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Pharmacological studies implicate the blockade of adenosine receptorsas an effective
strategy for reducing Parkinson’s disease (PD) symptoms. The objective of this study
is to elucidate the possible protective effects of ZM241385 and 8-cyclopentyl-1,
3-dipropylxanthine, two selective A2A and A1 receptor antagonists, on a rotenone
rat model of PD. Rats were split into four groups: vehicle control (1 ml/kg/48 h),
rotenone (1.5 mg/kg/48 h, s.c.), ZM241385 (3.3 mg/kg/day, i.p) and 8-cyclopentyl-1,
3-dipropylxanthine (5 mg/kg/day, i.p). After that, animals were subjected to behavioral
(stride length and grid walking) and biochemical (measuring concentration of dopamine
levels using high performance liquid chromatography, HPLC). In the rotenone group,
rats displayed a reduced motor activity and disturbed movement coordination in the
behavioral tests and a decreased dopamine concentration as foundby HPLC. The effect
of rotenone was partially prevented in the ZM241385 group, but not with 8-cyclopentyl-
1,3-dipropylxanthine administration. The administration of ZM241385 improved motor
function and movement coordination (partial increase of stride length and partial
decrease in the number of foot slips) and an increase in dopamine concentration
in the rotenone-injected rats. However, the 8-cyclopentyl-1,3-dipropylxanthine and
rotenone groups were not significantly different. These results indicate that selective A2A

receptor blockade by ZM241385, but not A1 receptor blockadeby 8-cyclopentyl-1,3-
dipropylxanthine, may treat PD motor symptoms. This reinforces the potential use of A2A

receptor antagonists as a treatment strategy for PD patients.
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INTRODUCTION

Parkinson’s disease (PD) is a progressive neurodegenerative disorder characterized by motor
dysfunction (Kramberger et al., 2010). The loss of dopaminergic (DA) neurons is responsible
for the development of PD motor symptoms (Liu, 2006). DA therapies, such as L-DOPA
and dopamine agonists, either have a short half-life or may induce psychiatric side effects
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(Olanow et al., 2004; Moustafa et al., 2014). These issues raise the
urgent need for an alternative form of therapeutic intervention.

Rotenone is a neurotoxin that replicates most of PD motor
symptoms and leads toa loss of nigrostriatal DA neurons
(Thiffault et al., 2000; von Wrangel et al., 2015). In this study, we
used a rotenone model, as done in prior studies (Zaitone et al.,
2012; Samim et al., 2014).

Adenosine is a neuromodulator in the striatum (Schiffmann
et al., 2007), acting through four subtypes of G-protein coupled
receptors, A1, A2A, A2B and A3 receptors (Fredholm, 2010). A2A
receptors are co-localized with dopamine D2 receptors inthe
indirect pathway of the basal ganglia (Morelli et al., 2007).
The blocking of A2A receptors causes locomotor activation by
lowering the inhibitory function of the indirect pathway of the
basal ganglia, which is similar to the effects of blocking dopamine
D2 receptors activation (Jenner, 2014; Pinna et al., 2014). Thus,
adenosine A2A receptor antagonists are considered a promising
strategy to treat PD (Schwarzschild et al., 2006; Pinna et al., 2014).

The adenosine A1 receptors are localized in the striatum
presynaptically of dopamine axon terminals where they
inhibit dopamine release (Borycz et al., 2007). ZM241385(4-
(2-[7-amino-2-(2-furyl)[1,2,4]-triazolo[2,3-a][1,3,5]triazin-5-yl
amino]ethyl) phenol) is an antagonist with high affinity at the
adenosine A2A receptor subtype in the brain (Cunha et al., 1997).

In this study, we test the protective effects of 8-cyclopentyl-
1,3-dipropylxanthine as a selective A1 receptor antagonist and
ZM241385 as a selective A2A receptor antagonist in a rat model
of PD induced by rotenone.

