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There is Diversity in Disorder—“In all
Chaos there is a Cosmos, in all
Disorder a Secret Order”
Jakob T. Nielsen* and Frans A. A. Mulder

Department of Chemistry and Interdisciplinary Nanoscience Center, University of Aarhus, Aarhus, Denmark

The protein universe consists of a continuum of structures ranging from full order to

complete disorder. As the structured part of the proteome has been intensively studied,

stably folded proteins are increasingly well documented and understood. However,

proteins that are fully, or in large part, disordered are much less well characterized. Here

we collected NMR chemical shifts in a small database for 117 protein sequences that are

known to contain disorder. We demonstrate that NMR chemical shift data can be brought

to bear as an exquisite judge of protein disorder at the residue level, and help in validation.

With the help of secondary chemical shift analysis we demonstrate that the proteins in the

database span the full spectrum of disorder, but still, largely segregate into two classes;

disordered with small segments of order scattered along the sequence, and structured

with small segments of disorder inserted between the different structured regions. A

detailed analysis reveals that the distribution of order/disorder along the sequence shows

a complex and asymmetric distribution, that is highly protein-dependent. Access to

ratified training data further suggests an avenue to improving prediction of disorder from

sequence.

Keywords: intrinsically disordered proteins, NMR spectroscopy, data interpretation, statistical, chemical shift,

protein conformation

INTRODUCTION

A systematic re-examination of the protein structure–function paradigm is required to
accommodate intrinsically unfolded/disordered proteins (IDPs). There are two major reasons
for this reappraisal: (1) the results of bioinformatics analyses of the genomic codes for protein
amino acid sequences, and (2) the accumulation of experimental evidence for the existence of a
rather large number of protein domains and even entire proteins, lacking ordered structure under
physiological conditions (Dyson and Wright, 2001, 2004; Uversky, 2003; Vucetic et al., 2003).
Analysis of sequence data for complete genomes indicates that intrinsically disordered proteins are
highly prevalent, and that the proportion of proteins that contain such segments increases with the
increasing complexity of an organism; Putative long (>30 residue) disordered segments are found
to occur in 2.0% of archaean, 4.2% of eubacterial, and 33% of eukaryotic proteins (Ward et al.,
2004). Protein disorder roughly segregates into three major classes, depending on whether disorder
serves a primary functional role, or serves permanent or transient interactions (van der Lee et al.,
2014). Moreover, disorder maps to proteins with important functions, such as signal transduction
and control of transcription, and IDPs are involved in all major classes of disease (Gregersen et al.,
2006; Uversky et al., 2008). Although proteins may adopt different structures inside a cellular
milieu, this paper is concerned solely with proteins studied under in vitro conditions. For the
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biological relevance of disorder for the selected proteins, the
interested reader is referred to the original papers that described
the proteins considered herein.

This paper draws on methodological advances in NMR
spectroscopy to study IDPs, and systematic analysis of chemical
shift data for the prediction of disorder from sequence. The
aim of this work is to develop an experimentally calibrated
“ruler” to detect and quantify sequence-specific protein disorder.
NMR chemical shifts offer highly reliable and redundant residue-
specific information on positional disorder, and this information
is easy and unambiguous to get, using recently developed
approaches (Jensen et al., 2013; Kragelj et al., 2013; Felli and
Pierattelli, 2014; Konrat, 2014). In addition, the growing amount
of NMR chemical shift assignment data now allows for rigorous
and comprehensive analysis of protein disorder, and to employ
this ruler to gauge the types of variation of protein disorder.

In this paper, we search for any potential trends or variations
in order/disorder in an assorted set of proteins. To this end, we
constructed a comprehensive collection of proteins with varying
degrees of (partial) disorder, for which assigned NMR chemical
shifts are available. We subsequently asked: “Is disorder similar
in proteins, or are there different patterns to be discerned?,”
“What is a typical variation between order/disorder?,” and “Are
there proteins that deserve the label super unfolded, and are they
representative of the general class of IDPs?.” We demonstrate
that it is possible to answer these questions, with the methods
discussed herein. It is hoped that this initial experimental
evaluation of residue-specific protein positional disorder will
spark the further evolution of assessment tools for predicting
disorder with greater detail and accuracy. In addition, our
analysis paints a validated picture of protein disorder for a diverse
subset of 117 example proteins that are either classified as IDPs,
or possess long intrinsically disordered regions (IDRs), showing
a highly abounding sequence context dependence.

METHODS

Generation of a Curated Database with
Available NMR Chemical Shift Data
A set of proteins with different degrees of structural disorder,
for which assigned chemical shifts were available, was generated
in two steps. First, a set of proteins was generated from
a keyword search in the BioMagResBank (BMRB) database
(http://www.bmrb.wisc.edu; Ulrich et al., 2008). Second, we
augmented this database with sequences from the Database
of Protein Disorder (DisProt) (http://www.disprot.org; Vucetic
et al., 2005; Sickmeier et al., 2007) of disordered regions, for
which data were also present in the BMRB. In the first step,
the BMRB database was searched for entries according to
the BMRB database tag for the physical state of the protein;
Entries were selected where _Entity_assembly.Physical_state
= “denatured,” “intrinsically disordered,” “molten globule,”
“partially disordered,” and “unfolded.” In addition, entries with
the words “disordered” or “unstructured” in the entry title
were also included. In the second case, the BMRB database
was searched for matches of all SwissProt identifiers present

in the DisProt database. The sequences from DisProt and
BMRB were aligned using the EMBOSS (http://www.ebi.ac.uk/
Tools/psa/emboss_needle/) implementation of the Needleman–
Wunsch alignment algorithm (Needleman and Wunsch, 1970)
and BMRB entries with >20% of the aligned residues classified
as disordered by DisProt were retained. In addition, an entry
with in-house assigned chemical shift for the N-terminal heavy
metal binding domain, residues 1–84, of a cupper-binding ATP-
ase (Gourdon et al., 2011) in an unstructured state was added to
the database.

