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A key challenge in cortical neuroscience is to gain a comprehensive understanding

of how pyramidal neuron heterogeneity across different areas and species underlies

the functional specialization of individual neurons, networks, and areas. Comparative

studies have been important in this endeavor, providing data relevant to the question

of which of the many inherent properties of individual pyramidal neurons are necessary

and sufficient for species-specific network and areal function. In this mini review, the

importance of pyramidal neuron structural properties for signaling are outlined, followed

by a summary of our recent work comparing the structural features of mouse (C57/BL6

strain) and rhesus monkey layer 3 (L3) pyramidal neurons in primary visual and frontal

association cortices and their implications for neuronal and areal function. Based on

these and other published data, L3 pyramidal neurons plausibly might be considered

broadly “generalizable” from one area to another in the mouse neocortex due to their

many similarities, but major differences in the properties of these neurons in diverse

areas in the rhesus monkey neocortex rules this out in the primate. Further, fundamental

differences in the dendritic topology of mouse and rhesus monkey pyramidal neurons

highlight the implausibility of straightforward scaling and/or extrapolation from mouse to

primate neurons and cortical networks.

Keywords: mouse, rhesus monkey, comparative anatomy, dendrites, spines, synapses, visual cortex, prefrontal

cortex

The mammalian neocortex is a complex cellular structure endowed with exquisite computational
powers. Excitatory pyramidal neurons and inhibitory interneurons together form long range and
local networks which invest different cortical areas with the capacity to perform highly distinctive
tasks such as visual encoding and mediation of executive functions. An influential idea has been
that prototypical, generalizable pyramidal neurons comprise the basic building blocks of canonical
cortical circuits or minicolumns which, once fully understood, can be extrapolated from one brain
area or species to another (e.g., Douglas and Martin, 2004, 2007a,b). The view that individual
neuron properties are conserved in different species and cortical areas has arisen from the existence
of certain regularities in their basic design, the connections they have and the circuits they comprise,
and it has been suggested that generalizable themes may allow for compression of connectomics
data (in DeFelipe, 2015; DeFelipe et al., 2016).

The advent of large-scale brain mapping initiatives such as the Human Brain Project and the
BRAIN Initiative highlight the need for ascertaining which, if any, data on the fundamental features
of neurons can be extrapolated from one cortical area to another and from the rodent to the primate
brain. In the attempt to understand an entity as vastly complex as the mammalian neocortex,
simplification and a reductionist approach is, for the time being, unavoidable. The goal is to identify
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the smallest number of variables that will still allow for
biologically realistic neuronal, network, and areal behavior in
brain models; in other words, to be “simple but not too simple”
(DeFelipe, 2015; DeFelipe et al., 2016). The degree of detail about
individual neuron structure and function required for modeling
species-specific cortical network functions is controversial (e.g.,
Kupferschmidt, 2015), though this depends on the complexity
of population behaviors being modeled (reviews: Sporns, 2014;
Yuste, 2015).

Much of what is known about pyramidal neuron structure and
function has been derived from laboratory rat andmouse primary
sensory cortices, and these data form the basis of large scale
brain mapping initiatives (e.g., Human Brain Project, Allen Cell
Types Database) and constrain realistic models directed toward
elucidating cortical network mechanisms (Egger et al., 2014;
Markram et al., 2015). Gaining a thorough understanding of
similarities and differences in neurons in different cortical areas
(e.g., primary sensory vs. association) in the mouse, and between
the mouse and primates, is thus a high priority. Specifically, the
degree to which mouse and primate neurons are similar or differ
has profound relevance for the generalizability of brain maps
from the mouse to the primate and for the degree to which
information from mouse models of human brain disorders can
or cannot be translated to non-human primates and ultimately to
human beings.

