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The insulin/IGF system plays an important role in cancer progression. Accordingly, ele-
vated levels of circulating insulin have been associated with an increased cancer risk
as well as with aggressive and metastatic cancer phenotypes. Numerous studies have
documented that estrogens cooperate with the insulin/IGF system in multiple pathophys-
iological conditions. The biological responses to estrogens are mainly mediated by the
estrogen receptors (ER)α and ERβ, which act as transcription factors; however, several
studies have recently demonstrated that a member of the G protein-coupled receptors,
named GPR30/G-protein estrogen receptor (GPER), is also involved in the estrogen sig-
naling in normal and malignant cells as well as in cancer-associated fibroblasts (CAFs).
In this regard, novel mechanisms linking the action of estrogens through GPER with the
insulin/IGF system have been recently demonstrated. This review recapitulates the rele-
vant aspects of this functional cross-talk between the insulin/IGF and the estrogenic GPER
transduction pathways, which occurs in various cell types and may account for cancer
progression.

Keywords: insulin/IGF system, GPR30/GPER, estrogen receptor, cancer cells, cancer-associated fibroblasts, signal
transduction

PHYSIOLOGY OF THE INSULIN/IGF SYSTEM
IGF-1 and IGF-2 (IGFs) as well as insulin and cognate recep-
tors (the type I IGF-1 receptor, IGF-1R, and the insulin receptor,
IR) belong to a complex system, the insulin/IGF system, which is
essential for normal development and growth of cells, organs, and
whole animals (1). Insulin, which secretion is modulated by nutri-
ents, namely glucose, is exclusively produced by the endocrine
pancreas and is the main regulator of glucose homeostasis. The
insulin pro-hormone, proinsulin, is partially also secreted in the
bloodstream and its biological role, if any, is unknown (2). IGF-
1, which is regulated by the hypothalamus/pituitary axis through
pituitary GH, is mainly produced by the liver and plays a major role
in linear growth. IGF-2 is produced in the liver and many other
tissues, and is scarcely responsive to GH. It is mainly involved
in trophic, survival, and differentiation effects (3). IGFs, but not
insulin or proinsulin, associate with six different binding proteins
(IGFBPs) that regulate their bioactivity. IGFs act on most cells
and tissues and regulate survival, mitogenesis, cell migration, and
differentiation (3).

Insulin and IGFs all activate a very well-conserved signaling
pathway, the PI3K/Akt/FoxO pathway, which has a crucial role in
the regulation of metabolism, growth, and apoptosis processes (4).
In particular, upon ligand binding, the tyrosine kinase domains of
both IR and IGF-1R catalyze the phosphorylation of specific sub-
strates, such as the insulin receptor substrate (IRS)-1, IRS-2, IRS-3,
and IRS-4, Gab-1, Cbl, and Shc (5). Activated IRS proteins interact

with the growth factor receptor binding protein 2 (GRB2) and
the p85 regulatory subunit of phosphoinositide 3-kinase (PI3K),
which then activates the Akt pathway that regulates metabolic
enzymes and mediates cell growth, proliferation, and survival
(4). Moreover, IR and IGF-1R activate a second major signaling
pathway, the Ras/Raf/MEK/ERK transduction cascade, which is
involved in important biological responses like gene expression,
cell motility, proliferation, survival, differentiation, and death (6).
Another pathway, which integrates signals from both the PI3K–Akt
activation and the Ras/Raf/MEK/ERK, as well as signals coming
from other growth factors and from nutrients, is the mammalian
target of rapamycin (mTOR) pathway, which is also a central regu-
lator of cell growth and metabolism through the control of mRNA
translation (7). Moreover, insulin/IGFs also cooperate with other
receptor and signaling pathways, thus exerting a crucial role in
normal development and homeostasis and tissue repair.