Subsequently, the database was curated. First, conditions
that deliberately destabilize folded proteins, such as extremes
of pH, extremes of temperature, and denaturants were selected
against, in order to avoid the artificial inclusion of disorder
under non-native conditions. This step also removes any
digressions that such conditions have on the chemical shifts:
Only proteins with near-neutral pH (4 < pH < 9), in weak
salt buffer, not in complex with other molecules, and without
modified amino acids were kept. Typical conditions of excluded
entries were: pH < 4.0, bicelle/micelle/SDS present in buffer,
TFE/DMSO/GuHCl or other denaturants added, presence of co-
factors, and phosphorylation. Next, entries having fewer than 40
amino acid residues or fewer than 50 assigned chemical shifts
were removed. Third, the collection of entries was culled in two
steps to remove redundant data. To find highly similar entries,
the EMBOSS Needle program was used to calculate pairwise
sequence identity between the sequences. In the first step, sets
of proteins families, defined as sets of chains with >90% mutual
sequence identity, were identified and only the entry with the
most native-like sequence/condition from each set was kept in
the database. For example, wild type sequences were kept and
mutant sequences were discarded when both were present, and
in case data were available at different acidities, the pH closest to
neutral was preferred. In the second step, groups of homologous
chains, defined by having >50% sequence identity between at
least one other sequence in the set, were identified. In each set, the
subset of sequences that yielded the maximum total number of
chemical shifts, and where all pairs had < 50% sequence identity,
were kept. Finally, it was required that at least one residue could
be defined as disordered based on NMR chemical shift data (see
below, Equation 5). This procedure resulted in the construction
of a set of 117 proteins with assigned chemical shifts, with varying
degrees of structure/disorder. The list of 117 BMRB identifiers is
provided as Table S1.

Calculation of Order/Disorder Metrics from
Experimental NMR Data
Weighted sum of squared differences between observed and
predicted shifts were calculated as follows

χ2 (i) =
∑

n

∑

j=i−1,i,i+1

min(1jn
2, 16) (1)

where the difference was truncated to four standard deviations
using:
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1jn =
δobs

(

j, n
)

− δpred
(

j, n
)

σ (n)
(2)

Here δobs
(

j, n
)

is the observed (offset corrected) chemical shift of
atom type n for residue j, and δpred

(

j, n
)

is the neighbor corrected
random coil chemical shift predicted based on the tripeptide
centered at residue j (Tamiola et al., 2010). The chemical shift
difference is scaled with the expected difference for residue j in
an IDP using σ(n) = 0.627, 0.310, 0.219, 0.281, 0.102, 0.0566,
0.0546 ppm for n= N, C′, Cβ, Cα, HN, Hα, and Hβ, respectively.
The supposed chi-square distributed number χ2 is transformed
to an approximately normal distributed number L, by using
linear combinations of fractional powers of χ2(Canal, 2005).

L = ρ1/6
−

1

2
ρ1/3

+
1

3
ρ1/2, ρ =

χ2

N
(3)

where N is the number of assigned chemical shifts for the triplet.
L is converted to a standard normal distributed number, ZIDR,
by correcting with the known mean and standard deviation for L
(Canal, 2005).

ZIDR =
L− µL (N)

σL (N)
(4)

We assign local sequence specific residue states as either
disordered (D) according to the definition:

ZIDR < 3 (5)

or alternatively as ordered (O) if ZIDR ≥ 3. A protein sequence can
be thought of as consisting of alternating segments of disordered
and ordered residues with lengths si. The sequence disorder
complexity, CSD, is now defined as

CSD =
eH − 1

N
, H = −

∑

i

si

N
ln

( si

N

)

, (6)

where N is the number of residues in the protein. Note that H is
closely related to the Shannon entropy of a statistical distribution.
If a protein is built of n segments of equal length then eH = n
and if the segments have different lengths eH < n. In particular, a
protein with exclusively disordered/ordered residues (pure state)
will have H = 0, eH = 1, and CSD = 0 whereas a protein where
order and disorder continuously alternate along the sequence
has a maximal value of CSD = 1. If order and disorder are
independently randomly distributed with a probability of 0.5, we
simulated with a random number generator that the sequence
disorder complexity would be ca. 0.41 on average. For a general
probability, p, and random outcome: CSD ≈ p. Therefore, it
make sense to compare the sequence disorder complexity to
the fraction of disordered residues fD = ND/N where ND is the
number of disordered residues (ZIDR< 3). As such, the relative
sequence disorder complexity, CSD/fD is expected to have a smaller
variation.

