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The objective of this study was the estimation of the exposure over time to heavy metals
(cadmium, mercury, and lead) due to shellfish consumption in the Veneto Region, Italy.
Shellfish consumption was investigated by a food frequency consumption survey. Alto-
gether, 1949 households, stratified into the five most populated areas of theVeneto Region,
were involved in the study. Exposure estimation to heavy metals was carried out taking
into account the level of metal measured in samples of Manila clams (Ruditapes philip-
pinarum) and grooved carpet shell (Ruditapes decussatus), collected in the frame of the
monitoring activities of mollusk production areas of Veneto Region, between January 2007
and December 2012. A general high contribution of the considered shellfish to theTolerable
Weekly Intake was noticed in the case of cadmium, especially in 2011, when a consider-
able increase in cadmium intake was estimated. This was probably due to a heavy rainfall
event that triggered catastrophic flooding with high impact on shellfish capture areas in
November 2010.The results strongly emphasize the importance of dealing with food safety
in a holistic way, taking into account the potential impact of extraordinary natural events
on food chain contamination, in order to identify food hazards at an early stage, before
developing into a real risk for consumers.

Keywords: cadmium, shellfish, food safety, flooding, exposure

INTRODUCTION
Seafood has been acknowledged as an integral component of a well
balanced diet, providing a healthy source of energy, high quality
proteins, and a wide range of other important nutrients (1, 2). In
contrast to the potential health benefits of dietary seafood intake,
the chemical pollutants contained in these products have emerged
as an issue of concern, particularly for frequent consumers (3–6).

In this regard, heavy metal contamination is recognized as a
public health hazard because of the widespread diffusion of these
compounds in the environment, including the marine ecosystem
(7). Heavy metals can be accumulated by marine organisms due to
their presence in water and sediments or in the marine food chain
(8, 9). Thus, diets containing seafood represent the main route of
exposure to these elements in the general human population (3).

Heavy metals in aquatic systems can be naturally produced by
leaching from soil/rock to water, which usually produces low lev-
els, causing no serious deleterious effects on human health (10).
However, the pollution of marine environments is mainly due
to the development of human activities that result in direct or
indirect chemical release into the aquatic environment. In partic-
ular, it depends on the contaminant loads carried into the sea by
rivers and other watercourse basins, which drain areas of intense
urbanization, and on the direct input of municipal and industrial
waste (11).

Some heavy metals may transform into persistent metallic com-
pounds with high toxicity (12), which can be bioaccumulated in
organisms, concentrating in the food chain, and thus threaten-
ing human health (12). The toxicity of mercury, for example, is
proportional to its degree of organization, which makes it more
available for biota (13). In this context, biomonitoring based on
sampling and analysis of seafood can provide direct evidence
of alterations occurring in the ecosystem due to environmental
pollution (12).

Delivered contaminant loads can display a temporal variabil-
ity on the overall pollutant transfers to marine environments (14,
15) due to specific and time limited catastrophic events such as
calamitous flooding (16). In these cases, significant concerns exist
regarding the potential toxic hazards for food safety, due to the
increase of chemical contaminants levels in the marine environ-
ment with a consequent enhancement of pollutant accumulation
in seafood (17).

Measured concentrations of total heavy metals generally cor-
relate with amounts of suspended particulate matter, due to the
preferred association of metals with fine materials suspended in
the water column (18). Thus, the load of heavy metals increases in
relation to both discharge and suspended sediment transport.

A number of studies have demonstrated the role of flood events
in the delivery of chemical contaminants to the Venice lagoon from
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rivers (18–21). For some streams, the response in terms of trans-
port is strong, particularly for suspended particulate matter and
total heavy metals, and it has been estimated that one single day
of flood can equal the monthly load in normal flow conditions
(18). Moreover, the short time period that characterizes the load
delivery in floods could lead to potentially harmful effects in the
receiving lagoon ecosystem.

A global-scale monitoring program based on the “sentinel
organism concept” has been outlined that is capable of detect-
ing trends in concentrations of several marine contaminants.
Marine shellfish, being filter-feeding organisms known to accu-
mulate heavy metals, have proven to be ideal candidates (12, 22).
Several attributes make shellfish superior to other organisms for
environmental monitoring, including their wide geographical dis-
tribution and abundance in stable populations, their sedentary
habits, tolerance to environmental fluctuations, and to various
environmental contaminants, their very low-level metabolism of
organic contaminants, plus their being reasonably long-lived and
of suitable size (12).

