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We often estimate an unknown value based on available relevant information, a
process known as cognitive estimation. In this study, we assess the cognitive and
neuroanatomic basis for quantitative estimation by examining deficits in patients with
focal neurodegenerative disease in frontal and parietal cortex. Executive function and
number knowledge are key components in cognitive estimation. Prefrontal cortex has
been implicated in multilevel reasoning and planning processes, and parietal cortex
has been associated with number knowledge required for such estimations. We
administered the Biber cognitive estimation test (BCET) to assess cognitive estimation
in 22 patients with prefrontal disease due to behavioral variant frontotemporal dementia
(bvFTD), to 17 patients with parietal disease due to corticobasal syndrome (CBS) or
posterior cortical atrophy (PCA) and 11 patients with mild cognitive impairment (MCI).
Both bvFTD and CBS/PCA patients had significantly more difficulty with cognitive
estimation than controls. MCI were not impaired on BCET relative to controls.
Regression analyses related BCET performance to gray matter atrophy in right lateral
prefrontal and orbital frontal cortices in bvFTD, and to atrophy in right inferior parietal
cortex, right insula, and fusiform cortices in CBS/PCA. These results are consistent with
the hypothesis that a frontal-parietal network plays a crucial role in cognitive estimation.

Keywords: cognitive estimation, behavioral variant frontotemporal degeneration, corticobasal syndrome,
posterior cortical atrophy, prefrontal cortices, parietal cortices

Introduction

Throughout the course of a day, individuals make decisions on the basis of estimations — Do I
have enough gas to get to work this morning? How long will my afternoon meeting take? How
much bread do I need for the week? Our decisions regarding what we buy, how we plan our day,
and any of a number of other activities are strongly influenced by quantities that we calculate using

Abbreviations: BCET, Biber cognitive estimation test; BNT, Boston naming test; bvFTD, behavioral variant frontotemporal
dementia; CBS, corticobasal syndrome; dlPFC, dorsolateral prefrontal cortex; DT, diffusion tensor; DTI, diffusion tensor
imaging; DWI, diffusionweighted imaging; FA, fractional anisotropy; GM, gray matter; GMP, gray matter probability;MMSE,
mini-mental state examination; PBAC, Philadelphia Brief Assessment of Cognition; PCA, posterior cortical atrophy; PFC,
prefrontal cortex; PPT, pyramid and palm tree test; WM, white matter.
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estimates based on relevant knowledge. In this study, we assess
the cognitive and neuroanatomic basis for deficits in quantitative
estimation in groups of patients with focal neurodegenerative
disease in frontal and parietal cortex.

Cognitive estimation is the strategic process of generating
a mental approximation based on available but incomplete
information (Shallice and Evans, 1978). Beyond the necessary
semantic knowledge of the relevant concepts and working
memory needed to maintain relevant information in an active
state, cognitive estimation requires quantitative reasoning about
familiar concepts and probabilistic processes in the face of
imprecise information in order to develop a reasonable final
estimated quantity (Shallice and Evans, 1978; Bullard et al.,
2004). There appear to be two major components to cognitive
estimation: executive resources and number knowledge. These
components facilitate the integration of information from
semantic memory using strategic reasoning skills to derive a
probabilistic evaluation, a process that is central to cognitive
estimation. For example, when estimating how long it will
take to read this article, one must identify and retrieve the
appropriate knowledge about reading from semantic memory,
and integrate this with quantitative information about reading
speed, to derive an appropriate estimate (e.g., it’s an academic
article with small font so it might take longer than most
reading).

In the current study, we sought to identify the neuroanatomic
areas contributing to the neural network supporting cognitive
estimation. Based on functional imaging studies in healthy adults
and patients with focal brain damage, we hypothesize that these
two components depend in part on two interacting brain regions.

