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Monitoring crop and natural vegetation conditions is highly relevant, particularly in the

food insecure areas of the world. Data from remote sensing image time series at high

temporal and medium to low spatial resolution can assist this monitoring as they provide

key information about vegetation status in near real-time over large areas. The Software

for the Processing and Interpretation of Remotely sensed Image Time Series (SPIRITS)

is a stand-alone flexible analysis environment created to facilitate the processing and

analysis of large image time series and ultimately for providing clear information about

vegetation status in various graphical formats to crop production analysts and decision

makers. In this paper we present the latest functional developments of SPIRITS and we

illustrate recent applications. Themain new developments include:HDF5 importer, Image

re-projection, additional options for temporal Smoothing and Periodicity conversion,

computation of a rainfall-based probability index (Standardized Precipitation Index) for

drought detection and extension of the Graph composer functionalities. The examples

of operational analyses are taken from several recent agriculture and food security

monitoring reports and bulletins. We conclude with considerations on future SPIRITS

developments also in view of the data processing requirements imposed by the coming

generation of remote sensing products at high spatial and temporal resolution, such as

those provided by the Sentinel sensors of the European Copernicus programme.

Keywords: remote sensing, crop monitoring, image time series, agriculture, food security analysis

Introduction

For many years, agricultural monitoring systems have been using remote sensing instruments
to provide timely and synoptic information about seasonal vegetation development. At national
and regional level, remote sensing can be highly helpful in the early detection of crop stress
during the growing season and in forecasting the final yield (e.g., Meroni et al., 2013; Newlands
et al., 2014; Lopez-Lozano et al., 2015). Satellite products used for these purposes mostly refer
to vegetation indices (e.g., the Normalized Difference Vegetation Index, NDVI) and biophysical
variables (e.g., the Fraction of Absorbed Photosynthetically Active Radiation, FAPAR; the Leaf Area
Index, LAI). The mentioned vegetation indices and biophysical variables are mainly derived from
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space measurements in the visible to near infrared reflected
domain (Rembold et al., 2013). The thermal domain is also
exploited for vegetation monitoring as it is used to estimate for
example rainfall (e.g., Tarnavsky et al., 2014) or, in conjunction
with other meteorological variables, the evapotranspiration (for a
review see Petropoulos et al., 2009). In order to draw conclusions
about the development of crops during an ongoing growing
season, such key variables are analyzed in near real-time and
often compared with reference years (for instance, a past year
known for having had abundant or poor crop production)
or with their historical average (here referred to as the Long
Term Average, LTA). Globally, a number of operational systems
have implemented such type of analysis as recently reviewed in
Rembold et al. (2013) and Atzberger (2013). Index-based crop
insurance schemes also rely on such data (de Leeuw et al., 2014).

The use of remote sensing time series for crop and vegetation
monitoring typically requires a number of processing steps that
include the temporal smoothing of the cloud-affected remote
sensing signal, the computation of LTA and associated variability,
the computation of anomalies, the detection of plant phenology
and the classification of the productivity level on the basis
of seasonal performances. Furthermore, the production of a
crop monitoring bulletin (i.e., a report intended to illustrate
the current agronomic situation to decision makers and non-
specialists in general) summarizing all the information gathered
from the analysis of the mentioned derived products, requires
additional post-processing steps. These include for example the
computation of statistics aggregated by administrative unit and
by land cover class, and the generation of maps and graphs
showing spatial patterns and temporal evolutions of relevant
indicators (Massart et al., 2010).

The various graphical outputs are usually generated at
different levels of spatial aggregation (typically at the national
and regional levels) for a large number of spatial units of
interest and updated frequently whenever a new remote sensing
observation is made available. Thus, there is a clear need to
automatize the whole processing chain. Many of the single
processing steps can be implemented in various free software like
for example ILWIS (http://www.ilwis.org) or TIMESAT (Jönsson
and Eklundh, 2004), or can be coded in any programming
language. However, no existing software offers a user-friendly
environment to support the whole time series processing chain
typically needed for crop monitoring analysis. This gap is the
reason that led to the development of SPIRITS (Software for the
Processing and Interpretation of Remotely sensed Image Time
Series; http://spirits.jrc.ec.europa.eu/; Eerens et al., 2014).