INVOLVEMENT OF THE INSULIN/IGF SYSTEM IN CANCER
It is now well established that the insulin/IGF system is fre-
quently dysregulated in cancer, thus contributing to cancer pro-
gression, metastases, and resistance to cancer therapies (8, 9).
Common alterations include overexpression of IR and IGF-1R
by the malignant cells, increased IR/IGF-1R hybrid formation,
deregulated autocrine secretion of IGFs, and increased IGFs secre-
tion by the tumor stroma. IGFBPs production in the tumor
microenvironment may also be dysregulated (8, 10–12). Indeed,

www.frontiersin.org March 2015 | Volume 6 | Article 30 | 1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Frontiers - Publisher Connector

https://core.ac.uk/display/82845512?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.frontiersin.org/Endocrinology
http://www.frontiersin.org/Endocrinology/editorialboard
http://www.frontiersin.org/Endocrinology/editorialboard
http://www.frontiersin.org/Endocrinology/editorialboard
http://www.frontiersin.org/Endocrinology/about
http://www.frontiersin.org/Journal/10.3389/fendo.2015.00030/abstract
http://www.frontiersin.org/Journal/10.3389/fendo.2015.00030/abstract
http://www.frontiersin.org/Journal/10.3389/fendo.2015.00030/abstract
http://loop.frontiersin.org/people/23678/overview
http://loop.frontiersin.org/people/20871/overview
http://www.frontiersin.org/people/u/23994
mailto:belfiore@unicz.it
mailto:marcellomaggiolini@yahoo.it
http://www.frontiersin.org
http://www.frontiersin.org/Cancer_Endocrinology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

De Marco et al. Insulin/IGF-1 action and GPER signaling

an overexpression of IR/IGF-1R has been detected in breast malig-
nancy (13, 14), and a high expression of these receptors was
shown to be tumorigenic in mouse tumor models (15). Moreover,
epidemiological studies have shown that elevated IGF-1 plasma
concentrations are associated with a higher risk of developing var-
ious malignancies, like breast, colon, prostate, and lung carcinomas
(16–18). Notably, the human IR exists in two isoforms character-
ized by the inclusion (IR-B) or the exclusion (IR-A) of exon 11,
which encodes a 12 amino acid residue located at the carboxyl
terminus of the IR alpha-subunit (5). In adult life, the metabolic
effects of insulin in target organs (liver, muscle, and fat) are pre-
dominantly mediated by the IR-B. In contrast, IR-A plays a role in
growth and development in prenatal life, while its role in adult life
is unknown. Recently, IR-A has been shown to be almost invariably
overexpressed in both epithelial and non-epithelial malignancies
(19–21). Interestingly, while IR-B is a highly specific receptor for
insulin, IR-A is a more promiscuous receptor, exhibiting high
affinity for insulin, intermediate affinity for IGF-2 and proin-
sulin, and low affinity for IGF-1 (19, 22, 23). IR-A overexpression
and enhanced IGF-1/IGF-2 autocrine/paracrine production often
coexist in several malignancies and is associated with an aggres-
sive and dedifferentiated tumor phenotype (20, 24, 25). In this
scenario, it is most likely, that IR-A functions as the main IGF-
2 receptor, as the IGF-1R is often saturated by the high levels of
IGF-1 of tumor microenvironment. Further corroborating these
findings, phosphorylated IR was found in different breast-cancer
subtypes and correlated with a poor survival (26). Noteworthy,
IGF-1R and IR function as transcriptional regulators of the IGF-
1R promoter activity in cells with reduced estrogen receptor (ER)
levels (27). In particular, in ER depleted C4.12.5 breast-cancer
cells but not in ER-positive MCF-7 cells, IGF-1R and IR were
able to bind to the promoter of IGF-1R after translocation into
the nucleus. IGF-1R enhanced the activity of its own promoter,
whereas IR acted as a negative regulator of the IGF-1R promoter
activity (27).

IR-A overexpression in cancer has helped us in explaining
recent findings indicating that high levels of circulating insulin
(hyperinsulinemia) may be related to cancer. Indeed, various
lines of evidence indicate that compensatory hyperinsulinemia
associated with insulin resistance is significantly associated with
increased risk for various cancer histotypes (28) and are also
associated to poor cancer prognosis (29). The “Women’s Health
Initiative Study” showed that women exhibiting insulin levels in
the upper tertile were more than twice as likely to develop breast
cancer compared with those presenting insulin levels in the lowest
tertile (30). It has been also shown that increased insulin levels
are associated with an augmented risk for benign proliferative
breast disease (BPBD) (31). Likewise, the relationship between
hyperinsulinemia and breast cancer was demonstrated using an
insulin-resistant and hyperinsulinemic transgenic mouse model
(32). Insulin resistance and hyperinsulinemia are common in
metabolic disorders, such obesity and type 2 diabetes mellitus
(T2DM), which are both associated with up to two- to threefold
increased risk for various malignancies (33–35). The rising occur-
rence of obesity and T2DM worldwide is causally associated with
changing diet and lifestyle, which cause excessive adiposity, espe-
cially in the visceral region. Interestingly, in insulin-resistant states,