The purpose of this study was to estimate the exposure over
time to heavy metals due to shellfish consumption in the Veneto
Region. The possible concerns for food safety are discussed in
the light of a recent catastrophic flooding event that involved the
north-east of Italy at the end of 2010.

MATERIALS AND METHODS
SHELLFISH CONSUMPTION SURVEY
Between December 2010 and May 2012, a food consumption sur-
vey was conducted on 1949 households stratified into the five
most populated areas of the Veneto Region (north-east of Italy)
corresponding to the provinces of Treviso, Padua,Verona,Vicenza,
and Venice. One healthy individual aged between 14 and 92 years,
per household, voluntarily participated in the food consumption
survey; a total of 1355 females and 594 males responded in the
study.

The questionnaire was divided into two main sections (23),
and is available on request to the authors. In the first part, infor-
mation on respondents’ characteristics (age, gender, involvement
in food purchasing, and cooking) was collected; in the second
part (17 items), called “nutritional safety,” information was col-
lected on the consumption frequency of a number of food items,
among which were shellfish and fish. Participants were asked to
answer the questions according to their specific habits and to spec-
ify the size of their shellfish servings by comparison with images
of three different serving sizes. Participants filled in the ques-
tionnaire autonomously, and self-reported responses were later
entered into an electronic database (Access 2009, Microsoft Corpo-
ration, Redmond, WA, USA). Each entry was validated comparing
the original questionnaires and the database records. Categorical
data were summarized as counts with percentages and continuous
data as averages with their relative standard deviation (SD). The
study was conducted according to the guidelines laid down in the
Declaration of Helsinki; written informed consent was obtained
from all participants.

EXPOSURE ASSESSMENT
The exposure estimation over time was carried out taking into
account the concentration of cadmium (Cd) measured in samples

of Manila clams (Ruditapes philippinarum) and grooved carpet
shell (Ruditapes decussatus) reared in the Venice lagoon and coastal
areas of the Veneto Region, North-eastern Italy. These two species
were chosen as representative of the lagoon’s shellfish production
and as significant in local dietary habits. Moreover, the Veneto
region is the primary national producer of Manila clams and Italy
is the leading European producer of this species.

SAMPLE COLLECTION
Shellfish sampling was performed between January 2007 and
December 2012 in the framework of the classification and mon-
itoring activities of mollusk production areas of Veneto region
(North-Eastern Mediterranean Italian coast,Adriatic Sea), in order
to determine levels of cadmium, mercury, and lead (Cd, Hg, and
Pb), as previously reported (24).

The number of shellfish samples analyzed from 2007 to 2012 in
order to check Cd, Hg, and Pb contamination levels are described
in Table 2.

EXPERIMENTAL ANALYSIS
Cd and Pb concentrations were determined by means of Elec-
trothermal Atomic Absorption Spectrometry (ETAAS) using an
M6 mkII Atomic Absorption Spectrometer (Thermo Electron,
Cambridge, UK) with D2 and Zeeman background correction,
equipped with a GF95 Graphite Furnace atomizer (Table 1).
For Hg determination, a Thermal Decomposition Amalgamation
and Atomic Absorption Spectrophotometry (TDA AAS) direct
analyzer FKV AMA254 (Altec Ltd., Prague, CZ) was employed.

Analytical methods details were previously described (24).

INTAKE ESTIMATION
Metal concentrations were expressed in milligrams per kilogram
of fresh weight of shellfish (mg/kg).

The Estimated Weekly Intake (EWI) was determined based
on the average concentration of metal in shellfish tissue and the
average weekly shellfish consumption rate, as declared by survey
respondents.

The EWI for adults was calculated as follows:

EWI = (Cm × IRw)/BW

where Cm is the average metal concentration in shellfish expressed
as milligrams per kilogram of fresh weight, IRw represents the
weekly average consumption of shellfish estimated as 150 g based
on the dietary intake survey, and BW is the body weight of a
hypothetical adult of 70 kg (25).

The health risk of Cd ingestion via consumption of shellfish was
assessed based on the target hazard quotient (THQ). The THQ is

Table 1 | Instrumental parameters for GFAAS determination.