In this paper we briefly summarize the SPIRITS architecture
and main functionalities, and then we present the latest
functional developments of the software. The most commonly
used functionalities of the software are illustrated with real
case examples. In particular we focus on the time series
analysis performed for the production of an agricultural drought
monitoring bulletin in Angola (Rembold et al., 2014) as well as on
a number of additional analysis and visualization products used
in recently released crop monitoring and food security reports.
We then conclude with considerations on future SPIRITS
developments also in view of the data processing requirements

imposed by the coming generation of remote sensing products
at high spatial and temporal resolution such as those provided
by the Sentinel sensors of the European Copernicus programme
(www.copernicus.eu).

Main SPIRITS Functionalities

SPIRITS is a stand-alone toolbox for environmental monitoring
that provides a collection of useful routines for image time
series analysis in one package accessible through a graphical
user interface (GUI). It is designed to produce clear and
evidence-based information for crop production analysts and
decision makers. The software has been developed by the
Flemish Institute for Technological Research (VITO) and the
Joint Research Centre (JRC) of the European Commission. A
detailed description is provided in Eerens et al. (2014). The
software is extensively documented and distributed freely for
non-commercial use, which is especially important in developing
countries where free software can provide an important
contribution to capacity building for local institutions.

SPIRITS has been developed for the monitoring of vegetation
conditions with medium to low resolution satellite image time
series, but many of the tools can also be applied to other
types of raster data and application domains (e.g., forest and
habitat monitoring). In its prevalent use in crop monitoring,
common input data are surface reflectances, vegetation indices
(e.g., NDVI) or biophysical parameters (e.g., FAPAR and Dry
Matter Productivity, DMP). Also gridded meteorological data
derived from atmospheric circulation models (e.g., European
Centre for Medium-Range Weather Forecasts—ECMWF) or
from geostationary satellites (e.g., METEOSAT) are typically
processed.

The software runs under Microsoft Windows and is based on
a GUI developed in Java. The GUI makes extensive use of the
GLIMPSE (GLobal IMage Processing SoftwarE) library (Eerens
et al., 2014), developed by VITO, to perform the processing
in the background. This library consists of a set of ANSI-C
executables for a wide range of dedicated image processing tasks.
In addition, over the years, SPIRITS was extended with many
other modules enabling, for example, the import of imagery in
external formats, the generation of maps and the extraction of
regional databases. The software also makes use of open source
libraries such as GDAL (http://www.gdal.org/), FWTools (http://
fwtools.maptools.org/) and HSQLDB (http://hsqldb.org/), which
are included in the current SPIRITS distribution package.

The main program modules can be grouped in the following
functional classes: import/export to external data sources,
processing, and analysis tools. The processing tools can be further
categorized into: spatial operations, thematic operations, and
temporal operations (Table 1).

More specifically, spatial operations include the extraction
of a region of interest (ROI extraction) from a larger imagery,
spatial Resampling, and Generation of area fraction images (i.e.,
percent cover of a land cover class within a coarser resolution
pixel). Thematic operations include Rescaling, Vegetation indices
computation, Masking, Flagging, Clustering, and computation
of Dry matter productivity from FAPAR and meteorological
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TABLE 1 | Main SPIRITS functionalities according to the SPIRITS program menu.

Import and export Image import Convert any image format supported by the GDAL library to the SPIRITS standard

(ENVI with enriched header file)

Vector to raster Rasterize ESRI Shapefiles to a user-defined grid

File rename Rename file time series and manage the change of format of dates in the file names

Image export Convert SPIRITS images to IDRISI and ESRI formats or to a ENVI layer stack

Processing tools Spatial operations ROI extraction Extract a region of interest (ROI) from input images

Resampling Resample input images to a user-defined resolution and framing

Generation of AFIs Starting from a high-resolution classification, derive low resolution Area Fraction

Images (AFIs) with the area fraction of each class per pixel

Low-pass filters Spatially smooth input images using moving window filtering

Thematic operations Rescale Rescale, reclass or modify the original image values, change data type

Index Compute vegetation indices, difference images and anomalies

Masking Mask image pixels by defined intervals or by values in another image

Flagging Apply the information of a status mask image (e.g. water, cloud, snow) as flags onto

another image

DMP/NPP Derive DMP or NPP from FAPAR images and meteorological information

Clustering Apply unsupervised classification using an enhanced iso-clustering algorithm

Temporal operations Smoothing Detect noisy observations and smooth signals based on a set of algorithms