the increased levels of circulating insulin produce biased biological
effects whereby glucose metabolism is impaired whereas prolifer-
ative effects are unimpaired or enhanced (36, 37). In fact, obesity
and T2DM should be considered low-grade inflammatory disor-
ders, owing to macrophage infiltration of hypoxic visceral adipose
tissue, and it is well known that inflammatory cytokines impair
the IRS/PI3K/Akt pathway (so called metabolic pathway) but do
not affect the Ras/Raf/MEK/ERK pathway, which may produce
unbalanced stimulation of cancer cells (38, 39). The most recent
World Health Organization (WHO) World Cancer report (2014)
acknowledge these findings and states that the association of waist
size and BMI with cancer risk follows a dose–response relationship,
and that overall cancer mortality also increases in a linear fashion
with increasing BMI. There is also evidence for a direct association
between T2DM and cancer mortality (35, 38). Therefore, insulin
resistance, obesity, and T2DM should be considered major pre-
ventable cancer risk factors (40, 41). This increased awareness may
have important implications in T2DM patient’s management. Dia-
betic patients are exposed to endogenous hyperinsulinemia both
in the pre-diabetic state and at the early stages of the disease, but
also when treated with insulin or insulin analogs at later stages of
the disease. Moreover, there is concern that insulin analogs may
increase cancer because of a biased effect on IR signaling pathways
(42). Because of the recognized role of the insulin/IGF system in
cancer, in the last decade, this system has been seriously considered
as a therapeutic target (43, 44). Indeed, several blocking strategies
have been developed in order to selectively target the IGF-1R, with
the aim to block protumoral effects without causing deterioration
of glucose metabolism. Although pre-clinical studies and some
phase I and II clinical trials have been very promising (45), results
from phase III trials were disappointing showing clinical benefits
only in small subsets of patients (44). A number of factors account
for these disappointing results (46). Major factors include insulin
resistance and compensatory hyperinsulinemia and increased IR-
A in malignant cells (47). The cross-talk of IR/IGF-1R with matrix
receptors and with other signaling pathways involved in induc-
tion and maintenance of cell stemness features may also have a
role (48). As we will summarize below, previously unappreciated
modalities of cross-talk with estrogen transduction pathways may
also partially account for resistance to selective IGF-1R inhibitors.

CROSS-TALK BETWEEN INSULIN/IGF SYSTEM AND
ESTROGENS
The insulin/IGF system and estrogens act synergistically as potent
mitogens in normal breast as well as in breast tumor cells (49).
Originally, it was considered that these agents display their actions
through separate pathways, but a growing body of evidence has
suggested that the insulin/IGF system and estrogen-mediated sig-
naling pathways are strictly interconnected (49). Both classical
and non-classical ERs have been shown to concur to this extensive
cross-talk.

CROSS-TALK INVOLVING CLASSICAL ERs
Classical ERs include two subtypes, ERα and ERβ, which belong
to the nuclear receptor family of transcription factors. Both recep-
tor subtypes exert a role in cancer as suggested by the observa-
tion that ERα is overexpressed in breast-cancer cells while ERβ
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in prostate cancer metastases (50, 51). Both ERα and ERβ may
act through ligand-dependent and ligand-independent mech-
anisms. The first pathway includes the well-known genomic
actions and the membrane-initiated rapid effects. The ligand-
independent pathway comprises the activation of other signaling
effectors, like growth factors, which, after binding to kinase recep-
tors, induce ERs phosphorylation and, thereby, activate them
to dimerize, bind DNA, and regulate genes (52). The cross-talk
between classical ERs and the IGF system may occur through
both ligand-dependent and -independent activation. However, the
ligand-independent signaling are the mechanisms especially evi-
dent in cancer, where they may contribute to tumor progression
and endocrine resistance (53).

