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Some environmental factors may influence the pituitary–gonadal function. Among these,
light plays an important role in animals and in humans. The effect of light on the endocrine
system is mediated by the pineal gland, through the modulation of melatonin secretion.
In fact, melatonin secretion is stimulated by darkness and suppressed by light, thus its cir-
cadian rhythm peaks at night. Light plays a favorable action on the hypothalamic-pituitary
axis likely inhibiting melatonin secretion, while the exogenous melatonin administration
does not seem to impair the hormonal secretions of this axis. The basal and rhythmic
pituitary–gonadal hormone secretions are regulated by a central clock gene and some
independent clock genes in the peripheral tissues. Light is able to induce the expression of
some of these genes, thus playing an important role in regulating the hormonal secretions
of pituitary–gonadal axis and the sexual and reproductive function in animals and humans.
The lack of light stimulus in blind subjects induces increase in plasma melatonin concen-
trations with a free-running rhythm of secretion, which impairs the hormonal secretions of
pituitary–gonadal axis, causing disorders of reproductive processes in both sexes.
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INTRODUCTION
Several endogenous and exogenous factors may influence
endocrine secretions (1), including those of pituitary–gonadal
axis (2). Among the exogenous environmental factors, light seems
to play a pivotal role both in animals and in humans, especially
as synchronizing agent of hormonal rhythmicity (3–5). Several
structures are involved in the mechanism of transmission of
light stimulus to the circadian timing system: a retinal compo-
nent with photoreceptor and ganglion cells, a retino-hypothalamic
tract (RHT) originating from these and projected to the suprachi-
asmatic nucleus (SCN), the circadian pacemaker, i.e., the SCN,
efferent projections of SCN to a series of hypothalamic and thala-
mic nuclei (6). The major projections are to areas that themselves
receive retinal input and project reciprocally to the SCN. Of par-
ticular importance are the projections of the SCN that reach the
supraventricular zone and then the hypothalamus because they
provide, among other functions, the neuroendocrine regulation
and the pineal melatonin secretion, which plays an intermediate
role between the environment and the endocrine system. Studies
on the effects of light on the endocrine secretions in animals are
usually performed by exposing them to different photoperiods or
rendering them blind. In humans, blindness may be considered,
despite unlucky, an experimental condition to study the effects
of light on the hormonal secretions, but in this regard data are
scarce and sometimes controversial. However, since light is one
of the most important environmental factors, paying attention
to its influence on the endocrine system may avoid misleading
interpretation of individual hormonal data and may help pre-
vent alterations in hormonal pattern and rhythmicity caused by
variations of this environmental entraining-agent.

MOLECULAR ASPECTS
The recent identification of several clock genes in a number of
organism, including mammals (7–14), seems to assign a pivotal
role to the hypothalamus as pacemaker of pituitary–gonadal secre-
tions. However, the findings of independent clocks in peripheral
tissues (1, 9, 12–15) suggest a possible gonadal independent role
in regulating the rhythmicity of gonadal steroids. In fact, recent
findings support the assumption that some clock genes can influ-
ence fertility and testosterone (T) seasonality both in animals (16)
and in humans (17). In particular, Brain and muscle Arnt-like pro-
tein 1 (BMAL1) and Neuronal PAS domain protein 2 (NPAS2) gene
variants have been shown to influence fertility and seasonality in
humans (17). Anyway, since light plays an important synchroniz-
ing role on the circadian rhythmicity, the alteration of photope-
riod, or the lack of light stimulus, as occurring in blindness, may
impair this rhythmicity (18). Consequently, the desynchronizing
effect of altered light signal may influence circadian peripheral
clocks in female and male reproductive tissues causing impairment
of fertility (19) with disorders in estrus cycles, ovulation, sperm
generation, implantation, and the progression of pregnancy (14).