Dorsolateral prefrontal cortex (dlPFC) is implicated in
executive functioning (Duncan and Owen, 2000; Aron et al.,
2004). Seem to be of particular importance for cognitive
estimation. fMRI studies of healthy adults engaged in tasks
requiring probability show activation in dlPFC (Casey et al.,
2001). An fMRI study examining the neural correlates of tactile
estimation showed greater levels of activation in dlPFC during a
texture estimation task as compared to a nearly identical task not
requiring any estimation (Kitada et al., 2005). Complementary to
the neuroimaging evidence, individuals with frontal lobe damage
demonstrate severe limitations in cognitive estimation abilities
(Shallice and Evans, 1978). Smith and Milner (1984) showed
impairment following right-lateralized dlPFC damage in patients
with surgical treatment for epilepsy.

To examine the role of dlPFC in cognitive estimation,
we assessed estimation abilities in non-aphasic individuals
with the behavioral variant frontotemporal dementia (bvFTD),
a neurodegenerative condition that is associated with GM
atrophy encompassing dlPFC (Rosen et al., 2002; Grossman
et al., 2004) and frontal WM disease (Whitwell et al.,
2010a). Symptomatically, bvFTD is characterized by executive
impairment as well as behavioral disinhibition and personality
changes (Kramer et al., 2003; Libon et al., 2006; Rascovsky
et al., 2011; Possin et al., 2013). We assessed cognitive estimation
in these patients to minimize confounds associated with
semantic knowledge, visuospatial and language abilities where
their performance is generally preserved, but show limitations

in reasoning, organization, and social judgment. Given the
collective evidence of estimation deficits in people with executive
dysfunction, and the association of these deficits with dlPFC
damage, we expected bvFTD patients to be impaired compared
to healthy controls in a test of cognitive estimation, and that
their impaired cognitive estimation performance would relate to
cortical atrophy including at least right dlPFC.

Number knowledge is also necessary to produce appropriate
quantitative estimations. This is the domain of knowledge
over which cognitive estimations often operate. Numerical
knowledge is said to involve an analog number system that
depends in part on the representation of ratios between
quantities on a logarithm-like number line (Dehaene, 1997).
Some have argued that the representation of precise numbers
larger than 4 may depend in part on an external algorithm
involving language (Dehaene et al., 1999), although we have
shown that number knowledge is compromised in non-aphasic
patients with CBS and PCA (Koss et al., 2010; Spotorno et al.,
2014). Multiple fMRI studies using a variety of techniques
have demonstrated that the parietal lobe, and particularly the
intraparietal sulcus and adjacent inferior parietal lobule, play
a crucial role in the representation of number knowledge
(Piazza and Dehaene, 2004; Pinel et al., 2004; Danker and
Anderson, 2007; Nieder and Dehaene, 2009). This includes
knowledge of quantity that is mediated both symbolically
by Arabic numerals and non-symbolic representations of
number such as quantities of filled circles. Furthermore, the
inferior parietal lobule seems to be associate with magnitude
and quantitative processing, possible because of the spatial
magnitude component involved in these processes. An fMRI
study tested healthy volunteers during number comparisons
and showed bilateral activation of the inferior parietal lobes,
with higher activation on the right side (Chochon et al.,
1999). Dehaene et al. (1999) also found increased fMRI
and ERP activation in the inferior parietal lobe during
approximation calculations as compared to exact calculations,
which they attributed to non-linguistic numerical processing
during approximations.

In the present study, we assessed the quantitative or numeric
component of cognitive estimation in patients with parietal
disease, including CBS and PCA. CBS is an extrapyramidal
disorder with involuntary movements associated with basal
ganglia disease and a variety of clinical features attributable
to parietal disease including apraxia and cortical sensory loss
(Murray et al., 2007; Armstrong et al., 2013). PCA is a variant
of Alzheimer’s disease with visuospatial deficits due to parietal–
occipital disease (Crutch et al., 2012). We have shown that
patients with CBS and PCA have significant deficits with number
knowledge, including impairments on measures involving single-
digit calculations and Arabic numeral-dot matching (Koss
et al., 2010; Morgan et al., 2011). Numerical and quantitative
processing, crucial components of cognitive estimation, are
associated with parietal lobe functioning, therefore, we expected
that CBS and PCA patients with parietal damage would also show
deficits in cognitive estimation.