Early studies describing a cross-talk between classical ERs and
the IGFs pathway were conducted in breast and prostate tumors
but may be recapitulated in all tumors where both signaling are
simultaneously active in inducing a positive feedback cycle of cell
survival and proliferation stimuli. For example, a role of ERα in
mediating insulin and IGF-I growth effects, also in absence of
estrogens, was found in a pituitary tumor cell line (54) as well
as in SK-ER3 neuroblastoma cells (55). In human breast-cancer
cells, ligand-dependent stimulation of ERs has been shown to
enhance IGF signaling at multiple levels (56). For instance, 17β-
Estradiol (E2) upregulates the expression of several IGF family
members including IGF-1, IGF-2, IGF-BP2, IGF-1R, and IRS-
1, whereas the expression of IGFBP3 decreases upon estrogen
exposure (57–61). In addition, activated ERα by E2 induces the
phosphorylation of IGF-1R, which triggers downstream trans-
duction pathways (62). IRS-1 upregulation by E2 was associated
with a direct positive regulatory role on the IRS-1 promoter (60),
while IGF-IR upregulation by E2 appears to involve, at least in
part, the transcription factor Sp1 (57). In turn, IGF-1 stimula-
tion may induce ligand-independent ER activation by inducing
ER phosphorylation. Akt activation appears to be required and
a constitutively active Akt was able to mimic IGF-1 effects (63,
64). Other studies indicated that the main molecular mechanism
responsible is the activation of the PI3K/mTOR/S6K1 pathway,
which phosphorylates ERα at S167 in a mitogen-activated pro-
tein kinase (MAPK)-independent manner (65). Phosphorylated
ERαS167 may bind and stimulate ERE sequences, and promote
gene transcription, growth, and proliferation (65). Interestingly,
this response was abrogated by the mTOR1 inhibitor rapamycin
(65). However, it has also been shown that E2 and IGF-1 differen-
tially regulates ER-dependent transcription both at ERE and AP-1
sites, indicating that the effects of ligand-dependent and ligand-
independent ER activation are not identical (66). At least some
of these functional interactions between ERs and the IGF sys-
tem may be recapitulated in other tissues and tumors (67, 68).
To reinforce the relevance of the ER–IGF-1 cross-talk in cancer,
microarray data have suggested that a gene signature co-regulated
by IGF-1 and estrogens associates with poor prognosis in breast
cancer, indicating that the inhibition of both IGF-1R and ER may
be necessary in certain subtypes of breast cancer (69). Nonethe-
less, tamoxifen-resistant (TamR) breast-cancer cells may exhibit
reduced levels of IGF-1R (70). Thus, in breast malignancies char-
acterized by a tamoxifen resistance, IGF-1R has been proposed as
a poor therapeutic target (70).

Another intriguing cross-talk with the IGF system is elicited
by the small fraction of classical ER located at the level of the
cell membrane and acting via MISS (membrane-initiated steroid
signaling). We have recently described a novel mechanism of cross-
talk between estrogens and IGF system in prostate cancer cells,
involving the upregulation of the IGF-1R through the classical
ERs acting via MISS (71). Both ER isoforms behave similarly in
activating this pathway that requires the activation of Src, ERK,
and PI3K, and results in the phosphorylation of CREB transcrip-
tion factor. These findings are in close agreement with previous
studies indicating that E2 activates a Src-dependent pathway by
inducing an interaction between the ER phosphotyrosine 537 and
the SH2 domain of Src (72, 73). These authors have also shown
that ER, Src, and p85 form a ternary complex, whose assembly
is stimulated by E2 (72). In turn, this complex activates both the
Src and the PI3K/Akt pathways and will eventually affect gene
expression by affecting multiple transcription factors, including
Elk-1, c-fos, and down-regulation of C/EBPbeta and c-Jun (74).
We found that CREB responsive elements are present in the 5′UTR
region of IGF-IR promoter. IGF-1R upregulation by this mecha-
nism is able to enhance IGFs effects in prostate cancer cells (71).
Moreover, IGF-IR itself may phosphorylate CREB and induce
CREB-dependent genes (75, 76), therefore regulating its own gene
expression. Notably, this pathway is only partially blocked by clas-
sical anti-androgens or anti-estrogens, which preferentially block
the genomic pathway, but it may be sensitive to inhibitors of the
Scr/ERK/PI3K/CREB pathway (71) and to the antidiabetic drug
metformin, which blocks MISS at multiple levels (48).