In fact, light may act at molecular level inducing the expression
of some immediate early genes in the SCN involved in entrainment
of circadian clock (20, 21). These genes, activated by light, encode
transcriptor factor proteins involved in molecular mechanism of
resetting the circadian clock (20). Among these genes, are c-fos
and nur 77, two of the early-response genes known to be induced
in the SCN by light, and egr-3, a zinc-finger transcription factor,
whose induction by light seems to be restricted to the ventral SCN,
a structure involved in entrainment (22). Light also induces Jun-
B messenger RNA expression and AP-1 activity in the SCN (20).
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Moreover, other mammalian genes involved in circadian regula-
tion, like mper 1 and mper 2 have been shown to be expressed in
SCN under light stimulus control (23). It has been demonstrated
that light stimulus induces expression of C-fos gene in postnatal
rat retinas (24). The earliest expression occurs between postnatal
days 11 and 15 and is correlated to the genes coding for pro-
teins involved in phototransduction, suggesting that it may play
a role in the regulation of these genes in retinal cells during the
light/dark cycle (24). This could in part explain the severe alter-
ation of hormonal rhythmicity in born blinds. Further evidence
that genes involved in clock regulation are reset by light has been
given by studies in Neurospora (25). In particular, the white collar-1
(wc-1) and white collar-2 (wc-2), both global regulators of photore-
sponses in Neurospora, encode DNA binding proteins containing
PAS domains and acting as transcriptional activators, thus playing
an essential role in the organization of circadian rhythmicity. Sim-
ilarities between the PAS domain regions of molecules involved
in light perception and circadian rhythmicity in several species
suggest an evolutionary link between ancient photoreceptor pro-
tein and more recently described proteins required for circadian
oscillation (25, 26).

ROLE OF PINEAL GLAND AND MELATONIN
The effects of environmental light on the hypothalamic–pituitary–
gonadal axis are mediated by the pineal gland, through mela-
tonin secretion (27, 28). Light stimulus from the environment
reaches the retina; from here, through a RHT reaches the SCN,
then the superior cervical ganglion, and finally the pineal gland,
where it exerts an inhibiting effect on the pineal melatonin secre-
tion. Instead, the darkness activates alpha1 and alpha2-adrenergic
receptors in pineal gland, then it increases cyclic AMP and calcium
concentration and activates arylalkylamine N -acetyltransferase,
thus initiating the synthesis and release of melatonin, whose circa-
dian rhythmicity is under control of an endogenous free-running
pacemaker located in the SCN (29). As result of the opposite effect
of light and darkness, melatonin rhythm normally peaks at night
both in animals and in humans (29). Light exposure at night
induces a parallel reduction in both plasma and salivary melatonin
(30). A little amount of melatonin may be synthesized directly by
retina: melatonin synthesis in cultured neural retinas of golden
hamster exhibits a circadian rhythm entrained by light/dark cycles
applied in vitro, whereas it shows a free-running rhythm when the
culture is held on constant darkness (31). Several melatonin recep-
tors have been found and cloned in animal and in humans. They
belong to a superfamily of G-protein coupled receptors and medi-
ate the physiological actions of melatonin with different specificity
(29, 32–36). Among these, of particular importance are Mel 1a, iso-
lated in brain, SCN, and pituitary, which is involved in circadian
and reproductive processes (29, 32, 34); Mel 1b, isolated in retinas
and brain, which is involved in retinas physiology regulation in
some mammals (33); and Mel H9, isolated in pituitary, which is
likely involved in genetically based neuroendocrine disorders (35).

Blindness affects melatonin secretion significantly. Blind
patients show increased day-time melatonin levels or more com-
plex changes in circadian rhythmicity (36–39). They exhibit a
phase-advanced or a phase-delayed rhythm with respect to that
of normal subjects. However, the exposure to bright light may

suppress the high melatonin levels in some blind subjects with
functional integrity of the RHT (40, 41). In fact, their melatonin
secretion may be suppressed when their eyes are exposed to a
bright light stimulus. Interestingly, these patients were less suffer-
ing for sleep alterations. The authors who studied these patients
concluded that some blind people can have a functional integrity
of RHT, allowing a melatonin suppression when exposed to light
stimulus and consequently a sufficient sleep entrainment. Instead,
blind patients with complete absence of bright input to the circa-
dian system may represent a distinct form of blindness, associated
with periodic insomnia correlated to abnormalities of melatonin
rhythm, due to the persistent lack of synchronizing effect of light
(40). In fact, changes in melatonin rhythmicity are more severe in
patients with total blindness compared to those with only light per-
ception (42). Interestingly, a reduced incidence of cancer has been
observed in blind people (43). Even if other explanations have to be
considered, the protective effect of high melatonin concentrations
may not be excluded (43).