Procedure for Re-Referencing Assigned
Chemical Shifts
Chemical shifts are deposited using different referencing
procedures at different conditions such as temperature, added
salt, and pH, and hence, it is likely that in some cases the observed
chemical shift would be slightly, yet systematically, offset from
the random chemical shift derived from the sequence. However,
since even small deviations from random coil shifts are indicative
of structure ordering, we estimated an offset correction for each
entry in our database. The chemical shifts were re-referenced
for each atom type independently using the following procedure:
First, the neighbor corrected random coil chemical shifts were
calculated for all residues following the procedure of Tamiola
et al. as implemented in the programncIDP (http://www.protein-
nmr.org/; Tamiola et al., 2010), and the deviations from random
coil chemical shifts, 1, were calculated using Equations (1) and
(2) above. Assuming that the NMR data is correctly referenced,
this procedure identifies small deviations due to deviations in pH
and temperature of the experimental data relative to the reference
database. Next, the standard deviation of 1 was calculated for
nine consecutive residues, and the sequence position with the
smallest standard deviation was identified. The average of 1 for
the nine residues was then used as candidate offset correction.
The average value of ZIDR was evaluated using (i) the candidate
offset correction as described above and (ii) no offset correction.
The scenario leading to the smallest average ZIDR was chosen as
the initial offset estimation (i.e., either using the candidate offset
or no offset correction). because chemical shift distributions in
IDRs show a distribution (Tamiola et al., 2010), much narrower
than those in structured parts (Wang and Jardetzky, 2002; Zhang
et al., 2003), owing to the many additional contributions to the
chemical shifts in structured proteins (Wishart and Case, 2001;
Shen and Bax, 2010; Nielsen et al., 2012). Finally, using the chosen
initial offset estimation, the average 1 using all the chemical
shifts for the particular atom type in disordered residues only
(Equation 5) was calculated and this number was used as the final
offset correction. To avoid eliminating true deviations originating
from structure, in both cases, the revised offset was only used if
there was a significant reduction in the chemical shift standard
deviation, σ(δoff), relative to the uncorrected equivalent, σ(δ0),
considering the number of chemical shift observations, N, by
the application of Akaikes Information Criterion (Akaike, 1974,
1985) using a variance inflation factor of 10.0. i.e., the offset
correction was only accepted if: N∗ln(σ (δ0)/σ (δoff)) > 20.0 and
N > 3.

RESULTS

Analysis of Chemical Shift Dispersion for
Seven Case Story Proteins
The database of proteins containing disordered regions was
constructed as described in Methods. This carefully curated
database contains 117 unique proteins chains and 13,069 residues
with 65,574 assigned backbone and Cβ/Hβ chemical shifts
in total (excluding terminal residues). The database contains
many well-characterized IDPs such as α-synuclein (αSyn,
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bmrbID = 6968) (Bermel et al., 2006), small heat shock protein
(Hsp12, bmrbID = 17483; Singarapu et al., 2011), the CD79a
cytosolic domain (bmrbID 18867; Isaksson et al., 2013), apo-IscU
(bmrbID= 17836; Kim et al., 2012), and the cytoplasmic domain
of human neuroligin-3 (bmrbID= 17290;Wood et al., 2012). For
each protein in the database we calculated the scaled difference,
1, from random coil shifts (Equation 2). This difference is plotted
as a function of residue number for seven representative proteins
from the database in Figure 1. It is seen that for the two proteins,
known to be intrinsically unstructured, αSyn (bmrbID = 6968)
and Hsp12 (bmrbID = 17483), fluctuations away from random
coil shifts are very small throughout the sequence. This is
also borne out by the fraction of disordered residues being
97% in both cases (see Methods Equations 1–5 and below).
Conversely, two other proteins reported to be IDPs, the 18.5 kDa
isoform of murine myelin basic protein (bmrbID= 15131; Libich
et al., 2007), and the Cholera Toxin Enzymatic Domain (1–
167) (bmrbID = 15162; Ampapathi et al., 2008) display larger
scatter. Values for the fraction of disordered residues fD are 0.45
and 0.28, respectively, which indicates that these order/disorder
transitions of the cholera toxin enzymatic domain are essential
for function, the protein is, in fact, mostly folded. For three
further proteins, we note yet another pattern in their chemical
shift residuals along the sequence, containing distinct separate
segments with larger local spread of the chemical shifts for all
nuclei. The examples chosen here are human cardiac troponin
I, residues 1–73 (Hwang et al., 2014), inhibitor-2 involved in
protein phosphatase 1 regulation (Kelker et al., 2007), and the
small VCP/p97-interacting protein (Wu et al., 2013; BMRB ids:
25118, 15179, and 19485, respectively). In these examples, the
larger local scatter is biased in the direction of downfield shifted
C′ and Cα chemical shifts and upfield shifted Cβ, Hα, HN, and
N chemical shifts (Figures 1C–E). This observation is consistent
with the presence of helical structure formation. In addition, in
these three examples, we see a variation in helix size within the
same protein, as well as amongst different proteins. A variation
in the amplitude of the chemical shift residuals is also observed.
Since chemical shifts are time-averaged observables, smaller
amplitude of the chemical shift residuals correspond to fractional
occupancies of helical states as discussed previously (Marsh et al.,
2006).