(within a single year) Compositing Compute multi-temporal composites with different temporal windows

Averaging Compute pixel temporal averages between two given dates

Phenology Detect the season start and end dates

Pheno averaging Compute mean or sum over a time series between the start and end of the season

Temporal operations

(over several years)

Long-term statistics Compute long-term stats (mean, min, max, sd, percentiles, etc.) on a multi-annual

time series

Anomalies Compare actual images with the corresponding long-term statistics

Similarity analysis Compare the pixel single year values with others years to detect the most similar

year, or compare a single year with the long-term average to define the overall

advance or delay of the season

Similarity-based yield assessment Assess crop yields based on the assumption that the yield of the current year will

resemble the yield of the most similar year

Analysis tools Map composer Compose simple GIS maps and store as templates to be applied on a time series

Extraction of statistics Extract statistics aggregated by administrative and thematic areas and upload them

to the database

Graph composer Browse and query the database to show statistics in graphs and store graphs

layouts as templates to be applied automatically to other regions or land use types

User tools Run external programs in a SPIRITS GUI and create processing chains by

concatenating different programs

information. Temporal operations can be further subdivided into
those working on any arbitrary time period (temporal Smoothing,
Compositing, Averaging, Phenology extraction, Phenology-based
averaging), and those requiring an archive composed of multiple
years (computation of Long term statistics and Anomalies,
Similarity analysis and Similarity-based yield assessment). Finally,
the analysis tool can be used to produce and visualize the
graphical outputs needed by the analyst for the evaluation of
the crop status. This set of tools includes the Map composer to
customize the graphical layout used to automatically generate
time series of maps, the Database manager to configure the
internal database and to upload the desired statistics (e.g.,
the mean values per region and land cover type), the Graph
composer to customize the content and graphical layout used
to automatically produce a set of graphs based on the database

content. In addition, any external functions or executable
programs can be integrated into SPIRITS processing chain
by using the User tool. More information of the SPIRITS
functionalities can be found in Eerens et al. (2014), on the
SPIRITS web site (http://spirits.jrc.ec.europa.eu/) and in the
software manual.

Although most of these functionalities can be also be found
in other software or can be reproduced by linking different
packages, SPIRITS offers a number of unique features like
for example: the availability of all functionalities in one single
environment, a high degree of customization flexibility of
each function, and the optimized processing flow for rapid
time-series and multiple spatial entities analysis. The latter point
is particularly important in cropmonitoring as it permits the user
to first set and tune a given operation on one image. This setting
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is then applied in a loop on the whole time series and/or to a set
of different spatial entities and can easily be repeated every time
new data becomes available.

Recent SPIRITS Developments

After the official presentation of SPIRITS at the GSDI conference
in Addis Ababa in November 2013, the users’ community
has been rapidly growing and increasingly providing feedback
about possible improvements beyond the main functionalities
summarized in the previous sections. As a result of this
interaction with users and developers, new versions, including
the upgrades described below, are periodically released. The latest
available version is dated in March 2015 (version 1.3.0) and is
available at http://spirits.jrc.ec.europa.eu. This section provides a
detailed list of the new developments included in version 1.3.0.

HDF5 Format Image Import
The HDF5 (Hierarchical Data Format) file format is designed to
efficiently store and organize large amounts of numerical data,
including satellite images. It is already used for a number of
remote sensing data sources (e.g., Meteosat Second Generation,
SPOT-VEGETATION and Proba-V provided through the
Copernicus program) and will likely be adopted by other sensors.
The HDF5 importer makes use of HDF (http://www.hdfgroup.
org/) and GDAL (http://www.gdal.org/) libraries for inspecting
data and attributes and converting HDF5 imagery into SPIRITS
format. This tool allows a large set of current and future data
sources to be easily integrated into the SPIRITS processing chain.

Re-projection
The new Image re-projection tool, based on the GDAL library,
allows, in conjunction with the resampling tool, to convert
SPIRITS images and vector files from and to a large set of spatial
reference systems and resolutions, increasing the flexibility of the
software in image processing and vector rasterization.