MATERIALS AND METHODS

Animals
Thirty two adult male albino rats weighing 200 ± 20 g were
used for the current study. Animals were purchased from the
National Research Center for Experimental Animals, Cairo,
Egypt. Animals were housed under standardized conditions away
from any stressful stimuli with normal day/night cycle, 25 ±
2◦C temperature, in plastic polyethelyne cages with free access
to food and water and were permitted for acclimatization for
1 week before starting the study. The behavioral tests were
conducted after rotenone injections at 4 p.m. to minimize
circadian influence on behavior. All experimental protocols were
approved by the Institutional Animal Care andUse Committee at
Suez Canal University. All efforts were exerted to reduce animal
suffering and to minimize the number of animals used.

Drugs
ZM241385 and 8-cyclopentyl-1,3-dipropylxanthine (DPCPX)
were purchased from Sigma-Aldrich (St. Louis, MO, USA) and
dissolved in saline solution (Chen et al., 2001). ZM241385 or
DPCPX were administered intraperitoneally (IP) at a dose of 3.3
or 5 mg/kg/day, respectively, for 12 consecutive days in a volume
of 1 ml/kg (Chen et al., 2001).

Rotenone was purchased from Sigma-Aldrich (St. Louis, MO,
USA) and dissolved in 1:1 (v/v) dimethylsulfoxide (DMSO)
and polyethyleneglycol (PEG-300; Thiffault et al., 2000). Rats

received six subcutaneous injections of rotenone (1.5mg/kg/48 h,
s.c.) in a volume of 1 ml/kg. The rotenone-treated animals
showed signs of akinesia and rigidity starting from the third
injection (Thiffault et al., 2000).

ZM241385 and 8-cyclopentyl-1,3-dipropylxanthine (DPCPX)
were purchased from Sigma-Aldrich (St. Louis, MO, USA) and
dissolved in a saline solution (Chen et al., 2001). ZM241385 or
DPCPX were administered IP at a dose of 3.3 or 5 mg/kg/day,
respectively, for 12 consecutive days in a volume of 1 ml/kg
(Chen et al., 2001).

Study Design
Rats were randomly divided into four groups, each has
eight animals: (a) (vehicle-control group): rats received six
intraperitoneal injections of the vehicle in a volume of 1 ml/kg;
(b) (rotenone group): rats received subcutaneous rotenone
(1.5 mg/kg/48 h) and received normal saline in a volume
of 1 ml/kg daily for 12 days; (c) (ZM241385-treated group):
10 min before rotenone injection, rats received daily doses
of intraperitoneal ZM241385 at a dose of 3.3 mg/kg daily
for 12 days; and (d) (8-cyclopentyl-1,3-dipropylxanthine-treated
group): 10 min before rotenone injection, rats received daily
doses of intraperitoneal 8-cyclopentyl-1,3-dipropylxanthine at a
dose of 5 mg/kg daily for 12 days.

Tasks and Functional Assessment
Rats were screened for motor impairment using the stride length
and grid walking tests.

Stride Length Quantitative Gait Analysis Test
(Fernagut et al., 2002)
Rats were habituated to the apparatus for 3 days before the
beginning of the experiment. The apparatus was composed of
an open field (60 × 60 × 40 cm) illuminated by a light, in
which a runway (4.5 cm wide, 42 cm long, borders 12 cm
height) was prepared to lead out into a dark wooden box
(20 × 17 × 10 cm). Stride length was measured by wetting
animal fore- and then hind-paws with black ink; animals were
then allowed to trot on a paper strip (4.5 cm wide, 40 cm
long) down the brightly lit runway towards the dark goal box.
First, the length of the forelimb stride was measured in all
animals, followed by the hind-limbs on a new strip of paper,
directly after drying of the forelimb inked paws. The manual
measurement of stride length was performed as the distance
between two paw-prints. The mean of the longest three of the
measured stride length (corresponding tomaximal velocity) were
measured in each run. We excluded paw-prints made at the
beginning (7 cm) and the end (7 cm) of the run due to velocity
changes. Any runs in which the rats stopped or made an obvious
decelerations observed by the experimenter were excluded from
analysis.

Grid Walking Test (Menet et al., 2003)
This test assesses the ability of accurate placing the forepaws
during spontaneous exploration of an elevated grid by calculating
the frequency of failure to accurately hold the rungs. Here, rats
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were placed on a wire grid (330mm in diameter with 15× 15mm
grid squares) and allowed to freely move for 3 min. The rats
were videotaped and subsequently an experimenter blinded to
the treatment group scored the number of foot slips in the first
50 steps, with the left and right fore- and hind-paws. A foot slip
was recorded either when the paw completely fails to hold a rung,
thus the limb dropped in between the rungs, or when the paw
was accurately placed on the rung but fell during weight bearing.
No pre-training of animals was required but they were put on the
grid twice prior to injection for habituation and to obtain baseline
scores.