Parameter Pb Cd

Wavelength (nm) 283.3 228.8

Slit (nm) 0.5 0.5

Measurement time (s) 3.0 3.0

Background correction D2 D2

Atomization (t°C) 1500 1300
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a ratio of determined dose of a pollutant to a reference dose level.
If the ratio is <1, the exposed population is unlikely to experience
obvious adverse effects. The method of estimating risk using THQ
was provided in the US EPA Region III risk based concentration
table (26) and it is described by the following equation:

THQ = (EFr × ED× FI×MC/RfD× BW× AT)× 0.001

where THQ is target hazard quotient; EFr is exposure frequency
(365 days/year); ED is the exposure duration; FI is shellfish inges-
tion (21.43 g/person/day); MC is Cd average concentration in
shellfish; RfD is the Cd oral reference dose (0.001 lg/g/day) (27, 28);
BW is the average body weight for an adult male (70 kg); and AT is
the averaging time for non-carcinogens (365 days/year× number
of exposure years).

In this study, the risk was estimated for the intake of only one
toxicant (Cd) via one food item (shellfish). Thus the equation was
simplified as follows:

THQ = (FI×MC/RfD× BW)× 0.001

SHELLFISH SAMPLING AREA MAPPING
Shellfish production areas were used to locate the analyzed shell-
fish. Cd concentration averages were calculated for each year
(2007–2012) and for each monitoring area in order to obtain
six maps representing the yearly Cd spatial distribution (data not
shown).

In order to compare Cd values observed, the irregularly shaped
monitoring areas were rasterized with a cell size of 140 m× 140 m.
The cell size corresponded to 1/4 of the smallest monitoring area
surface (29).

Map algebra was applied to calculate the raster map of the dif-
ference between the average of Cd values for the six monitored
years and the average values in the year 2011 (Figure 3).

The analysis was carried out using ESRI ArcInfo GIS software
(Environmental Systems Resource Institute, ESRI® ArcMapTM
10.0, Redlands, CA, USA)

RESULTS
Cd, Hg, AND Pb LEVELS IN SHELLFISH
Cd, Hg, and Pb concentrations in the shellfish, expressed as mil-
ligrams of element per kilogram of fresh weight (mg/kg), are
summarized in Table 2 where the descriptive statistics for annual
means are reported.

Heavy metal concentrations were largely below the maxi-
mum levels established by Regulation EC/1881/2006 (1, 0.5, and
1.5 mg/kg for Cd, Hg, and Pd, respectively) (30, 31). Moreover,
among the three heavy metals, Pb clearly accumulated to the
highest level in the shellfish (Table 2).

In addition, shellfish harvested in 2011 had higher average
levels of Cd compared with those harvested in the other inves-
tigated years (Table 2). Similarly, during 2011, shellfish contained
greater amounts of Pb than during the previous year (0.1801 and
0.1576 mg/kg in 2011 and 2010, respectively). On the contrary,
mean annual Hg levels in the shellfish did not significantly vary.

Figure 1 describes the concentrations of heavy metals in shell-
fish, measured monthly over time. Despite Pb and Hg levels being
unstable over time and clearly undergoing seasonal variations, the
range of these differences was constant over the investigated years.
On the contrary, Cd levels severely increased between January and
May 2011 (Figure 1).

ESTIMATES OF Cd INTAKE DUE TO SHELLFISH CONSUMPTION
In the current study, as Cd levels in the shellfish had shown such an
anomalous increase during early 2011 (see Cd, Hg, and Pb Levels
in Shellfish), the exposition analyses were focused on determining
the potential amounts of this heavy metal ingested by consumers,
and the causes of that increase.

A food consumption survey was conducted to estimate the
relative contribution of shellfish to the weekly Cd intake via food.

Demographic characteristics of the respondents are described
in Table 3. More than half of the respondents were females (69.5);
the median number of family members was 3.83. Respondents
were subdivided into the following four age groups: group 1, from
10 to 18 years (N = 734), group 2, from 19 to 40 years (N = 248),
group 3, from 41 to 65 years (N = 586), and group 4, from 66 to
94 years (N = 381).

As shown in Figure 2, the majority of respondents belonging
to each age group consumed less than one serving of shellfish per
week and the average size of the consumed shellfish servings was
estimated to be 150 g, based on the respondents’ replies.