Local Disordered Residues
Inspired by the observations of local disorder/order in small
segments in a protein, we develop here a formalism, where we
state that a residue can be in one of two situations: either an
(intrinsically) disordered state (D) corresponding to a non-biased
mixture of conformations dictated by the Boltzmann distribution
with resulting population-averaged chemical shifts, or in a
completely ordered state (O) with a fixed structure. Here we use
the simplest probabilistic model, a normal distribution, for the
chemical shift in a disordered state. The mean can be estimated
from the primary structure as described in Tamiola et al. (2010)
and the standard deviation can be derived from statistics (see
Methods). Conversely, for an ordered residue, the chemical shifts
would have much larger deviation from the mean, corresponding
to a bias in the Boltzmann distribution of conformations. Outliers

from the normal distribution are indicative of residual order, and
can be identified and analyzed for each atom specific chemical
shift, but when analyzed in combination the evidence is much
more reliable. Therefore, we introduce the Chemical shift Z-score
for assessing Order/Disorder (the CheZOD score), ZIDR, derived
from the rmsd of all chemical shift residuals within a residue
triplet and linear combinations of fractional powers of this rmsd
as described in Methods (Equations 1–4). Assuming that the
chemical shifts are normally distributed in disordered residues,
ZIDR is standard normal distributed. This is valid independent
of the number of backbone chemical shifts available. Hence, we
define the distinction between disordered and ordered residues
based on outliers from the normal distribution for ZIDR; a residue
is said to be disordered if the CheZOD score, ZIDR < 3, and
protein is said to have local disorder at this position in the
sequence. Furthermore, the CheZOD score is not only a binary
classifier of order/disorder, but provides a scale for the “degree
of disorder,” which can both classify partially formed/fractionally
occupied structure (ca. 3< ZIDR < 8) and fully formed structures
(ZIDR > 8).

Disorder Profiles of All Proteins in the
Database
The CheZOD score, ZIDR, was calculated for all residues in all the
117 proteins in the database, henceforth the CheZOD database,
and the fraction of the disordered residues was calculated for
each protein. We observe that no protein has 100% disordered
residues according to our definition. However, five proteins have
95% disordered residues or more, among these are αSyn and
Hsp12 (discussed above) and also p15(PAF) (bmrbID = 19332)
(De Biasio et al., 2014), the CD3e cytosolic domain of Eukaryota
Metazoa Homo sapiens T-cells (bmrbID= 18889; Isaksson et al.,
2013), and recombinant murine BG21 isoform of Golli myelin
basic protein (bmrbID= 7358; Ahmed et al., 2007). Furthermore,
the CheZOD database contains 15, 34, and 70 proteins that
have >90, 80, and 50% disordered residues, respectively, for
which NMR chemical shifts are available, spanning the full range
from disordered to ordered.

The CheZOD score along the sequence (disorder profile)
is visualized in Figure 2 for all proteins in the CheZOD
database. It is seen that the database roughly separates into
proteins that are mostly disordered, with small segments of order
scattered along the sequence, and mostly structured proteins,
with small segments of disorder bridging between ordered
domains, and in particular at the termini. Conversely, cases
with roughly equal amounts of disordered and ordered residues
are relatively rare (see also Figures 3A, 4). A second conclusion
from our analysis is, that we did not identify proteins where
the fluctuations between ordered and disordered residues were
completely random. Rather, all proteins have distinct medium-
length segments of ordered/disordered residues (with a typical
length of 10–30 residues) indicative of short-range correlated
behavior, irrespective of the average state of the protein. Careful
inspection of Figure 2 reveals that most residues are either fully
disordered or fully ordered, whereas fewer are partly ordered
(ca. 3 < ZIDR < 8; see also Figure 3B). Hence, proteins in “the
Twilight zone” which are not completely ordered or disordered,

Frontiers in Molecular Biosciences | www.frontiersin.org 4 February 2016 | Volume 3 | Article 4

http://www.frontiersin.org/Molecular_Biosciences
http://www.frontiersin.org
http://www.frontiersin.org/Molecular_Biosciences/archive


Nielsen and Mulder Diversity in Disorder

FIGURE 1 | Examples of IDP disorder profiles. (A–G) weighted difference between observed and predicted shifts, 1jn (Equation 2) shown with blue, red, black,

green, cyan, magenta, and yellow dots for C′, Cα, Cβ, Hα, HN, N, and Hβ, respectively. The Z-score (Equation 4) is shown as a black line, showing the lines, Z = 0

and Z = 3 for reference with black broken lines. The name of the protein analyzed is indicated at the top of each panel to the left. Three numbers are provided on top

of each panel (middle) referring to, the BMRB id, the fraction of disordered residues, and the sequence disorder complexity, respectively.

FIGURE 2 | Visualization of disorder profiles for the 117 proteins sequences in the CheZOD database. Each row represents a single protein where

disordered residues (ZIDR < 3) are shown in blue, ordered residues (ZIDR > 3) are shown in red, and residues with average order shown in green/yellow. The proteins

are depicted from top to bottom sorted according to the average of ZIDR for the protein.
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FIGURE 3 | Histograms of (A) ZIDR and (B) fIDP (normalized to a total area under the curve of 1.0).

both at the local and global level, appear to be under-represented.
An example of such a rare protein is the 18.5 kDa isoform of
murine myelin basic protein, shown in Figure 1F.