Image Time Series Smoothing
Temporal image smoothing is a large research area in the
time series processing domain and many new algorithms are
developed and tested every year. Among these, the Whittaker
smoother recently received broader attention within the remote
sensing community (Atzberger and Eilers, 2011; Atkinson et al.,
2012). This algorithm does not assume periodicity and is based
on penalized least squares. In the SPIRITS implementation
(Smoothing module), two user-defined parameters control the
smoothness of the output time series: the number of iterations
and the parameter k, referred to as the smoothing parameter. The
user can also select an “upper envelope adaptation” with which
the smoothing is iteratively applied to fit the “upper envelope”
of the time series under the assumption that atmospheric
perturbations result in sudden drops of the vegetation index
(Beck et al., 2006). At the first iteration the original time
series is smoothed. At each subsequent iteration, the smoothing
algorithm is applied to an updated time series where all observed
values that are smaller than the curve fitted in the previous
iteration are replaced by their fitted values.

This new algorithm complements those already available
in SPIRITS: simple interpolation, BISE (Best Index Slope
Extraction) adapted fromViovy et al. (1992), and Swets (modified
weighted least square regression) adapted from Swets et al. (1999)
by Klisch et al. (2006). The application of different smoothing
algorithms on noisy (raw) NDVI time series is exemplified in
Figure 1.

Image Time Series Periodicity Conversion
SPIRITS works with a fixed set of input image periodicity,
namely: daily, 10-daily, monthly and annual images. This was
recognized as a limiting factor in the possibility to integrate
data from other potential data sources, such as for example
the MODIS 250m resolution 16-days vegetation index global
imagery (MOD13Q1 and MYD13Q1 products), one of the most
widely used data set for crop and vegetationmonitoring. It is now
possible to overcome this limitation thanks to the new module
Periodicity conversion that converts images (of vegetation indices
and biophysical variables) of any input frequency into daily, ten-
daily, or monthly time series. For this purpose, the input images
are transformed to the SPIRITS standard periodicities by the use
of a temporal smoothing (see previous section). The transformed
data can then be processed with any other SPIRITS modules.

The example in Figure 2 illustrates the transformation from
the native 16-day periodicity of the MODIS NDVI product
(MOD13Q1) to the typical 10-day periodicity used in SPIRITS
with the Periodicity conversion tool.

Standardized Precipitation Index
The first official SPIRITS release (version 1.1.1) included the
possibility to compute 14 different types of image anomalies,
including many of the most used for early warning and
drought monitoring (e.g., simple and percent difference with
historical mean, simple and percent difference with previous year,
percentiles). However, such anomalies are mainly intended for
the use with remote sensing indicators of vegetation biomass and
status (typically NDVI and FAPAR). Rainfall estimates exhibit
a different statistical data distribution compared to vegetation
indices and this has to be taken into account in the computation
of anomaly indicators. Therefore, in order to address the needs
of drought monitoring, the possibility to calculate the commonly
used Standardized Precipitation Index (SPI; WMO, 2012) was
included in the latest SPIRITS release.

The SPI expresses the probability of the observed cumulative
rainfall for any time scale. The frequency distribution of historic
rainfall data for a given pixel is first fitted to a gamma distribution
which is then transformed into a normal distribution with mean
of 0 and standard deviation of 1 so that the SPI, expressed as the
Z-score of the observed rainfall, can be computed. The SPI can
be computed with rainfall cumulative values for different time
periods—from 1 to 48 months depending on the application.

Upgrade of the SPIRITS Graph Viewer Operations
The SPIRITSGraph composer allows browsing and displaying the
aggregated statistics extracted from imagery and loaded in the
internal database. The viewer is typically used by the analysts to
inspect the temporal variability over the crop season of relevant
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FIGURE 1 | Example of SPOT-VEGTATION NDVI temporal profile

of a pixel showing a distinct annual seasonality over the

years 2010–2012: raw (red dots), smoothed with the Swets

(black line), Whittaker (yellow line), and Whittaker adapted to

upper envelope (blue line). Default values have been used for the

Swets (5 dekads moving window, see SPIRITS manual for other

weights) and Whittaker (second order difference, k = 1, 3 iterations)

algorithms.

FIGURE 2 | Example of the results of the Periodicity conversion module (from 16- to 10-day composite) using the Swets smoothing algorithm applied

to a 16-day MODIS NDVI (product MOD13Q1) temporal profile for a single pixel in central Italy over the years 2005–2007.

variables (e.g., NDVI and rainfall) for a defined spatial entity (e.g.,
an administrative unit) and land cover class (e.g., cropland). Once
the user customizes the preferred parameters (variables, statistics,
time range, and supplementary information), the layout can be
automatically applied to all spatial entities and classes of interest,
saving the output graphs as Portable Network Graphic (PNG)
graphic files. At the same time, graphic titles (e.g., region name)
are automatically adapted as well as the PNG file names.