Brain Tissue Preparation for Measuring
Dopamine Levels in the Midbrain
At 4 p.m. of the following day (24 h after the last assessment
of motor performance), rats were anesthetized by injection
of thiopental sodium (30 mg/kg, intraperitoneal; Flecknell,
1993) and sacrificed by decapitation. Their brains were quickly
dissected, the midbrain was surgically dissected and washed with
ice-cold saline, and then weighed and rapidly frozen (−80◦C of
liquid nitrogen) until used for determination of dopamine by
high performance liquid chromatography (HPLC) according to
the method of Hussein et al. (2012). Frozen tissues were cut
into small pieces and homogenized in phosphate buffer (pH 7.4),
then centrifuged at 4000 rpm for 15 min at 4◦C to spin down
tissue fragments, nuclei and mitochondria. The supernatant was
removed and filtered through a 0.2 micrometer teflon syringe
filter for HPLC analysis. The measurement of dopamine levels
was carried out by using a HPLC system, Agilent technologies
1100 series, equipped with an aquaternary pump (Quat pump,
G131A model). The separation of dopamine was carried out

FIGURE 1 | Stride length test in the experimental groups. The figure
shows forelimbs and hindlimbs stride length (cm) in the experimental groups.
Rotenone induced a significant difference in the mean stride length between
the forelimbs and hindlimbs, while ZM241385 improved it significantly and
8-cyclopentyl-1,3-dipropylxanthine did not improve it compared to the
rotenone group. Data were expressed as mean ± SE, analyzed using one way
analysis of variance (ANOVA) followed by Bonferroni post hoc test, n = 8. ∗p <

0.05 compared to the vehicle-control group, #p < 0.05 compared to rotenone
group, $p< 0.05 compared to the ZM241385-treated group.

by means of ODS-reverse-phase column (c18, 25 × 0.46 cm
i.d. 5 µm). The mobile phase consists of 50 mM potassium
phosphate buffer/methanol 97/3 (v/v), pH 3.5 and was delivered
at flow rate of 1.5 ml/min. The substrates were detected by
UV at 270 nm. The injection volume was 20 microliter. Serial
dilutions of dopamine HPLC standard were injected, followed
by a determination of their peak areas. A linear standard
curve was drawn by plotting peak areas vs. the corresponding
concentrations. The concentration of samples was obtained from
Hussein et al. (2012).

Statistical Analysis
Data were expressed as mean ± SEM and analyzed using the
statistical package of social sciences (SPSS program, version
17, SPSS Inc., Chicago, IL, USA). The assessment of difference
of mean values among groups was conducted using one-way
analysis of variance (ANOVA) followed by Bonferroni’s multiple
comparisons test. p < 0.05 was considered significant.

RESULTS

Behavioral Results
Stride Length Quantitative Gait Analysis Test
Systemic administration of rotenone (1.5 mg/kg, s.c. every other
day, 6 doses) produced a significant difference between the
stride length of forelimbs and hindlimbs starting from the third
injection (Figure 1, p < 0.05). After the last injection, the mean
of longest three of the measured stride was (6.47 ± 0.213 cm) in
the in the rotenone group and (8.97 ± 0.60 cm) in the vehicle-
control group. Compared to rotenone, ZM241385 significantly
increased the stride length of forelimbs and hindlimbs of rats

FIGURE 2 | Grid walking test in the experimental groups. Here, we show
the number of foot slips in the experimental groups in the grid walking test.
Rotenone induced higher foot slip errors compared to vehicle-control group
starting from the third injection. The treatment with ZM241385 decreased the
number of foot slip errors compared to the rotenone group. Data were
expressed as mean ± SE, analyzed using one way ANOVA followed by
Bonferroni post hoc test. n = 8. ∗p < 0.05 compared to vehicle-control group,
#p < 0.05 compared to rotenone group, $p < 0.05, compared to the
ZM241385-treated group.
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FIGURE 3 | Dopamine levels in all four groups. Here, we show DA
concentration in the different experimental groups. The administration of
rotenone resulted in a significant decrease in DA levels, while ZM241385
increased DA levels, in comparison to the rotenone group. Data were
expressed as mean ± SE, analyzed using one way ANOVA followed by
Bonferroni post hoc test, n = 8. ∗p < 0.05 compared to the vehicle-treated
group, #p < 0.05 compared to the rotenone group, $p < 0.05 compared to
the ZM241385-treated group.