STRUCTURE-FUNCTION RELATIONSHIPS
IN PYRAMIDAL NEURONS- GENERAL
THEMES

Cortical pyramidal neuronal processes are present in each of
the 6 neocortical layers, with somata typically localized to layers
2–6 (except in layer 4c of the primary visual cortex, which
is comprised exclusively of spiny stellate cells). The somata
of pyramidal neurons are typically triangular, with a broad
base from which a single axon and a skirt of basilar dendrites
emanate and an apex from which, most typically, a single apical
trunk projects. The apical dendrite has three compartments –
a main trunk, oblique branches, a tuft that ramifies in layer
1- each of which possesses unique structural, connectional, and
functional characteristics which broaden the dynamic range of
signal integration by the apical dendritic arbor as a whole.
The different dendritic compartments receive and integrate
distinct presynaptic excitatory and inhibitory inputs and possess
distinct passive and active signal filtering and boosting capacities
(Larkum et al., 2001, 2009; London and Hausser, 2005; Losonczy
and Magee, 2006; Losonczy et al., 2008; reviews: Spruston,
2008; Kubota et al., 2015, 2016). Differences in the lengths,
diameters, and branching pattern of the dendritic arbor confer
significant variability in cable properties and therefore the spatial
distribution of electrical signals and degree of summation of
synaptic inputs, which determine the temporal pattern of both
forward and backward propagating action potentials (Mainen

Abbreviations: sp, spine; asym, asymmetric (excitatory) synapse; PSD,

postsynaptic density; Rn, input resistance; FR, firing rate; Aps, action potentials;

sEPSC, spontaneous excitatory synaptic current; freq, frequency; amp- amplitude.

and Sejnowski, 1996; Koch and Segev, 2000; Euler and Denk,
2001; Vetter et al., 2001; Krichmar et al., 2002; Ascoli, 2003;
reviews: Stuart et al., 1997; Waters et al., 2005). Thus, by virtue
of their different somatodendritic compartments, pyramidal
neurons act as coincidence detectors possessing a wide dynamic
range for integration of temporally and spatially unique synaptic
signals. Computational modeling studies suggest that even
minor differences in branching characteristics can exert a major
influence on signal processing by neurons. For example, even
modest variations in branch point angles can transform the
electrical coupling between oblique dendrites and themain apical
shaft dendrite from fully coupled to fully compartmentalized
(Ferrante et al., 2013).

Integration of synaptic inputs is also significantly shaped by
active properties, including the number and distribution of a
wide variety of transmembrane ion channels (reviews: Migliore
and Shepherd, 2002; Magee and Johnston, 2005; Johnston and
Narayanan, 2008). Over 20 different types of sodium, calcium,
and potassium channels are distributed -some uniformly and
some non-uniformly- across a given dendrite and confer distinct
boosting and/or dampening of local signals (reviews: Migliore
and Shepherd, 2002; Magee and Johnston, 2005; Johnston and
Narayanan, 2008; Nusser, 2012). The complex interplay of
intrinsic ionic and synaptic conductances with passive properties
determined by dendritic morphology can effectively alter the
cable properties of the dendritic tree (Segev and London, 2000;
Bekkers and Häusser, 2007; review: Nusser, 2012) resulting in a
variable and finely-tunable integrative and signaling capacity in
pyramidal neurons.

Dendritic spines -principal recipients of glutamatergic
synapses- also play a key role in the electrical and biochemical
signaling in dendrites (reviews: Matus and Shepherd, 2000;
Nimchinsky et al., 2002; Kasai et al., 2003; Bourne and Harris,
2008). While there is a continuum of spine morphology at
steady state, and morphology can vary dynamically in response
to synaptic activity (Lendvai et al., 2000; Zuo et al., 2005; for
review: Lüscher et al., 2000; Wefelmeyer et al., 2016), spines
can be broadly classified as being “thin,” “stubby,” “mushroom,”
or “filopodia” (review: Bourne and Harris, 2008). Just as with
dendrites, spine structural properties underlie functional
physiological signaling; thus spine and synapse structure is
largely determinative of the strength, stability and function
of excitatory glutamatergic synapses (Tong and Jahr, 1994;
Baude et al., 1995; Murthy et al., 1997, 2001; Nusser et al.,
1998; Matsuzaki et al., 2001; Li et al., 2005; Germuska et al.,
2006). Thus, quantification of the distribution of spine subtypes
as well as of synapses on pyramidal neurons is essential for
understanding the integrative capacities of these neurons in
distinct brain areas and species.