In the SPIRITS releases prior to version 1.3.0, the Graph
composer already included a set of operations to compute and
plot on-the-fly statistics derived from the data loaded in the
graph, for example the LTA. Other on-the-fly operations included
the minimum and maximum at each time step composing the
series, and anomalies such as the simple and relative difference

anomalies as compared to the previous year, the LTA and the
so called “historical average” (LTA that excludes the year under
consideration from the computation of the statistics). These
operations have now been extended to include the long term
standard deviation, the historical standard deviation (excluding
the target year), and the corresponding standard scores. In
addition, a large number of minor changes increased the
functionalities and flexibility of the Graphic composer as for
example the addition of bars to points and lines, improving
the readability of graphs where multiple variables are plotted
together.

Finally, a new way to visualize statistical data stored in the
SPIRITS database was introduced: the Matrix chart. In this
graphic form, the target dataset is displayed as a table where
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cell value is represented by means of a color map. The table
rows (Y-axis) represent the years whereas the columns (X-axis)
represent the time within the year (i.e., dekads or months).
This results in a synoptic view of the inter- and intra-annual
variability facilitating comparisons and visual identification of
specific temporal patterns (see Figure 9).

Examples of Recent Operational Crop and
Drought Monitoring with Spirits

Effective crop monitoring systems providing timely information
at both the national and regional scale are particularly necessary
in arid and semi-arid countries, where temporal and geographic
rainfall variability leads to high inter-annual fluctuations in
primary production and to a high risk of food and feed shortage.
In general, crop monitoring analysis at the regional and national
scale is based on the comparison of the actual crop status to
previous seasons or to what can be assumed to be the average
or “normal” situation (Rembold et al., 2013). Detected anomalies
are then used to draw conclusions on possible yield limitations.

In this section we highlight some of the key results of various
analysis performed using the SPIRITS software during year 2014.
These operational case studies are provided here as examples of
the use SPIRITS processing tool, maps and graphs for drought
and crop monitoring.

As compared to climatological data, year 2014 did not
present major droughts for most African countries (FAO-
GIEWS, 2014a). Nevertheless, regular crop monitoring with
SPIRITS detected dry conditions with limited spatial extent and
provided relevant information throughout the year for a number
of cases, for example in Angola, Kenya, Somalia, and Ethiopia.

Simple difference NDVI anomaly maps form the SPOT-
VEGETATION (VGT) satellite for Angola in January and

February 2014 (Figures 3A,B, respectively) show for example
that vegetation development was generally above average for
large parts of the country, while specific areas, including
croplands, along the coast and in the South West were affected
by drought in early 2014.

Similar maps can also be derived from rainfall estimates as
shown in Figure 4 (based on TAMSAT data, Tarnavsky et al.,
2014). In February a tropical storm in the Mozambique channel
had pushed humid air masses northwards, causing anomalous
rains in large parts of Tanzania and Kenya which is clearly
visible in the anomaly maps of February and to some extent
March (Figures 4A,B, respectively). After that, rainfall estimate
anomalies show dry conditions in April (Figure 4C), the time at
which the main rainy season usually starts in the eastern part of
the Horn of Africa.

The effect of such delayed rainfalls (main driver of vegetation
development in this area) are then visible in the timing of
vegetation onset for crops and pasture in the same region. For
this purpose, the SPIRITS Phenology module permits to express
the current date as the progress of the current season, i.e., the
percentage of the average duration of the growing season. For
the two crop seasons typical of most of the Horn of Africa, this
progress (until the second dekad of May) is shown in Figure 5A.
This is fundamental information for the analyst that has to assess
the impact of an observed anomaly. In fact, a negative anomaly
when the season has not yet started or is in its very initial stage
should not be interpreted as the same anomaly happening in
a later stage of the season. The anomaly of the 2014 timing of
the start of the season as compared to the average timing is
shown in Figure 5B. The figure shows the delay of the start of the
season in particular for the rangeland areas in Central Somalia
and in Southern Ethiopia, while crop areas in Kenya and western
Ethiopia generally had an early start due to the abundant rainfall
in February and March (FAO-GIEWS, 2014b). Analysts typically

FIGURE 3 | SPIRITS difference SPOT-VGT NDVI anomaly maps

for January (A) and February 2014 (B) over Angola. NDVI

anomaly values have been classified into five classes from large

decrease to large increase, relative to the Long Term Average,

according to the following NDVI anomaly thresholds: −0.125, −0.05,

0.05, 0.125.
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FIGURE 4 | SPIRITS difference anomaly maps derived from TAMSAT rainfall estimates over East Africa. Anomalies of monthly rainfall for the months of

February, March, and April 2014 in the (A–C) panels, respectively.