CROSS-TALK THROUGH THE NON-CLASSICAL ESTROGEN
RECEPTOR GPER
GPER action
The G-protein estrogen receptor (GPER), formerly known as
G protein receptor 30 (GPR30), mediates rapid responses to
estrogens in several types of normal and tumor cells as well as
cancer-associated fibroblasts (CAFs) (77–80). Ligand-activated
GPER leads to EGFR transactivation and rapid phosphoryla-
tion of MAPKs ERK1/2 as well as phosphatidylinositol 3-kinase
(PI3K) (81, 82). In addition, GPER signaling stimulates adeny-
lyl cyclase, PKA and PKC activation (83), cAMP accumulation
(81, 84), and calcium mobilization (85, 86). The identification
of GPER-selective ligands has allowed a better evaluation of
GPER-mediated signaling and has further supported the asso-
ciation of GPER with biological responses like gene expression
changes, proliferation, migration, and invasion (87–92). In this
regard, it has been demonstrated that GPER agonists upregulate
the expression of genes associated with tumor progression like
c-fos (93–96), cyclins A, D1, and E (97, 98), the connective tis-
sue growth factor (CTGF) (99), and the early growth response-1
(Egr-1) (100). Additionally, GPER has been shown to contribute to
the HIF1α-dependent expression of VEGF, which mainly supports
angiogenesis and tumor progression (101). It has been also sug-
gested that the localization of GPER at the nuclear level in CAFs
occurs via an importin-dependent mechanism and is involved
in its transcriptional activity (79, 102). In addition, the poten-
tial of GPER in mediating the production of E2 in breast CAFs
has been recently highlighted (103) together with the observation
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that hydroxy tamoxifen induces through GPER the aromatase
expression in both the SKBR3 breast-cancer cells and CAFs (104).
GPER has been implicated not only in cancer but also in car-
diovascular, immunological, and neurological functions as well
as diabetes (105–107). Accordingly, GPER has been detected in
pancreatic β-cells and GPER-ligands have shown insulinotropic
effects by mediating pancreatic β-cell survival and stimulating
insulin release (108, 109). Pharmacological manipulations and
gene deletion of GPER in mice (GPR30−/−) have been associ-
ated with altered insulin release upon estrogen exposure (106,
108). Likewise, GPER deficiency resulted in insulin resistance,
dyslipidemia, obesity, and increased circulating pro-inflammatory
cytokines, suggesting a role of GPER in metabolism and inflam-
matory state (110). With regard to the clinical effects mediated by
GPER, previous views might be reassessed regarding, for instance,
the action of raloxifene and Fulvestrant or Faslodex. Instead of act-
ing solely as ER-modulating agents, these drugs have the potential
to act also as agonists for GPER in vitro and in vivo (111). In this
regard, the fact that the activation of GPER causes vasodilation
may be consistent with the hypotensive side effects observed in
some patients receiving Faslodex (112). Anyway, a better under-
standing of the Faslodex action is challenging as this compound

may act as an agonist of mutated ERα in the activation function-2
(AF-2) (113, 114).

GPER regulation and function by the insulin/IGF system
It has been previously shown that GPER is regulated by EGF and
TGFα as well as by hypoxia, one of the main factors involved
in tumor aggressiveness (115, 116). Notably, an elevated expres-
sion of GPER has been associated with a high risk of metasta-
tic diseases and poor survival rates in breast, endometrial, and
ovarian tumors (112). Increased levels of GPER have been also
identified in inflammatory breast cancer (IBC), an aggressive
hormone-independent form of this malignancy (117). Recently,
the overexpression of GPER and its plasma membrane localiza-
tion were shown to be critical events in breast-cancer progres-
sion, whereas the lack of GPER in the plasma membrane was
associated with an excellent long-term prognosis in ER-positive
tamoxifen-treated breast tumors (118). Therefore, the expression
of GPER may characterize not only the estrogen sensitivity and
the response to endocrine pharmacological intervention in the
above-mentioned tumors but could also be predictive of biologi-
cally aggressive phenotypes consistent with adverse outcomes and
low survival rates. A cross-talk between the insulin/IGF system