L3 PYRAMIDAL NEURON MORPHOLOGY
VARIES DEPENDING ON BRAIN AREA AND
SPECIES

Dendritic arbor size and spine density on pyramidal neurons
differ markedly across functionally distinct cortical areas in the
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rhesus monkey and the human brain (Cajal SRy, 1894, 1995;
Conel, 1941, 1967; DeFelipe et al., 2002; Jacobs, 2002; Elston,
2003; Elston and Fujita, 2014; Mohan et al., 2015). In the rhesus
monkey, the size, and complexity of the dendritic arbors of L3
pyramidal neurons increases dramatically from primary visual
cortex (V1) to higher-order lateral prefrontal cortex, and this
increase in overall size is accompanied by a significantly higher
spine density (Elston, 2000, 2002, 2003; Elston et al., 2001;
Amatrudo et al., 2012). In addition to this caudal to rostral
gradient observed in the primate, pyramidal neurons in some
analogous cortical areas increase in size or “scale” from the rodent
to the macaque (Elston and DeFelipe, 2002; Elston and Zeitsch,
2005; Ballesteros-Yanez et al., 2006; Elston, 2007;Wen et al., 2009;
Elston and Manger, 2014; reviews: Wittenberg and Wang, 2008;
DeFelipe, 2011).

To gain a deeper understanding of comparative
morphological features of cortical neurons in rodents and
primates, as well as their functional relevance, we have used
in vitro whole-cell patch-clamp recordings and cell filling in a
series of systematic studies to characterize the detailed structural,
neuro-chemical and functional properties of L3 pyramidal
neurons in the primary visual and frontal association cortices
of mice and of rhesus monkeys (Amatrudo et al., 2012; Luebke
et al., 2015; Medalla and Luebke, 2015; Gilman et al., 2016;
Hsu et al., in press). A unique feature of these studies, which
are summarized below, is that neurons were assessed both
morphologically and physiologically at high resolution and in an
identical manner across different brain areas in the two species
allowing direct and comprehensive comparisons.

L3 PYRAMIDAL NEURONS IN PRIMARY
VISUAL AND FRONTAL ASSOCIATION
AREAS IN THE RHESUS MONKEY AND IN
THE MOUSE

Rhesus Monkey
L3 pyramidal neurons in V1 and LPFC of the rhesus monkey
are highly distinctive across a broad spectrum of structural
and functional properties (Elston, 2000, 2002; Elston et al.,
2001; Amatrudo et al., 2012; Zaitsev et al., 2012; Medalla
and Luebke, 2015; Gilman et al., 2016; Hsu et al., in press).
Most prominently, the dendritic arbors of LPFC neurons are
on average 2.5x larger than those of V1 neurons and are
also significantly more complex, with twice as many branch
points (Figure 1; Table 1). The smaller size of V1 neurons
is related to a higher input resistance, lower rheobase and
higher evoked action potential firing rates compared to LPFC
neurons (Amatrudo et al., 2012; Table 1). Further, the mean
number and mean density of dendritic spines are ∼5-fold
and ∼2-fold higher, respectively, on monkey LPFC than on
V1 neurons (Elston and Rosa, 1997; Elston, 2003; Amatrudo
et al., 2012; Medalla and Luebke, 2015; Table 1). Interestingly
however the numeric density of asymmetric excitatory synapses
in the layer 2/3 neuropil of these two areas does not differ
(Hsu et al., in press). These apparently incongruous findings
can be explained by the fact that the density of neurons in V1

(and hence the density of synapses) is significantly higher than
in LPFC in the monkey. Electron microscopic assessment of
excitatory synapse ultrastructure in layer 2/3 neuropil reveal that
presynaptic boutons and postsynaptic densities of axospinous
synapses are significantly larger in monkey LPFC compared to
those in V1. It is of key functional significance that there is also a
higher proportion of large perforated synapses in LPFC neuropil
(Figure 1; Table 1) since this feature of postsynaptic densities is
associated with long-term potentiation of glutamatergic synaptic
responses (review: Lüscher et al., 2000; Wefelmeyer et al., 2016).
The existence of larger synapses in LPFC, together with the
much higher density of spines, likely provide the structural
underpinning of the significantly larger and more frequent
synaptic currents –that is, enhanced synaptic efficacy- seen in
LPFC compared to V1 with whole-cell patch-clamp recordings
(Amatrudo et al., 2012; Medalla and Luebke, 2015; Table 1).