The Sequence Disorder Complexity of a
Protein
We now define a measure of the extent of alternations
between ordered and disordered segments, the sequence disorder
complexity, CSD, which is defined as the Shannon entropy of
ZIDR < 3 (along the sequence), scaled by the length of the
sequence (see Equation 6). CSD is 0 for a 100% disordered
or ordered protein, and largest for a protein with many
alternations between ordered/disordered segments (showing the
protein with the maximum sequence disorder complexity in
the CheZOD database in Figure 1F). In Figure 4 the sequence
disorder complexity, CSD, is shown as a function of the fraction of
disordered residues, fD. For comparison, the relative complexities
CSD/fD and CSD/(1−fD), which have a more even variation,
are shown in Figure 5. It is seen that (i) the distribution of
order/disorder along the sequence is not completely random (i.e.,
the complexity is always much less than the maximum value
for CSD) (ii) The distribution is also not close to minimum
complexity, which would correspond to two separate regions
of order/disorder. (iii) The relative complexities CSD/fD and
CSD/(1−fD), as viewed in Figure 5, are asymmetric around fD =

0.5. It is seen that mostly disordered proteins (fD > 0.5) are more
complex compared to their mostly structured counterparts, i.e.,
they appear to have a relative larger number of scattered smaller
segments with local order. However, this apparent asymmetry
is mostly due to the specific definition of complexity; i.e., if we
choose a different cut-off for a unstructured residue, say ZIDR > 6
(rather than ZIDR < 3, Equation 5), the corresponding correlation
becomes more symmetric (data not shown) and barely reflects
that structured regions are formed internally in the sequence,
whereas disordered regions are more typically formed at the
termini of the sequence.

Data Extraction and Fraction of Disordered
Residues: BMRB vs. Disprot
In Figures 4, 5 there are some trends visible in the fraction
of disordered residues, fD, related to the procedure for data

FIGURE 4 | Sequence disorder complexity, CSD (Equation 6), as a

function of the fraction of disordered residues, fD. Each protein is shown

with a different color according to the “physical_state” tag provided in the

BMRB database. The proteins shown in blue were found in the DisProt

database search, where proteins shown in blue had “physical_state” =

“native” and cyan points refer to as “unknown” or had missing specification of

“physical_state” in the BMRB file. The proteins shown with other colors than

blue and gray were found in the BMRB database key word search.

extraction and the physical_state tag. In particular, the proteins
that have physical_state = “intrinsically disordered” are indeed
mostly disordered (fD ≥ 0.5) in 15 cases, except one. Likewise,
proteins corresponding to physical state tags “denatured” and
“unfolded” describe only 1 of 6 and 1 of 7 proteins, respectively,
that are mostly ordered. This is in some contrast to the
group of proteins found from text searches of “disordered” or
“unstructured” (seeMethods), which were also labeled as “native”
(green points in Figures 4, 5). For this group, 10 out of 42
are actually mostly ordered, yet all except one of these proteins
still have some degree of disorder with fD > 0.1. This bias was
even more pronounced when considering the group of proteins
identified by searching the DisProt database for corresponding
entries in the BMRB database (see Methods). The proteins in this
group were labeled with a “native” physical state (blue points in
Figures 4, 5) or had no label (2 cases, cyan). The search in the
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FIGURE 5 | Scaled sequence disorder complexity CSD/fD as function of fD (left) and CSD/(1−fD) vs. (1−fD) (right). Extreme values are shown for reference:

The minimum possible CSD for a protein of length L = 200 (green), the maximum CSD (L = 200) (red), and CSD for randomly distributed outcomes with a probability fD
for a disordered residue (blue). Entries highlighted with circles were also found in the DisProt database with confirmed > 90% sequence identity relative to the BRMB

database amino acid sequence and with 90% of the aligned residues classified as disordered in DisProt (31 entries). See Figure 4 above for color-coding. The proteins

found by searching the DisProt database are shown as squares. The methods used by the DisProt depositors for assessing disorder are provided as annotations near

the highlighting circles for the 31 validated entries above. An “?” indicates that no method was given. The following abbreviations were used: AU, Analytical

ultracentrifugation; DLS, Dynamic light scattering; EMSA, Electrophoretic Mobility Shift Assay; FCD, Circular dichroism (CD) spectroscopy, far-UV; Fluo-A/Flou-P,

Fluorescence polarization/anisotropy; FTIRS, Fourier transform infrared spectroscopy; Gel, Size exclusion/gel filtration chromatography; I-Fluo, Fluorescence, intrinsic;

SAXS, Small-angle X-ray scattering (SAXS); SDS-PAGE, Polyacrylamide gel electrophoresis in sodium dodecyl sulfate; SP, Sensitivity to proteolysis.

DisProt database also resulted in re-identification of some of the
proteins already present in the database from the BMRB physical
state tag and text search (shown as colored squares in Figure 5,
and not included in the counts below).

Since the DisProt database contains sequences with
various contents of disorder, we contend that a protein
from DisProt/BMRB is validated as disordered if at least 90% of
the residues (aligned between the BMRB and DisProt entries)
were defined as disordered in the DisProt database. Only the
validated Disprot entries are shown in Figure 4 (together with
all the BMRB entries), whereas all DisProt entries are shown in
Figure 5 highlighting the validated ones by circles. It is seen in
Figure 4 that the validated group of DisProt entries contained 11
of 14 mostly ordered proteins, and seven of these were structured
proteins, with fD < 0.1. It appears that the classification “mostly
disordered” in DisProt does not assert that a protein, under the
conditions corresponding to the BRMB entry, will be disordered,
when judged by chemical shift dispersion. However, if the
validated entries from DisProt—which correspond to entries
already found by the BMRB physical state searches (Figure 5,

square points surrounded by circles)—are included in this
analysis, the percentage increases, as now 18 of 31 proteins are
mostly disordered. Next, we inspected the methods that were
used for the disorder classification for the 31 validated DisProt
entries (as provided in the DisProt database). A significant
correlation is revealed regarding the use of NMR, which was only
used in two of the eight cases with almost completely structured
proteins, in 3/12 cases for mostly structured, and in 11/19 cases
for the mostly disordered proteins (see annotations in Figure 5)
suggesting that NMR is likely one of the most accurate methods
for assessing disorder in proteins.