To evaluate the specificity of the hypothesized frontal and
parietal contributions to cognitive estimation we additionally
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evaluated patients with mild cognitive impairment (MCI). MCI
is characterized by mild memory impairments (Feldman and
Jacova, 2005; Albert et al., 2011) and is typically considered
a prodromal form of Alzheimer’s disease (Boyle et al.,
2006;Gauthier et al., 2006; Meyer et al., 2007). Critically,
MCI patients have relatively preserved executive function and
intact number knowledge (Zamarian et al., 2007; Aretouli and
Brandt, 2010); therefore, despite cognitive impairments and likely
neurodegenerative disease, we hypothesize that these patients will
have relatively preserved cognitive estimation.

Complex behaviors such as cognitive estimation depend on
multiple GM nodes that are integrated by WM projections.
dlPFC and intraparietal sulcus hypothesized to play a role
in cognitive estimation may be linked by dorsal and ventral
WM streams. The dorsal stream is mediated by the superior
longitudinal fasciculus (SLF), and the ventral stream by the
inferior frontal-occipital fasciculus (IFO) or some combination
of the uncinate fasciculus (UNC) and inferior longitudinal
fasciculus (ILF). To help define the WM projections integrating
the neuroanatomic network underlying cognitive estimation, we
also obtained diffusion-weighted imaging studies. We expected
that some combination of dorsal and ventral stream projections
would also be implicated in cognitive estimation by imaging
studies.

Materials and Methods

Participants
Thirty-nine patients with a targeted neurodegenerative disease,
including patients with bvFTD (N = 22) or CBS/PCA
(N = 17), 11 brain-damaged controls with MCI not involving
the frontal lobe or the parietal lobe, and 25 age- and education-
matched healthy controls, participated in the experiment.
All participants were native English speakers. Patients were
diagnosed by board-certified neurologists (M.G. and D.J.I.).
bvFTD diagnosis was verified through a consensus procedure
using published criteria (Rascovsky et al., 2011). The CBS/PCA
group consisted of 11 patients diagnosed with CBS and six
PCA patients. Consensus verification of CBS used published
criteria (Armstrong et al., 2013), while verification of PCA was
based on reports from the literature (e.g., Crutch et al., 2012,
2013a,b). As bvFTD patients can develop language impairments
associated with semantic variant primary progressive aphasia
(svPPA), any patients with symptomatic evidence of svPPA
were excluded from the sample population. A brain-damaged
control group consisted of patients with MCI and were
diagnosed using published criteria (Albert et al., 2011). Other
types of dementia such as vascular disease, head trauma
or hydrocephalus were excluded through clinical evaluation.
Patients with primary psychiatric or medical diagnoses that
can impact cognition were excluded. Some patients may have
been taking small doses of medically necessary medications such
as non-sedating anti-depressants. Control subjects confirmed
their status through negative self-report of a neurological
and psychiatric history. Study participation was voluntary
and in accordance with the informed consent procedures

approved by the University of Pennsylvania Institutional Review
Board.

Participants’ overall cognitive status was assessed using
the MMSE (Folstein et al., 1975). Only patients with an
MMSE score of 15 (out of 30 possible points) or above were
included in the research sample, in order to restrict the patient
participants to mild or moderate levels of dementia. Controls
were required to score at least 28 on the MMSE to participate.
Demographics for each group are summarized in Table 1. All
three dementia groups had lower mean MMSE scores than
the control group [χ2(3) = 34.28, p < 0.001]. Comparison
of the three dementia groups revealed that these groups did
not differ in their MMSE scores [χ2(2) = 4.20, p = 0.12].
To develop a neuropsychological profile for our focal patient
groups (bvFTD and CBS/PCA), we assessed cognitive abilities
in the domains of executive, visuospatial, language and memory
functioning using the PBAC (Libon et al., 2011; Avants et al.,
2014). Moreover, to assess comprehension of the verbal stimulus
materials, we also administered the BNT (Kaplan et al., 1983)
and the PPT (Howard and Patterson, 1992) to these patient
groups. The neuropsychological characteristics of these groups
are summarized in Table 2. The patient groups also did not
differ in their scores on the PBAC scales [Executive Scale:
U(29) = 96.00, p = 0.61; Visual Scale: U(28) = 63.50, p = 0.08;
Language Scale: U(26) = 77.50, p = 0.56], with the exception
of the behavioral scale for which bvFTD patients showed more
severe behavioral ratings than CBS/PCA patients [U(28) = 0.00,
p < 0.001].