Mouse
Whether, there is a homolog for the primate LPFC in the mouse
or rat has been a matter of some discussion and debate (Preuss,
1995; Uylings et al., 2003; Kolb, 2007; Wise, 2008; Van De
Werd et al., 2010; Barbas, 2015). The mouse cortical area that is
arguably the closest anatomical analog is the dorsomedial frontal
cortex (including area FR2) which receives dense inputs from the
mediodorsal nucleus of the thalamus (Guldin et al., 1981; Van
De Werd et al., 2010) just as the LPFC of the primate does. In
marked contrast to the significant differences in L3 pyramidal
neurons observed between these two areas in the rhesus monkey,
L3 pyramidal neurons in the mouse V1 and FC (FR2) exhibit
very modest differences in dendritic structural properties -V1
neurons being slightly smaller than FC- and are nearly identical
with regard to physiological features assessed in vitro (Table 1).
In the mouse there is also no areal difference in the number
or density of dendritic spines on V1 and FC L3 pyramidal
neurons or in the ultrastructural properties of excitatory synapses
in the two areas. Predictably, excitatory synaptic currents are
similarly indistinguishable between mouse FC and V1 neurons
by marked contrast to the major differences in these currents
between monkey LPFC and V1 (Table 1).

STRUCTURE OF NEURONS IN PRIMARY
VISUAL AND FRONTAL ASSOCIATION
AREAS IN THE MOUSE COMPARED TO
THE RHESUS MONKEY

While frontal cortical L3 pyramidal neurons scale significantly
in size from the mouse to the monkey, no such scaling exists
with L3 pyramidal neurons in V1 (Gilman et al., 2016). That
dendritic scaling occurs in frontal but not visual L3 pyramidal
neurons provides interesting insight into potentially differential
capabilities of these neurons in the two species. As frontal
cortical pyramidal neurons increase in size across phylogeny, the
opportunity for convergence of diverse inputs is increased, as is
their integrative and computational dynamic range. As discussed
above, integration and filtering of input signals occurs as a
function of number of dendritic branch points and both diameter

Frontiers in Neuroanatomy | www.frontiersin.org 3 March 2017 | Volume 11 | Article 11

http://www.frontiersin.org/Neuroanatomy
http://www.frontiersin.org
http://www.frontiersin.org/Neuroanatomy/archive


Luebke Comparative Features of Pyramidal Neurons

FIGURE 1 | Pyramidal neurons in V1 and FC (FR2) in the mouse (top panels) and V1 and LPFC of the rhesus monkey (bottom panels). (A) 4x

photomicrographs of Nissl-stained coronal sections of mouse V1, mouse FC, rhesus monkey V1, rhesus monkey LPFC. (B) Representative reconstructions of L3

pyramidal neurons (filled with biocytin during recordings and then processed with Alexa-streptavidin and imaged using confocal microscopy) from mouse V1, mouse

FC, rhesus monkey V1, and rhesus monkey LPFC (ventral bank of the principal sulcus). Note the significantly larger size of the layer 3 pyramdial neuron from monkey

LPFC compared to monkey V1 while these neurons do not differ in size in the mouse. (C) 3D reconstructions of representative axo-spinous perforted synapses in

neuropil of mouse V1, mouse FC, rhesus monkey V1, and rhesus monkey LPFC. Spines are shown in green, boutons in blue, and perforated synapses in purple. Note

the significantly larger perforated synapse as well as spine and bouton in monkey LPFC compared to monkey V1; these ultrastructural features do not differ in size in

the two cortical areas in the mouse. Scale bars = A: 1 cm; B: 100 µm; C: 0.5 µm. (A,B) adapted from Gilman et al. (2016) and (C) from Hsu et al. (in press).

and the geometric features –notably length and diameter- of
dendritic segments (Rall, 1962, 1964). Scaling and cable theory
predict that monkey LPFC neurons filter input signals to a
greater extent than mouse FC neurons due to their greater
dendritic length and equivalent dendritic diameters. Consistent
with this, there is a higher frequency of spontaneous EPSCs in
mouse FC vs. monkey LPFC (Gilman et al., 2016). On the other
hand, action potential firing and other intrinsic properties are
largely preserved between mouse and monkey frontal neurons,
suggesting significant roles for non-passive properties (e.g., active

conductances and synaptic inputs; Nusser, 2012) that should be
examined in future studies. V1 neurons in the monkey possess
the lowest number and density of spines while spine densities
do not significantly differ between monkey LPFC and mouse
FC and mouse V1 neurons, though given their much smaller
size, the mean numbers of spines on pyramidal neurons in the
mouse is much lower than in monkey LPFC (Gilman et al.,
2016). The ultrastructural properties of excitatory synapses vary
across species in that the L2-3 neuropil of monkey LPFC contains
a significantly higher proportion of perforated postsynaptic
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TABLE 1 | Comparative structural and functional features of neurons and excitatory synapses in C57/BL6 mouse and rhesus monkey (Macaca mulatta)

V1 and FC/LPFC.