FIGURE 5 | Example maps for the Horn of Africa derived from

SPIRITS Phenology module and using SPOT-VGT NDVI time series as

input. (A) Progress of the average season development expressed in

percentage of the total season length; (B) anomaly of the start of the current

growing season (as by the second dekad of May) expressed as number of

dekads of delay/advance with respect to average.

exploit this convergence of evidence from independent sources
(in this case rainfall estimates and NDVI-derived phenology)
to evaluate the degree of confidence they can attribute to their
analysis.

In addition to analyzing anomaly images for qualitative crop
growth monitoring, useful information can be derived from
temporal profiles of vegetation indices aggregated over spatial
entities of interest such as administrative areas. Differently from
anomaly images that highlight spatial patterns but capture only
a snapshot of vegetation development, seasonal profiles reveal
the temporal evolution of the variable of interest, allowing a full
overview of the growing season development. In SPIRITS these
temporal profiles are extracted by: (i) averaging all pixel values
inside a desired spatial entity (typically an administrative area),
or (ii) averaging values only for cropland pixels (or rangeland, or

any thematic class of interest) within the spatial entity. For the
latter extraction, a mask of the desired thematic class must be
available. The profiles give a complete picture of the vegetation
development during the seasonal cycle, and can be compared
with other crop seasons (for example the previous ones) and
the long term average profiles. Several approaches have been
elaborated for extracting “crop specific” temporal signatures from
the low resolution pixel that may contain multiple land covers
(so-called “mixed pixel”) (Busetto et al., 2008; Atzberger et al.,
2014). A simple and widely used approach is the crop-specific
NDVI (CNDVI) method (Genovese et al., 2001). The approach
adds proportional weights to the NDVI pixel values based on the
fractional coverage of crop area within each low resolution pixel.
It obviously requires that a crop mask is available at a spatial
resolution higher than the one of NDVI.
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Examples of seasonal profiles generated by SPIRITS for
rainfall estimates and cumulated rainfall taken from the 2014
Angola bulletin are reported in Figure 6 for two administrative
regions in the country. In such type of graphics the current
precipitation evolution can be comparatively evaluated with
respect to three benchmarks: the average conditions for that
specific area, and the extremes experienced in the last 30 years
(i.e., maximum and minimum cumulative rainfall).

Figures 6A,B indicate a significant negative deviation from
normal conditions in the current season rainfalls compared to
historical average. Figure 7 shows how to get a complete picture
of crop and rangelands conditions in this region thanks to
simultaneous analysis of NDVI and rainfall evolution for these
two thematic classes. For both cropland and grassland irregular
and below average rainfall has characterized the season and
resulted in a clearly reduced vegetation development (see the
NDVI profile); precipitation in the first dekad of March (latest
data available at the time of bulletin preparation) were abundant
but probably too late to allow crop recover.

The visualization of spatially averaged time series data in
SPIRITS with the so-called matrix graph is well suited to
highlight and compare temporal patterns over different years
(Figure 8). On a single row of the matrix plot, one cell is
visualized for each dekad of the year (columns of the matrix).

The different years are plotted as rows of the matrix. The color
of the cell shows the magnitude of the variable. In this way, in
addition to the seasonal variation, one can observe the inter-
annual changes for one administrative region and land cover type
by comparing the current season to all previous years. Thematrix
graph in Figure 8 shows the NDVI anomaly corresponding to
the temporal profile reported in Figure 7A. From the analysis
of the matrix graph it can be concluded for example that the
season 2013–2014 was similarly dry to the one of 2011–2012,
while 2012–2013 had been a relatively normal season.