(8.6 ± 0.41 cm; Figure 1, p < 0.05), whereas 8-cyclopentyl-1,3-
dipropylxanthine was devoid of effects (6.6 ± 0.17 cm; Figure 1,
p > 0.05).

Grid Walking Test
The number of foot slips in the first 50 steps was measured.
In the present study, grid walking test was performed after
each injection with either vehicle (group 1) or rotenone (groups
2, 3 and 4). when compared to the vehicle-control group
(4 ± 0.001), rotenone significantly (p < 0.05) increased the
number of foot slips beginning from the third injection (13.5 ±
0.95) throughout the study. Compared to the rotenone group,
ZM241385 decreased in a sustained and significant manner the
number of foot slips (4± 0.5 at third injection), whereas DPCPX
was devoid of effects (13 ± 0.57 at third injection) compared to
rotenone group (Figure 2, p > 0.05).

Dopamine Level Analysis Results
Dopamine levelsin the midbrain in the vehicle-control group
were 3.15± 0.02µg/g wet tissue and were significantly (p< 0.05)
reduced to 2.16 ± 0.01 µg/g wet tissue by rotenone. ZM241385
significantly (p < 0.05) attenuated the impact of rotenone on
dopamine levels in the midbrain (2.87 ± 0.02 µg/g wet tissue),

whereas DPCPX was devoid of effects (2.2 ± 0.081 µg/g wet
tissue; Figure 3, p > 0.05).

DISCUSSION

Our results demonstrate that rotenone-treated rats exhibited
motor deficits in the stride length and grid walking tests, as
described by others (Hisahara and Shimohama, 2010; Li et al.,
2012; von Wrangel et al., 2015), as well as lower dopamine levels
in the midbrain (Höglinger et al., 2003; Sharma and Nehru,
2013), supporting its validity as a PD model. Notably, the A2AR
antagonist ZM241385 attenuated all these alterations induced
by rotenone, whereas the A1 receptor antagonist, DPCPX was
devoid of effects. These findings, using a different animal model
of PD and different behavioral tests of motor function, re-enforce
the benefits afforded by A2A receptor blockade in different tests
and animal models of PD (reviewed in Schwarzschild et al., 2006;
Pinna et al., 2014), which are not mimicked by A1 receptor
antagonists (Chen et al., 2001). This efficiency of A2A receptors
to control motor dysfunction in PD, probably result from the
ability of A2AR to control a series of concurrent processes,
such as the release of glutamate from corticostriatal terminals
that engage striatal circuits (Quiroz et al., 2009), the processing
of information by medium spiny striatal neurons (Higley and
Sabatini, 2010; Shen et al., 2013), the control microglia reactivity
and neuroinflammation (Gyoneva et al., 2014) and the astrocytic
support of neuronal function (Matos et al., 2015), the control the
trophic support of DA terminal in the striatum (Gomes et al.,
2009), the loss of nerve terminals and apoptosis of neurons (Silva
et al., 2007), as well as the aggregation of α-synuclein (Ferreira
et al., 2015).

Our study is not without limitations. First, future
histopathological studies should investigate the effects of
A2A receptors blockade on the levels of dopamine metabolites
to confirm or disconfirm our findings. Second, additional
experimental studies are needed to explore the possible
preventive and curative molecular mechanisms of adenosine
A2A receptors antagonists. Also, additional long-term studies
with a large sample size should be carried out for further
assessment of the effects of long-term duration of adenosine A2A
receptor antagonists on different PD models. Finally, as this is a
pharmacological study, it is assumed that our results are related
to adenosine antagonism, based on prior findings (Cunha et al.,
1997).
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