MouseV1 MouseFC MonkeyV1 MonkeyLPFC Mouse Monkey Mouse vs. Monkey Mouse vs. Monkey

Mean SEM Mean SEM Mean SEM Mean SEM Vl vs.

FC

Vl vs.

LPFC

Vl FC and LPFC

Soma Diameter (µm) 14.9 0.4 15.8 0.5 12.7 0.5 17.3 0.9 ns p < 0.001 p < 0.001 ns

Dendritic Length (µm) 4,291 261 5,034 241 3,188 226 7,631 919 ns p < 0.01 ns p < 0.01

# Branch Points 44 3.5 49.3 2.9 32 2.6 51.3 5.6 ns p < 0.01 ns ns

Spine Number 4,377 302 4,819 534 1,884 216 10,018 2,062 ns p < 0.001 p < 0.01 p < 0.01

Spine Density (sp/µm) 0.99 0.08 0.95 0.07 0.6 0.03 1.12 0.18 ns p < 0.001 p < 0.05 ns

Synapse Density (Nv × 106/mm3)

All Asym 0.93 0.08 1.05 0.13 0.48 0.06 0.45 0.04 ns ns p < 0.0001 p < 0.0001

Asym AxoSp 0.86 0.09 0.99 0.11 0.37 0.05 0.37 0.04 ns ns p < 0.0001 p < 0.0001

Asym AxoDen 0.07 0.02 0.06 0.02 0.12 0.01 0.08 0.00 ns p < 0.043 p < 0.018 ns

% perforated synapses 23.3 0.4 19.5 4.0 20.2 4.7 34.8 1.5 ns p < 0.003 ns p < 0.004

PSD area (µm3)

All 0.084 0.008 0.075 0.020 0.082 0.010 0.116 0.009 ns p < 0.028 ns p < 0.017

Non-perforated 0.061 0.006 0.050 0.011 0.075 0.011 0.071 0.006 ns ns ns ns

Perforated 0.152 0.021 0.160 0.030 0.113 0.013 0.199 O.018 ns p < 0.003 ns ns

Spine volume (µm3)

All 0.069 0.020 0.048 0.016 0.066 0.009 0.102 0.006 ns p < 0.021 ns p < 0.004

Non-perforated 0.050 0.012 0.034 0.010 0.061 0.008 0.061 0.005 ns ns ns p < 0.025

Perforated 0.128 0.033 0.107 0.023 0.086 0.011 0.181 0.008 ns p < 0.001 ns p < 0.007

Electrophysiology

Rn(MOhm) 229 12 215 17 224 21 102 9 ns p < 0.001 ns p < 0.001

Rheobase (pA) 96.7 7.6 81.9 7 80.2 8.3 144.7 15.8 ns p < 0.05 ns p < 0.05

80 pA FR (APs/sec) 5.6 0.7 5.4 1.3 14.9 1.8 5.4 1.8 ns p < 0.001 p < 0.001 ns

sEPSC Freq (Hz) 4.6 0.4 3.3 0.2 1.2 0.2 2.9 0.5 ns p < 0.05 p < 0.01 p < 0.01

sEPSC Amp (pA) 13.5 1.5 9.8 0.5 7.3 0.4 14 2.1 ns p < 0.01 ns ns

sEPSC Rise (ms) 1.75 0.11 1.61 0.07 1.22 0.1 1.85 0.21 ns p < 0.01 ns ns

sEPSC Decay (ms) 7.7 0.34 6.62 0.18 4.63 0.5 7.77 0.69 ns p < 0.01 ns ns

Light microscopy level morphometric data on somata, dendrites, and spines and electrophysiology data are compiled from Amatrudo et al. (2012), Luebke et al. (2015), Medalla and

Luebke (2015) and Gilman et al. (2016). Electron microscopy level data on synapse density and size are compiled from Medalla and Luebke (2015) and Hsu et al. (in press). Numbers

of subjects and cells analyzed for each variable are provided in these original citations.

densities and, on average, larger spine volume compared to L2-3
neuropil of mouse FC. Finally, both presynaptic and postsynaptic
entities are significantly smaller in the mouse FC than in the
monkey LPFC.