Another interesting example of an operational use of SPIRITS
profiles is provided by the National Drought Monitoring
Authority (NDMA) of Kenya. NDMA use VCI profiles from
filtered and gap-filled MODIS NDVI at 250m resolution (Klisch
et al., 2015). The VCI expresses as percentage the relative position
of the observed value (act) of a given pixel (p) with respect to
the extreme values (min and max) observed in the historical
archive (Kogan, 1995). The weekly VCI data at pixel level are
aggregated at the sub-county level and for various time spans for
monitoring drought and making available Disaster Contingency
Funds (DCF). DCFs are disbursed to affected counties according
to pre-defined VCI triggers.

SPIRITS graphs with monthly updates of VCI computed over
the previous 3 months are used for monitoring the situation as

FIGURE 6 | Temporal evolution of cumulative rainfall (source:

TAMSAT rainfall estimates) spatially averaged over all pixels

within the administrative regions of Baia Farta (A) and Benguela

(B), Angola. The graphics depict the temporal evolution of the current

season (2013–2014), the historical average (Hist. Avg.), and reference

years with the highest and lowest total rainfall (named as “Good year”

and “Bad year,” respectively). The historical average is computed over a

set of 30 years.

FIGURE 7 | Temporal evolution of SPOT-VGT NDVI and rainfall (TAMSAT) for different land cover classes in the administrative region of Benguela

(Angola) up to March 2014: cropland and grassland in (A) and (B), respectively.
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FIGURE 8 | NDVI anomaly matrix graph corresponding to SPOT-VGT NDVI anomaly of Figure 7A. Classes are classified on the base of the intervals of simple

difference anomaly reported in Figure 3.

FIGURE 9 | VCI temporal profiles produced using SPIRITS for the

Eldas Subcounty (in Wajir County) in Kenya. The 3-monthly VCI is here

derived from weekly MODIS NDVI observations at 250m spatial resolution

and using a customized version of the Whittaker smoother as implemented

by NDMA.

shown in the example of Figure 9. In this case VCI has been
below average nearly for the whole year in 2014 and approaches
the historical minimum (as compared to the last 12 years) in
February 2015. The 3-monthly VCI entered the stage “slight
drought” in October 2014 and degraded further to “extreme
drought” conditions in December 2014. Consequently, DCFs
were disbursed by NDMA to this county.

In addition to observing and studying anomalies, with
SPIRITS it is also possible to analyze the potential impact
of such anomalies. In fact, a negative NDVI anomaly over
an area may have different food security impacts depending
on the type and extent of people’s activities in the area. It
is acknowledged that this kind of impact assessment is a
rather complex task to be performed and requires a wealth of
diverse sources of information. In fact, specific tools have been

FIGURE 10 | Temporal evolution of the percentage of cropland area

experiencing different levels of relative difference severity

(SPOT-VGT/Proba-V NDVI from 01 May to 19 September 2014) for the

Koalack province, Senegal.

developed and currently used for thorough food security analysis
(e.g., Integrated Food Security Phase Classification; IPC Global
Partners, 2012). Nevertheless, a first insight can be obtained using
the information at hand, for example by plotting the percentages
of the areas affected by different levels of anomaly severity in
order to understand the portion of agricultural land which has
been affected, as reported for Koalack Province (Senegal) in
Figure 10. In this way we have an additional detail related to the
spatial importance of the various levels of anomaly severity. This
is a different information from the profiles shown in Figures 7,
and 8, where the average spatial value computed over each
administrative area can hide for instance a bimodal distribution
of the values.

In a similar way one can also compare the anomalies with
independent information, such as for example the number
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FIGURE 11 | Temporal evolution of SPOT-VGT/Proba-V NDVI for the

2014 season (April–October, 2014) in Koalack province, Senegal. The

current profile is plotted together with the LTA and the minimum and maximum

profiles (lines). The number of villages experiencing a negative deviation greater

than 25% from the LTA is reported as bars.

of villages affected by an NDVI relative anomaly below-
25% (Figure 11). A preliminary raster layer is generated with
the number of rural villages per pixel. Then the sum of
villages intersecting with the class of anomaly selected (here
below−25%) is computed per administrative area.

Future Data Processing Requirements and
Spirits Developments

SPIRITS has been developed to answer the specific needs of the
agriculture monitoring community, with the objective to support
the whole chain of image time series processing steps and the
production of synoptic visual analysis outputs in a user-friendly
and flexible manner. Since its first release in 2012 the software
has evolved into an advanced and comprehensive time series
processing tool.

