspire each other may speed up our understanding of
the disease.

Ultimately, successful virtual interventions should be
translated into actual clinical treatments, and there are many
ways to manipulate brain networks (medication, stimulation,
surgery). However, the major challenge is to determine the
optimal strategy, and network intervention modeling is a
rational intermediate step that may guide trial design. Since
intervention modeling will, by definition, not be perfect,
the clinical findings may differ and be less persuasive. Here,
in-trial monitoring of network changes may inform us of
where practice and theory grow apart, and how to update our
insights, and our model. Another step that might be included
is testing modeling predictions in AD mouse models, since
faster simulation-trial cycles can be realized than in human
trials.

CONCLUSION

The merit of brain connectivity research goes beyond the
elucidation of normal and pathological brain organization, or
the development of diagnostic or prognostic markers. Network
intervention modeling can offer a versatile test environment in
which positive and negative influences on network integrity can
be explored, with the aim to counter neurodegenerative network
damage.

By testing and directly comparing relevant and realistic
clinical hypotheses, the virtual trial approach could become
a fast, flexible and inexpensive method to bring our rapidly
growing knowledge of brain connectivity to the patient, and
to provide the dementia research community with a highly
needed new perspective and a tool that may boost the success
rate of the inevitably slow, expensive and invasive clinical
trials.

If we truly accept the view of our brain as a dynamic,
complex, decentralized system from which cognitive traits
emerge, and connectivity analysis as the tool with the firmest
grip on this aspect of the brain, it is time to move on
from educated guessing to prediction modeling, when it comes
to intervening. This route from byte to bedside may unite
many different types of technically and clinically oriented
neuroscientists.
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