The EWI of Cd for an average person weighing 70 kg is reported
in Table 4, taking into consideration the mean Cd concentrations
determined in this study and shellfish consumption rates reported
by respondents in the survey. The calculated intakes were further
compared with the corresponding tolerable weekly intake (TWI),
estimated to be 2.5 µg/kg of body weight (32). Even though the
EWI values for Cd due to shellfish consumption were always below

Table 2 | Cd, Hg, and Pb concentrations expressed as milligrams of element per kilogram of fresh weight (mg/kg).

Year N Cd (mg/Kg) Hg (mg/Kg) Pb (mg/Kg)

Mean Min Max SD Mean Min Max SD Mean Min Max SD

2007 164 0.0793 0.01 0.30 0.0528 0.0486 0.0019 0.17 0.0343 0.2405 0.02 1.18 0.1260

2008 162 0.0652 0.01 0.25 0.0408 0.0504 0.0100 0.19 0.0315 0.2338 0.04 0.89 0.1100

2009 196 0.0565 0.01 0.17 0.0343 0.0468 0.0100 0.13 0.0254 0.2249 0.05 0.64 0.1104

2010 167 0.0525 0.01 0.18 0.0325 0.0404 0.0100 0.11 0.0183 0.1576 0.03 0.51 0.0825

2011 136 0.0991 0.01 0.34 0.0616 0.0450 0.0019 0.12 0.0269 0.1801 0.04 0.49 0.0917

2012 122 0.0708 0.02 0.25 0.0485 0.0480 0.0100 0.18 0.0326 0.1588 0.03 0.38 0.0697
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FIGURE 1 | Mean concentrations of Cd, Pb, and Hg (milligram per kilogram) over time.

Table 3 | Sample demographic description.

Age class 10–18 19–40 41–65 66–94 Total

N 734 248 586 381 1949

Gender (female %) 51.2 86.3 81.6 75.3 69.5

Number of family members

(mean)

4.04 4.10 3.68 3.25 3.83

the TWI, and therefore the THQ levels remained below the risk
value of 1, shellfish generally display a high contribution to the
TWI for Cd. Indeed, as shown in Table 4, a dramatic increase of
Cd intake due to shellfish consumption was estimated in 2011,
compared with the previous year.

SHELLFISH SAMPLING AREA MAPPING
In order to identify the main areas of shellfish bioaccumulation of
Cd, raster maps of the yearly spatial distribution and of the dif-
ference between the average value for the six monitored years and
the average values recorded in 2011 (Figure 3), were analyzed.

The maps were portrayed according to the ESRI Natural
Breaks classification method (33). In this classification method,
data distribution is explicitly considered, within-class variance is
minimized and between-class variance is maximized (34, 35).

Classes of negative values suggest that the average Cd levels
in shellfish for the year 2011 were higher than the average values
detected during the other 5 years.

As shown in Figure 3, the main areas where Cd was found to
accumulate in shellfish were the north and the far south lagoon
basins.

DISCUSSION
The aim of this study was the assessment of heavy metal expo-
sure over time due to shellfish consumption in the Veneto Region
focusing on three heavy metals (cadmium, mercury, and lead),
as requested by the European Union regulation for hazardous
metals (30).

Intake data were obtained from a food consumption survey
that involved different areas spanning the Veneto Region, while
shellfish contamination data were obtained via the classification
and monitoring activities of mollusk production areas of Veneto
region.

Nonetheless, in order to have a homogeneous sample size
among years and species, and due to the shellfish consumption
habits of the Veneto population, only Manila clams (Ruditapes
philippinarum) and grooved carpet shell (Ruditapes decussatus)
metal contamination data were included in the study.

Results obtained from heavy metal contamination monitoring
activity show that among the three studied heavy metals, Pb
accumulated to the highest levels in the investigated shellfish.

Generally, only low levels of all three heavy metals were detected
in the shellfish. However, a significant difference in the heavy metal
concentrations over time was noticed, especially in the case of Cd,
which underwent a rapid increase in early 2011. This observation
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FIGURE 2 | Shellfish weekly consumption rates in the four indicated age groups (10–18; 19–40; 41–65; and 66–94).

Table 4 | Estimated weekly intake (EWI) and tolerable weekly intake

(TWI) for Cd expressed as microgram per kilogram of body weight.