Behavioral Materials and Procedures
The BCET, originally developed by Bullard et al. (2004) was
verbally administered to each participant as one measure in a
larger battery that tested decision-making abilities and executive
functioning.

The BCET asks participants to mentally calculate numerical
approximations of imprecise quantitative values based on
relevant information (e.g., How many slices of bread are there in
a one pound loaf?). The 20-item task includes estimations across
four modalities: quantity, weight, distance, and time. The task
instructions emphasize that participants often will not be able
to give an exact answer, but should instead provide their “best
guess.” They are asked to answer with a specific number, not a

TABLE 1 | Mean (SD) of group demographic characteristics.

bvFTD CBS/PCA MCI Healthy
seniors

N (male/female) 20/2 9/8 7/4 11/14

Age (years) 64.77
(7.71)

64.41
(7.04)

64.55
(10.72)

67.96
(8.34)

Education (years) 16.36
(3.02)

15.24
(2.11)

15.82
(3.16)

15.76
(1.99)

MMSE
(maximum = 30)

25.68
(2.93)

23.06
(5.06)

22.91
(4.13)

29.04
(0.69)

bvFTD, behavioral variant frontotemporal dementia; CBS, corticobasal syndrome;
PCA, posterior cortical atrophy; MCI, mild cognitive impairment; MMSE, mini-
mental state examination (Folstein et al., 1975).
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range; and, they are asked to specify the units of their answer (e.g.,
30 slices of bread). Whenever participants answered with a range
or without specifying a unit of measurement, they were prompted
to be more specific.

Participants’ responses were transformed to Z-scores based on
published normative data (Bullard et al., 2004). As there were
no a priori predictions with regard to the direction of estimation
errors (i.e., over versus under estimation), the absolute values of
the calculated Z-scores were used for analysis. The means of each
participant’s Z-scores for all BCET responses were calculated and
analyzed. Three patients were identified as outliers based on a
meanZ-score greater than 5.0. These patients were excluded from
all analyses reported herein. All mean Z-scores healthy control
participants were within the normative range according to the
published data from Bullard et al. (2004).

T1 Structural Gray Matter Imaging Acquisition
and Analysis
A structural T1-weighted 3-dimensional spoiled gradient-echo
sequence was obtained on a Siemens 3.0T Trio scanner with an
8-channel head coil for 18 bvFTD and 13 CBS/PCA participants
(sequence parameters: TR = 1620 ms, TE = 3 ms, flip
angle = 15◦, matrix = 192 × 256, slice thickness = 1 mm,
and in-plane resolution = 1 × 1 mm). Reasons for exclusion
included health and safety (e.g., metallic implants, shrapnel,
claustrophobia), intercurrent medical illness, and lack of interest
in an imaging study. Imaging was acquired on average within 125
(±75) days of performing the task. The subsets of patients for
whom imaging data were available did not differ (p > 0.3) on
any demographic, neuropsychological, or language performance
measures from the total set of participants in each group.
Imaging was also collected on 38 healthy controls. The three
imaged groups were comparable in age and education, as
determined by one-way ANOVAs [F(2,66)= 0.254, p= 0.777 and
F(2,66) = 2.313, p = 0.107, respectively].