IMPLICATIONS FOR SPECIES-SPECIFIC
CORTICAL AREAL SPECIALIZATION

L3 pyramidal neurons in mouse FC and V1 are virtually identical
in their dendritic, spine, and excitatory synapse structure as well
as in their physiological properties. These findings are in line with
the high degree of cytoarchitectural and functional homogeneity
across mouse cortical areas, compared to the highly specialized
cortical areas of the primate brain. The similarity in the structural
and biophysical properties of mouse V1 and FC neurons suggests
that relatively similar temporal signaling dynamics may exist
within these areas. In mice, both the primary sensory area V1
and the multimodal FC contain cellular and synaptic features

consistent with a highly excitable circuit, being comprised of
small and electrically compact output neurons, and abundant
spines with relatively small excitatory synapses. Thus, in broad
terms mouse cortical neurons (and presumably the dynamic
networks of which they are a part) are well suited for rapid
synaptic transmission with a high degree of input-output fidelity
but relatively low dynamic range (review: Olshausen and Field,
2004; Vogels et al., 2005; Panzeri et al., 2010).

In contrast to the small and much less differentiated rodent
neocortex, a larger and more specialized brain, such as that
of the rhesus monkey, requires functionally distinct cortical
areas to have different levels of excitability, filtering, and
integration of inputs (Luebke et al., 2010; Barbas, 2015). The
preponderance of morphological and electrophysiological data
predict that in the monkey, synaptic integration at the cellular
and network levels differ between V1, a primary sensory area
for unimodal representation, and LPFC, a high-order area for
complex multimodal processing (review: Schummers et al.,
2004; Fuster, 2015). V1 neurons are small, compact and highly
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excitable, properties that enable them to respond optimally to
small, fast synaptic inputs and for building a network with a
limited dynamic range but well-suited for signal transformations
with relatively high input-output fidelity (review: Olshausen and
Field, 2004; Vogels et al., 2005; Panzeri et al., 2010). Compared
to the primary sensory V1, the multimodal association LPFC
in monkey is comprised of cellular and synaptic features—
large and electrotonically complex L3 output neurons with
many spines- consistent with more powerful and longer-lasting
inputs. These features are optimal for facilitating sustained
activation, coincidence detection, and spike-timing-dependent
plasticity, all important for integrative functions such as decision
making and integration of sensorimotor information (review:
Constantinidis and Wang, 2004; Sjostrom et al., 2008). The
function of the LPFC is to integrate multimodal information
from a wide array of cortical and subcortical afferents in order to
perform sophisticated executive tasks (review: Miller and Cohen,
2001; Luebke et al., 2010). A relatively larger dynamic range
of integration of information conferred by larger neurons with
more numerous synapses is required in a high-order area such as
LPFC, while it would be disadvantageous in V1 where more rapid
signal transformations are required.

CONCLUSIONS

In terms of their fundamental structural properties -dendrite,
spine, and synapse morphology- there are some striking and
many subtle differences between L3 pyramidal neurons in the
mouse and the rhesus monkey and between cortical areas in
the rhesus monkey but not in the mouse. In the mouse, where
L3 pyramidal neurons are structurally the same in these two
brain areas, a uniform prototypical cortical pyramidal neuron
may be generalizable from one area to another, at least in terms
of size, dendritic structure, and intrinsic membrane, synaptic,
and action potential firing properties. In the rhesus monkey
such a prototypical neuron does not exist- cortical areas differ
markedly from each other at the individual pyramidal cell
and network levels. Data such as those summarized here are

important for understanding how signaling within neuronal
networks differs between rodents and primates and for how
these neurons and networks may contribute to species-specific
functional capacities. These findings however do not answer
the question of which, if any, of these particular differences
are necessary and sufficient for differentiating neuronal network
behavior in different brain areas and species. The answer
to this question remains to be determined and is difficult
to predict, particularly in light of in silico predictions that
neuronal networks display emergent behavior that may not
depend on details of individual neuron structure and function
(review: Yuste, 2015). For now, since we do not know which
of myriad details about individual neurons are key for network
function, the tendency for premature simplification should be
avoided (DeFelipe et al., 2016). Our understanding of neuronal
diversity in all of its complexity is nascent, but thanks to
advances in molecular, genetic and neuroanatomical tools we
are on the verge of a new era in which the great diversity of

neuronal types will be cataloged and lead to more nuanced and
comprehensive insights into the mechanisms of cortical areal
specialization.
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