Additional improvements are currently under development
and will be included in a new release expected for the end of 2015.
The new features foreseen for this release include: automatic
production of maps for all administrative units included within
a region of interest (currently a time series of maps can be built
only with one user-defined region at a time), a generic raster
calculator, an improved export function to save the content of the
internal database in different formats, functionalities to compare
time series of aggregated statistics in scatterplot graphs and
simple trend analysis of aggregated statistics. A major direction
of development will also be the integration of SPIRITS in larger
information systems, for example using PostgreSQL as reference
database.

In the longer term SPIRITS, like all other tools for satellite
image processing, will face the technical challenges that the
upcoming generation of satellite sensors will pose to software
developers and data analysts. In fact, the increasing spatial
and temporal resolution offered by recent and future satellite
systems (e.g., the Sentinel sensors of the European Copernicus
programme) will result in a data flow of amuch bigger magnitude

than what current software is used to deal with and time series
processing will no longer be restrained to the medium and low
resolution domains. Sensors like Sentinel-2 will provide global
time series of optical data with deca-metric spatial resolution
every 6–12 days and will enable the derivation of time series
of crop specific indicators at high spatial and spectral detail
(e.g., red-edge, short-wave infrared differential indices), allowing
improved crop mapping and monitoring accuracy. The related
processing requirements will pose serious challenges in terms
of storage capacity and processing time. Traditional desktop
applications for remote sensing analysis like for example ENVI
and SPIRITS, or complex workflows integrating a variety of
geospatial processing tools (e.g., GDAL, PostGIS, GRASS, QGIS,
OpenCV) will still be an effective solution in many operational
cases and will probably continue to evolve to cope with the new
requirements. Nevertheless, the most promising approach to take
full advantage of “Big Data” is expected to be represented by the
introduction of cloud-based tools and data repositories.

At least two main directions are emerging for overcoming the
constraints imposed by processing power and storage capacity
limitations of local applications in the “Big Data” for crop
monitoring applications.

The first one is represented by web-based portals offering only
processed outputs derived from remote sensing time series with
no access to the original data and limited analysis customizability.
Some examples of this approach are: the Agricultural Stress
Index System of the Food and Agriculture Organization of
the United Nations (http://www.fao.org/climatechange/asis/
en/), VegScape of the United State Department of Agriculture
(https://catalog.data.gov/dataset/vegscape-vegetative-condition-
explorer), the time series viewer of VITO (http://tsviewer.
vito-eodata.be/), or at national level BOKU’s web-service for
displaying NDMA data for Kenya (http://ivfl-geomap.boku.ac.
at/html/demo_WG/kenya/). Such systems have the advantage
of being intuitive and easy to use but their functionalities are
mainly limited to the visualization of the results of predefined
operations. Hence, these systems are scarcely customizable and
lack flexibility in the analysis the user can perform.

The second web-based option is to offer scripting languages
and a complete developing environment for user-defined
processing chains to be run in the cloud. An example of this
innovative approach is Google Earth Engine (https://earthengine.
google.org), where very large data sets are managed, stored, and
shared in the cloud, with an enormous processing power made
available to users and no local resources needed for storage and
processing.

SPIRITS’ future development could possibly position the tool
in between these two paradigms by offering the current GUI
as web-based system. By storing the mass of image data on the
cloud and providing the necessary processing power, users with
sufficiently fast internet connection will perform all the required
processing steps on-line and save the desired intermediate results
and the final graphical outputs on the local machine. Where or
when the internet connection is not available, the user would use
the desktop version of the GUI and use the data stored locally.

Finally, it is also important to remind that despite the
rapidly increasing availability of higher spatial and temporal
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resolution data, the analysis at national and regional level will still
include spatially and temporally aggregated data, not necessarily
requiring the full detail of information available. Moreover,
and especially for anomaly detection, the new generation of
high resolution Earth Observation satellites do not yet possess
the necessary (long) archive and low to medium resolution
time series will continue to play an important role. In this

sense for example, the Sentinel 3 mission is planned to
deliver optical observations at 300m resolution and will offer
continuity to the medium and low resolution data acquisition
of SPOT VEGETATION and Proba-V. Within this framework,
approaches for working with multiple resolutions like data fusion
and aggregation at different spatial and temporal levels will
become progressively more relevant.
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