FIGURE 1 | Cross-talk between GPER and the IGF system. Upon
binding to their specific tyrosine kinase receptors (RTKs), insulin and IGF-I
stimulate rapid signals converging on the activation of PI3K, MAPK and
PKCδ networks. These pathways, in turn, trigger the activation of
transcription factors including CREB, SRF and ETS, which favor c-fos
induction and its recruitment to the AP-1 site located next to the GPER 5’
flanking region. Transactivation of GPER promoter sequences induces
GPER upregulation at both mRNA and protein levels and, as a
consequence, enhanced transcription of GPER target genes. In turn,
GPER, upon estrogens binding, activates heterotrimeric G proteins, which
trigger multiple effectors including PKA, and also PKCδ, MAPK and PI3K,

converging on c-fos induction and GPER gene activation. The resulting
effects of these signaling and transcriptional events lead to enhanced
mitogenic signals. Abbreviations: PKA, protein kinase A; PKCδ, protein
kinase C, δ isoform; MAPK, mitogen activated protein kinases; PI3K,
phosphatidyl-inositol-3-kinases; ERK, extracellular signal-regulated kinases;
AKT, protein kinase B; CREB, cAMP-response element-binding protein;
ETS, E26 transformation specific; SRF, serum response factor; c-fos, FBJ
murine osteosarcoma virus; AP-1, activator protein-1; CTGF, connective
tissue growth factor; DUSP1, dual specificity protein phosphatase 1; TNFα,
tumor necrosis factor α; NGF, nerve growth factor; MT1, metallothionein 1;
MT2A, metallothionein 2A; Bcl2, B-cell lymphoma 2.
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and the G protein-coupled receptors (GPCRs) plays a critical
role in the regulation of multiple physiological functions and a
variety of pathophysiological processes like cardiovascular and
renal diseases, obesity, metabolic syndrome, and type II diabetes
(78, 112, 119). At the cellular level, insulin as well as IGF-1
dramatically synergizes with GPCR agonists in inducing mito-
genic signaling in multiple solid tumors including pancreas, colon,
prostate, and breast tumors (119). In addition, recent findings
have identified a new cross-talk between the insulin/IGF-1 sys-
tem and GPER signaling. In particular, IGF-1 has been shown to
transactivate the promoter sequence of GPER and to upregulate
the expression of GPER at both the mRNA and protein levels in
ERα-positive breast (MCF-7) and endometrial (Ishikawa) cancer
cells (120). The aforementioned stimulatory action was exhib-
ited by insulin in leiomyosarcoma SKUT-1 cells and in breast
CAFs (80). The induction of GPER by both insulin and IGF-
1 was mediated by the rapid activation of PKCδ and ERK1/2
transduction pathways and the stimulation of c-fos, which was
recruited to the AP-1 site located within the promoter sequence
of GPER (Figure 1). The functional role exerted by AP-1 was
demonstrated to be essential for the transactivation of the GPER
promoter sequence and the GPER upregulation, as the transfec-
tion of a construct encoding a dominant-negative form of c-fos
abrogated these responses in cell models used. Noteworthy, GPER
and one of its main target genes, named CTGF, were required for
cell migration induced by IGF-1 and insulin (80, 121). Previous
studies have indicated that estrogens increase insulin sensitivity
and stimulate glucose uptake in target tissues and breast-cancer
cells (122, 123). Of note, GPER has been involved in insulin-
regulated metabolic functions in mice and humans (106, 110)
as well as in the glucose uptake induced by estrogens (80). In
this regard, the insulin-induced expression of GPER was found
to boost the glucose uptake stimulated by estrogens and cell-cycle
progression (80).

CONCLUSION AND PERSPECTIVES
Many tumors are characterized not only by profound dysregu-
lation of the insulin/IGF axis involving overexpression of recep-
tors, ligands, and intracellular mediators, but also by deregulated
expression and trafficking of classical and non-classical ERs and
related adaptors/mediators. These conditions greatly enhance the
complexity of the cross-talk between the insulin/IGF system and
estrogens, which has been largely reported. In this respect, the
upregulation of GPER triggered by ligand-activated IGF-1R and
IR further contributes to the potentiation of the biological effects
induced by estrogens and the insulin/IGF system in cancer. A bet-
ter understanding of the mechanisms involved in the cooperation
of these signaling pathways would provide further opportunities
toward innovative anticancer treatments.
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