The above observations together show that the physical_state
tag corresponds well to the content of structure in the protein,
and, in particular, using this tag to search for intrinsically
disordered proteins is a reliable procedure for identifying IDPs.
Although the tags “intrinsically disordered,” “unfolded,” and
“denatured” all consistently yield disordered proteins, one could
suspect that in the latter two cases the protein might be in
a somewhat non-native state, biased by conditions that could
induce unfolding/denaturation of the protein (although it was
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specifically tried to avoid this, by excluding entries where it
was specified that denaturants or co-factors were added, see
Methods). This impression is supported by the fact that all
six “denatured” proteins in the CheZOD database, and four of
seven of the “unfolded” proteins, also have a structure available
in the PDB database (as defined by the cross-ref PDB match
in the BMRB entry), indicating that a folded version of the
protein exists under some condition. For comparison, only 2
of 15 proteins with “intrinsically disordered” physical state have
a folded structure in the PDB. An alternative procedure to
identify “truly disordered” proteins, as demonstrated here, would
be to search in the BMRB title for the words “disordered” or
“unstructured” and analyze the proteins with a “native” physical
state (green points in Figures 4, 5). In this case, only 15 out of 42
had a folded structure available in the PDB database. In general,
there is a close relationship between the fraction of disordered
residues and the presence of a folded structure in the PDB; 26 of
70 of the mostly disordered proteins have a determined structure,
whereas a vast excess of 44 of 47 from themostly ordered proteins
have a structure present in the PDB.

DISCUSSION

We have constructed here the CheZOD database that contains
detailed information about the extent of disorder in 117 carefully
curated protein data entries. Following our bottom-up approach
to include all available data for potentially disordered proteins in
the BMRB database, it was intended that the CheZOD database
should be representative for the full range of intrinsically
disordered proteins. In the quest for this we used both tag
searches in BMRB for the physical state, as well as searches to find
chemical shifts for entries in the DisProt database. The CheZOD
database is relatively small compared to other databases with 117
proteins, but one can imagine that the CheZOD database could
be expanded even further in the future by including searches for
entries in other databases such as MobiDB (Potenza et al., 2014),
IDEAL (Fukuchi et al., 2014), and D2P2 (Oates et al., 2013). We
also expect further entries with chemical shifts to be available for
inclusion in the CheZOD database in the near future following
the recent growing focus on IDP research and advances in NMR
analysis of IDPs. Despite the efforts made here, we do not claim
here that our database is complete in the sense that it would
cover all possible classes of proteins or types of disorder. We
also concede that our database is slightly “biased” as a whole,
in the sense that all entries correspond to proteins amenable to
NMR spectroscopy, such as soluble proteins with small/medium
size at relatively high concentrations. Notwithstanding these
subtle objections, we still argue that the CheZOD database is
representative for protein disorder. All entries in the CheZOD
database is summarized in Table S1, and the full database
including all the CheZOD Z-scores and backbone chemical shifts
for each residues is available from www.protein-nmr.org.

We have used here our method for chemical shift referencing
based on recalibration of the distribution of chemical shift for
the disordered residues, and the random neighbor corrected
chemical shifts of Tamiola et al. (2010). We now compare with
the LACS method for re-referencing chemical shifts (Wang et al.,

2005), Kjaergaard et al. random coil chemical shifts (Kjaergaard
and Poulsen, 2011), and the RCI method for estimating local
dynamics based on the chemical shifts (Berjanskii and Wishart,
2005).

Our method for re-referencing the chemical shifts identifies
the disordered residues and calculates the average secondary
chemical shifts, 1ave, for these residues. In theory, 1ave must
be very close to zero, but it will deviate from zero for several
possible reasons: (i) incorrect referencing by the authors of the
entry, (ii) influence by sample conditions such as isotope effects,
solvent, buffer, temperature, and pH, (iii) systematic bias in the
estimation of neighbor corrected random coil shifts, (iv) small
“true deviation” due to residual structure bias. Our method aims
at addressing (i–iii) with a phenomenological offset correction
by subtracting the average value, 1ave, from the chemical shifts.
While some of the effects might be rather small, they could still
have a dramatic impact on the interpretation of disorder due to
the small variation in secondary shifts for IDPs. Unfortunately,
it is of course not possible to separate effects of (i–iii) from “true
deviation” which could mask structural signatures and thereby
the disordered residues would appear slightly more disordered.
We note, however, that this re-referencing does not lead to
a larger number of residues being classified as disordered but
only effects the amplitude of the disorder, merely leading to
a slight skewing of the Z-score scale in the low-value end of
the scale. Following the rationale that the effect of (i–iii) would
often be much larger than the “true deviation” correction, this is
why we applied the offset correction exclusively in cases where
it was significantly different from zero as judged by Akaikes
information criterion.