TABLE 2 | Mean (SD) of patient neuropsychological characteristics.

bvFTD CBS/PCA

PBAC Executive Scale
(maximum = 17)

7.94 (3.51)
(n = 20)

6.78 (3.31)
(n = 11)

PBAC Behavioral Scale
(maximum = 18)

8.75 (2.99)
(n = 20)

17.6 (0.52)
(n = 10)

PBAC Visual Scale
(maximum = 18)

15.63 (2.11)
(n = 19)

11.09 (6.63)
(n = 11)

PBAC Language Scale
(maximum = 19)

16.28 (2.79)
(n = 18)

15.1 (4.43)
(n = 10)

BNT
(maximum = 30)

25.36 (3.82)
(n = 22)

23.75 (5.94)
(n = 16)

PPT Words
(maximum = 26)

24.00 (1.79)
(n = 11)

22.77 (2.20)
(n = 13)

PPT Pictures
(maximum = 26)

24.36 (2.20)
(n = 11)

24.17 (2.29)
(n = 12)

PBAC, Philadelphia Brief Assessment of Cognition (Libon et al., 2011; Avants
et al., 2014); BNT, Boston naming test (Kaplan et al., 1983); PPT, pyramids and
palm trees (Howard and Patterson, 1992); bvFTD, behavioral variant frontotemporal
dementia; CBS, corticobasal syndrome; PCA, posterior cortical atrophy.

Gray matter images were normalized to a standard space
and segmented using the PipeDream interface1 to the ANTS
toolkit2 (Avants et al., 2014). The ANTS toolkit implements
a diffeomorphic and symmetric registration and normalization
method that is the most reliable tool available (Avants et al.,
2008; Klein et al., 2010). A local T1 template with 1 mm
isotropic resolution was built using ANTS from 25 healthy
seniors and 25 frontotemporal lobar degeneration patients.
Subject images were registered to the local template. The
Atropos tool in ANTS (Avants et al., 2011) used template-
based priors to guide three-tissue segmentation (GM, WM,
and cerebrospinal fluid), and GM probability (GMP) images
were calculated as a quantitative measure of GM atrophy. GMP
images were then transformed into MNI space for statistical
analysis and smoothed in SPM83 using a 4-mm full-width
half-maximum Gaussian kernel to minimize individual gyral
variations. Finally, images were down-sampled to 2 mm isotropic
resolution in order to attain a more anatomically relevant voxel
size.

We used the randomise tool in FSL4 to perform two
separate non-parametric, permutation-based statistical analysis
(permutations = 10,000) to compare GM density between
bvFTD patients and controls and CBS/PCA patients and
controls. Analyses were restricted to voxels containing
GM using the same explicit mask generated from the
average GMP map of all imaged subjects. For each density
comparison, we considered only clusters that exceeded an
extent threshold of 50 voxels and a height threshold of
p < 0.0001 (Bonferroni-corrected for multiple comparisons
with threshold free cluster enhancement). We then used the
randomise tool to perform regression analyses that related
GM density to the BCET mean Z-score for each patient
group (permutations = 10,000). Regression analyses were
restricted to areas of GM disease for each patient group, as
determined by the respective GM density analyses. Clusters
with a height threshold of p < 0.05 (uncorrected for multiple
comparisons) and an extent threshold of 10 voxels were
considered significant.

Diffusion Tensor Imaging White Matter
Acquisition and Analysis
Diffusion tensor imaging was available for the same patients
with bvFTD (N = 18) and controls (N = 38) with T1 imaging,
and 12 of the 13 CBS/PCA patients with T1 imaging. A 30-
directional DWI sequence was collected using single-shot, spin-
echo, diffusion-weighted echo planar imaging (FOV = 240 mm;
matrix size = 128 × 128; number of slices = 70; voxel
size= 2mm isotropic; TR= 8100ms; TE= 83ms; fat saturation).
Thirty volumes with diffusion weighting (b = 1000 s/mm2)
were collected along 30 non-collinear directions, and either one
or five volumes without diffusion weighting (b = 0 s/mm2)
were collected per subject. The PipeDream processing pipeline