LIGHT, BLINDNESS, AND
HYPOTHALAMIC–PITUITARY–GONADAL FUNCTION
Light influences favorably gonadal function in animals and this
effect seems to be mediated by reduction of pineal melatonin pro-
duction, whereas a reduction of photoperiod impairs this function
through an activation of melatonin secretion (27, 28, 44). Sexual
activity in animals is reduced during the months of the year with
short day; this reduction is prevented by pinealectomy (28, 44).
Moreover, increased melatonin levels and reduction of plasma
luteinizing hormone (LH), follicle-stimulating hormone (FSH),
prolactin (PRL), T levels, testis weight, spermatozoa production,
and sexual activity have been documented in animals rendered
blind or exposed to a short photoperiod (44–48). These effects
are prevented by pinealectomy (28, 45). Seasonal variations in
luminosity influence melatonin secretion and some functions cor-
related not only in animals (28) but also in humans. Women living
in Finland, a region with a strong seasonal contrast in luminosity,
showed increased melatonin and reduced gonadotropin secretion
during dark season, with consequent reduction of conception rates
(49). Seasonal variations of plasma LH and T concentrations have
been demonstrated also in patients with primary and secondary
hypogonadism, but with peak of values in season different from
that of normal subjects (18). A possible negative feed-back mecha-
nism between melatonin and hormones of pituitary–gonadal axis
seems to be suggested by the presence of gonadotropin and gonadal
steroid receptors in human pinealocytes (50) and conversely of
melatonin receptors in human hypothalamus, pituitary, and in
other tissues of gonadal tract (51). Other findings, instead, suggest
that there is no classic feed-back between the pineal gland and
the testes (52) and that administration of exogenous melatonin
does not impair pituitary–gonadal hormone secretion in men
(53); on the contrary it seems to amplify pulsatile LH secretion
in women (54). However, this is in contrast with that occurring
in patients with chronic endogenous melatonin increase that may
show alterations of menstrual cycle in case of women (28, 55) and
oligospermia or azoospermia in case of men (56).

Blindness can influence gonadal function in humans. Data
on the age of puberty onset and fertility in blind women are
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conflicting. Menarche in blind girls has been described as being
advanced or delayed (57–59) and fertility in adult women as
being normal or impaired (60, 61). Some blind adult patients
showed a normal secretory rhythm of LH, FSH, and T in spite
of impaired cortisol rhythm (62). However, in this study, the
majority of patients had become blind from 14 years onward,
an age in which mechanisms involved in pubertal development
and gonadal function are quite completed. Instead, in a group of
institutionalized blind boys, whose blindness was started in the
first years of life, we found impaired basal and stimulated plasma
levels of LH, FSH, PRL, and T (63). Since similar alterations
had been described both in hypogonadotropic hypogonadism
and in delayed puberty (64, 65), several years ago we studied
the same hormonal pattern in a group of institutionalized adult
blind males aged 20–29. They were divided in two subgroups:
14 with total blindness and 21 with only light perception, whose
age of onset of impaired vision was reported by them as the
first 5 years of life (36). Both subgroups showed increased plasma
melatonin levels in comparison with a normal control group of
sighted subjects, but normal LH, FSH, PRL, and T levels. How-
ever, the finding of a significant increase of FSH/LH ratio in both
subgroups of blind patients versus the control group, could indi-
cate a possible subclinical impairment of testicular function that
however should be verified with studies of dynamic hormonal
secretions and of seminal patterns, which the patients did not
consent.

In conclusion, taking into account the data appeared in the liter-
ature and the results of our previous studies, light stimulus seems
to influence favorably gonadal function both in animals and in
humans, likely through inhibition of melatonin secretion. Instead,
the lack or reduction of light stimulus in humans can induce:

– increased plasma melatonin concentrations;
– impairment of gonadotropins, PRL, and T secretion in pre-

pubertal blind boys causing delayed puberty or more severe
hypogonadism;

– impairment of pubertal development in young blind girls and
of ovarian function and fertility in blind adult women.

These alterations seem to be more severe when the blindness
occurs in the first years of life.
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