Analysis of all the applied offset corrections for the full
CheZOD database by each atom type reveals that the offset
correction was used in 20.6% of the chemical shift sets when
analyzing the individual atom types separately (see Figure S1 in
the Supplementary Material). In most cases the offset corrections
were small (<0.5 ppm for 13C and 15N and <0.15 ppm for
1H) but for a few entries, a large offset correction (>2 ppm)
was needed for the carbon atom types. In these cases with
large corrections, the offset for the different carbon atom types
were correlated, underscoring the credibility of our method for
offset corrections although these chemical shifts are sometimes
assigned from different spectra. Some systematic trends in the
sign of the offset correction can be learned, in particular the Hα

and HN correction were often negative and positive, respectively,
by ca. 0.1 ppm (discussed in more detail below). Furthermore,
it is seen that offsets were more frequently used for more
disordered proteins, which was to be expected, since the offset
is calculated using only the disordered residues and hence, a
deviation from the expected mean would be more statistically
significant according to Akaikes information criterion, which is
proportional to the number of data points.

In order to provide independent validation of our method, we
compared our offset corrections to offset corrections estimated
by LACS (Wang et al., 2005), and found that the two methods
agree exceedingly well (see Figure S2 in the Supplementary
Material), with the exception of the Hα shift, for which there
was a small systematic deviation, which is, however, accounted
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for when using our phenomenological offset correction method.
These Hα offsets predicted by our method were ca. −0.1 ppm
on average whereas the offsets for the same entries were
ca. +0.1 ppm although still apparently linearly related. This
observation suggests small differences in the reference values
used for Hα random coil chemical shifts for the two methods.
There were some notable differences between our method and
LACS that implicate that it cannot be applied in all cases; in
particular LACS requires assigned Cα and Cβ chemical shifts and
only provides offset correction estimates for Cα, Cβ, Hα, and C′.

To address the possibility that observed chemical shifts could
be affected by sample conditions, we compared our secondary
chemical shifts and Z-scores with the corresponding results
obtained from derivations using the random coil chemical shifts
from Kjaergaard et al. (Kjaergaard and Poulsen, 2011), which
includes an estimate of the effect due to variations in temperature
and pH. Comparing the results for our seven test case entries
in Figure 1, there were only some small differences for the
disordered residues where the secondary chemical shifts were
small compared to the difference between the random coil shift
estimates, and elsewhere largely very similar results for the
two methods (see Figure S3 in the Supplementary Material).
This observation suggests that our method already includes the
effects on chemical shifts from pH and temperature implicitly.
However, since it was not possible to account for all effects of the
sample conditions on the chemical shifts or for cooperative/non-
linear effects of the different parameters, we still argue that our
phenomenological correction is the most appropriate.

NMR is very sensitive to ensemble averaging of local
conformations, which is measured very accurately from the
chemical shifts. Therefore, chemical-shift based methods for
assessing order/disorder in proteins are both position-specific,
and also provide a scale for the extent of disorder/order. These
properties contrast with other biophysical techniques such as
circular dichroism (CD), and infra-red (IR) spectroscopies,
aimed at estimating the content of secondary structure,
or techniques for estimating the protein size, density,
hydrodynamic drag, or diffusion properties, using for example,
size exclusion chromatography, ultracentrifugation, SAXS, or
limited proteolysis (Vucetic et al., 2005; Tompa, 2009; Uversky
and Longi, 2010). Missing density in X-ray crystallography
data may also be indicative of local disorder (though it doesn’t
provide a scale for the disorder), but X-ray diffraction cannot be
applied to proteins that do not contain any structured elements.
Hence, with the chemical shift analysis proposed here, it is
possible to “zoom-in” to look for finer details, and get a more
detailed picture of the diversity in disorder.

Some other methods also provide residue based estimates for
the local dynamics including δ2D (Camilloni et al., 2012) and
the Random Coil Index (RCI) method (Berjanskii and Wishart,
2005). We have compared our Z-score for our seven test case
proteins to the RCI estimates of the S2 local order parameter in
Figure S3. There was qualitatively agreement between the RCI
estimated S2 and our Z-score, i.e., low order for the disordered
residue and high order (S2 close to 1) for the ordered residues.
However, there were still some more subtle differences between
the two scores. Firstly, the largest differences were for the

disordered residues where the secondary chemical shifts were
small compared to the difference between the random coil shift
estimates. This can be understood, since RCI uses a floor value for
the absolute chemical shifts meaning that very small deviations
from the chemical shifts are not captured and hence also very
disordered residues are not distinguished. Secondly, the full
range of orders appears to be less well described by the RCI
estimates yielding only small differences for fully and partly
formed structure (see e.g., Figure S3d). Thirdly, the RCI method
gives a smoother trajectory along the sequence, which is because
it uses both a three-point averaging of the absolute secondary
chemical shifts as well as for the actual RCI index values. Finally,
we note that whereas the RCI method is heuristic, based on a
weighted sum of the absolute value of secondary chemical shifts
for all atom types, our method is statistical, based on the chi
square distribution of squared secondary chemical shifts, and due
to this formulation it provides adequate estimates for the local
dynamics also in cases were only a subset of the chemical shifts
are available such as only proton or carbon chemical shifts.