Year EWI (mg/kg) TWI (mg/kg) %TWI THQ % Of Cd intake

2007 0.17 2.5 7 0.024 –

2008 0.14 2.5 6 0.020 −18

2009 0.12 2.5 5 0.017 −13

2010 0.11 2.5 5 0.016 −7

2011 0.21 2.5 8 0.030 89

2012 0.15 2.5 6 0.022 −29

% TWI indicates the contribution in percentage of shellfish consumption to the

TWI. % Of Cd intake indicates the variation in percentage of Cd intake over time

due to shellfish consumption. The values indicate the variation compared with

the contribution of the previous year. THQ refers to the total hazard quotient.

caused us to evaluate the impact of the rise of Cd concentration
in the selected shellfish on consumers’ exposure.

The potential health risk to the local population from Cd intake
via consumption of shellfish was assessed by comparing the EWI
with the TWI and by estimating the THQ.

Results show that shellfish substantially contributed to the TWI
for Cd, particularly during 2011, even though the EWI values were
below the TWI in each of the sampled years and the THQ never
reached the value 1. However, the two investigated shellfish species
are not the only potential source of dietary Cd, since this metal can
be ingested via many other food items comprising the diet of the
target population (data not shown).

We speculate that a heavy rainfall event that triggered cata-
strophic flooding in the days leading up to November 3, 2010,
with abundant rainfall affecting large areas of the Veneto Region,
was likely to have been responsible for the increased Cd levels
detected in early 2011.

The principal rivers involved in the flood event were the Bac-
chiglione river (140 sq km flooded containing a total of 380 Munic-
ipalities), and the Brenta river, two of the local tributaries of the

southern basin of Venice lagoon, while an impact on the river
basins of upper Piave, Sile, the drainage basin in the lagoon and
the river Po also occurred. The contaminants accumulated in the
sediment might have been mobilized by the effect of biological and
physical mechanisms, including the hydrodynamics of the water
exchange between the lagoon and the Adriatic Sea (20) and which
then led to Cd accumulation in shellfish captured in the areas
where these rivers flow, as indicated in Figure 3.

Regarding the northern part of the lagoon where high lev-
els of Cd accumulation were found (Figure 3), apart from the
input of the Piave and Sile rivers, other contaminated sources
could have contributed to the increase of Cd load in 2011, such
as discharge from surrounding heavily industrialized areas, pol-
lution produced by the city of Venice and wastewater treatment
plants (20).

Contaminant fate analyses, though, suggests that such conta-
mination routes could not reach the far southern basin (data not
shown). Here, Cd (and indeed, likely other heavy metal) loadings
mostly originate from local tributaries (20) including the Bac-
chiglione river. Thus, only a small fraction of contaminants from
the dominant loading sources in the central basin reach the inlet,
through which most water export to the Adriatic Sea occurs. Nat-
urally, this limits seaward transfer of the contaminants, trapping
most of them in the sediment of the Venice lagoon (20), and mak-
ing them available to be funneled into the human food chain via
harvested shellfish consumption.

Moreover, according to the 2011 report on the environmental
pollution in the Venetian Lagoon basin, published by the Agency
for Water Control of the Veneto Region (36) a strict dependence of
water quality delivered to the Venice lagoon from precipitation, in
terms of presence of pollutants such as heavy metals, was detected.

In fact, the analytical determinations carried out on samples of
first flushings from tanks proved the high level of pollution of the
water drained off in the Venetian Lagoon during the spring and
autumn months, when intense rainfalls occur.

Furthermore, the report strongly emphasized the critical con-
tribution posed by the ring road surrounding the Venice area
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FIGURE 3 | Difference between the average of cadmium values for the 2007–2012 years and the year 2011.

to heavy metal concentration in the drainage water, confirming
the significant influence of road runoff to heavy metal flow into
natural water bodies.

The observations made so far strongly emphasize the impor-
tance of approaching food safety in a holistic way, taking into
account the potential impact of extraordinary natural events on
food chain contamination.

An important objective is to provide for the activation of
emergency monitoring able to identify potential increases in food
hazards at an early stage and enabling hazard analysis to be con-
ducted on time, before a real risk for consumers develops. A case
in point is highlighted by the results of the current study, indicat-
ing that flood events on land could result in increased heavy metal

contamination in edible mollusks at sea, potentially producing
increased lead-on risks for heavy metal bioaccumulation in
shellfish consumers.
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