Inspection of our CheZOD database of IDPs reveals that the
proteins span a broad range of fractions of disorder and extent of
disorder. Proteins are seen with both many fluctuations between
segments of order/disorder, characterized by a high sequence
disorder entropy, and with separation into larger completely
ordered/disordered domains. This great diversity in disorder
reflects the broad class of IDPs known to form various functions
or interaction with different targets and malleability at different
conditions.

Proteins that are either almost completely disordered, or
completely structured, are most abundant in the CheZOD
database, whereas cases with roughly equally mixed states are
rare. This observation likely reflects the cooperative behavior in
order/disorder transitions, where formation of ordered segments
promotes the formation of other ordered segments and vice
versa. Following this line of thought, proteins in the “Twilight
Zone” might reflect folding intermediates on a transition path
from unfolded to folded. The seemingly cooperative nature of
disorder also provides a clue to why it has been so difficult
to construct predictive models for disorder from local amino
acid composition alone. It is at current difficult to address
whether the formation of medium length segments of alternating
order/disorder are due to a cooperative transition together with
nearest neighbors or due to properties of the amino acids in the
segment.

The analysis of the CheZOD database revealed that entries
found in the DisProt database were often mostly structured. The
higher degree of structure for these protein entries could be due
to differences between the sample conditions during analysis
corresponding to the BMRB and DisProt entries. For example,
the NMR analysis corresponding to the BMRB entry could be
performed under conditions that favor structure determination.
Alternatively, one could speculate that the identification of
disordered regions, leading to the inclusion in the DisProt
database, could be based onmethods that are less strict compared
to NMR or more “coarse-grained,” in the sense that they only
provide a classification for the full protein and not at a local level.
In support of this, we found that DisProt entries, which used
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NMR to assess disorder, were also more often confirmed to be
disordered in our analysis. Hence, a more critical assessment of
disorder based on a more reliable and uniform criterion, such as
can be derived with NMR, is recommended.

Implications for the Bioinformatics
Analysis of Protein Disorder
The last years have seen a tremendous increase in the number
of bioinformatics tools that try to predict protein (dis)order
(Schlessinger et al., 2009; Dosztányi et al., 2010) and several
prediction methods participated in recent rounds of the
Critical Assessment of Structure Predictions (CASP; Noivirt-Brik
et al., 2009; Monastyrskyy et al., 2011). Unfortunately, current
datasets of experimentally classified ordered and disordered
regions (Sickmeier et al., 2007) contain many misclassified
segments: In X-ray crystal structures regions may appear
ordered due to binding partners or crystal packing forces,
and could be disordered in isolation. In disorder databases
segments may even be more prone to misclassification, since
many longer disordered regions are characterized by semi-
quantitative experiments that lack position specific information.
This suspicion of misclassification was confirmed in our analysis
of the validated entries from the DisProt database where several
entries where almost completely structured in the CheZOD
database. Furthermore, the order/disorder status is also sensitive
to environmental conditions, and this fact is not considered.
The lack of sufficiently reliable datasets and the noise in the
assignment of order and disorder represent a serious limitation
in developing accurate prediction methods for protein disorder
(Dosztányi et al., 2010). The final, serious shortcoming, of current
prediction methods is their inaccuracy when going down to
shorter stretches (preliminary analysis). This study reveals a
preponderance of proteins with mixed ordered and disordered
segments and high sequence disorder complexity—typically, for
proteins with mixed order, CSD ≈ 0.1 corresponding to an
average segment length of ca. 10 residues.

The CheZOD database presented here was carefully manually
curated to exclude any entries with biasing conditions and
strictly contains proteins under native conditions. Here the
analysis and processing of chemical shifts provides a unique
experimentally validated local and quantitative measure of
order/disorder. Furthermore, our database covers a broad
range of proteins ranging from completely ordered to almost
completely structureless. Since predictions in CASP9 were no
better than those in CASP8 (Monastyrskyy et al., 2011), and
only a small improvement was noted for CASP10 (Monastyrskyy
et al., 2014), we hope that our curated CheZOD database can
help form the basis for the development of even more accurate

and sophisticated predictive models of order/disorder. This will
enable us to ask more detailed questions and provide answers
to complex biologically relevant problems related to intrinsically
disordered proteins.

CONCLUSIONS

We have used a systematic analysis of NMR chemical shifts to
build a database of experimentally validated disordered proteins,

the CheZOD database. In contrast to other methods for order
classification, our procedure provides a reliable position-specific
quantitative measure of order/disorder through our Chemical
shift Z-score for assessing Order/Disorder (the CheZOD score).
Examples were observed of both maximum CheZOD score in
completely ordered segments, intermediate values in loops and
fractionally populated structure, and small values in completely
disordered regions. Careful inspection and systematic analysis
of the entries in the CheZOD database revealed interesting
trends and variations. In particular, it was discussed here how
proteins can be completely disordered, partially disordered,
or only disordered in a small segment. Some proteins can
indeed be classified as super unfolded, like human α-synuclein,
indicating that this protein is not an archetypal IDP. Through
the introduction of the sequence disorder complexity we found
diverse patterns of disorder, e.g., that proteins can be segregated
into two distinct parts of an ordered and a disordered domain,
but also be composed of smaller segments varying alternatingly
between order and disorder. A typical segment length of
ordered/disordered residues was estimated to be ca. 10 residues.
We foresee that further systematic analysis of our CheZOD
database will contribute to a more detailed understanding of the
relationship between primary sequence and disorder/structure
and function.
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