1http://www.sourceforge.net/projects/neuropipedream/
2http://www.picsl.upenn.edu/ANTS/
3http://www.fil.ion.ucl.ac.uk/spm/software/spm8
4http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Randomise
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utilized ANTS (Avants et al., 2014) and Camino (Cook et al.,
2006) to preprocess DWI. Motion and distortion artifacts were
removed using affine co-registration of each diffusion-weighted
image to the average of the unweighted (b = 0) images. Using
a weighted linear least-squares algorithm (Salvador et al., 2005)
implemented in Camino, DTs were computed. FA was computed
from the DT image, and distortion between the subject’s T1 and
DT image was corrected by registering the FA to the T1 image.
DT images were then relocated to the local template (mentioned
above) for statistical analysis by applying the FA-to-T1 and T1-
to-local template warps, and tensors were reoriented using the
preservation of principal direction algorithm (Alexander et al.,
2001). Each participant’s FA image was recomputed from the
DT image in local template space and smoothed using a 4 mm
full-width half-maximum isotropic Gaussian kernel.

Healthy WM is vital for communication between different
brain regions. Therefore, disruption in any WM tracts associated
with the GM regions related to BCET performance may
contribute to impaired cognition by disrupting the large-scale
GM and WM network underlying cognitive estimation. Using
group-level FA comparisons, we assessed the integrity of the
WM tracts that integrate the GM regions associated with each
patient group’s BCET mean Z-score regression analysis. To do
this, we first inflated the GM regression results 3 voxels in all
directions to assure that the regression clusters extended into
the WM. We then performed two deterministic tractography
procedures (maximum angle over 5 mm = 75◦, minimum FA
considered WM = 0.25) to identify all WM tracts associated
with the GM regression results for each of the two patient
groups (see Supplementary Figure S1 for results of tracking
procedure). The DT image used to generate the streamlines for
both deterministic tractography images was a healthy senior
population template image, created by averaging each DT image
after its preprocessing and spatial normalization to the local
template (as above). Next, we converted each tractography image
into a volumetric WM image, one capturing the WM regions
associated with the GM regression results of the patients with
bvFTD, and one capturing the WM regions associated with
the GM regression results for the patients with CBS/PCA.
These volumetric WM images were used as masks for two FA
comparisons that were performed using the randomise tool in
FSL5 (permutations = 10,000), one between patients with bvFTD
and controls, and one between patients with CBS/PCA and
controls. For each FA comparison, we considered only clusters
that exceeded an extent threshold of 50 voxels and a height
threshold of p < 0.001 (uncorrected).

Results

Behavioral Results
To assess participant performance on the BCET, we calculated
the mean Z-score across all questions. Two participants did
not respond to all questions, therefore the mean Z-score for
their responses did not include the questions that were not

5http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Randomise

FIGURE 1 | Mean z-scores across all Biber cognitive estimation test
questions for each group.

answered. The analyses were performed comparing each group
separately because disease in specific neuroanatomical regions
for each group was thought to lead to distinct forms of
estimation impairment. Inspection of Q–QPlots revealed that the
distribution of scores was not normal. This was confirmed using a
Shapiro–Wilks test of Normality. Therefore, non-parametric tests
were used for all analyses.

A Kruskal–Wallis test showed that performance on the
BCET differed between the four groups, χ2(3) = 15.22,
p = 0.002. As illustrated in Figure 1, pairwise post hoc
comparisons using Mann–Whitney with Bonferroni correction
revealed that both the bvFTD [U(45) = 108.00, p < 0.001] and
CBS/PCA [U(40) = 115.00, p = 0.012] groups differed from
controls; however, the MCI group did not differ from controls,
(U(34) = 88.00, p = 0.093). Further comparisons revealed that
the bvFTD and CBS/PCA groups did not differ from each other
in their performance on the BCET (U(37)= 164.00, p= 0.52). To
confirm that the results of the CBS/PCA group were not driven
by only one of those groups, we conducted a Mann–Whitney
test comparing BCET performance in the PCA patients and the
CBS patients and found no significant difference in performance
between the two groups [U(15) = 29.00, p = 0.69].

To explore whether BCET impairment could be related to
disease severity, correlations were conducted between BCET
meanZ-scores and patientMMSE scores. These correlations were
not significant for any of the patient groups (bvFTD: r = 0.11,
p = 0.63; CBS/PCA: r = −0.40, p = 0.11; MCI: r = −0.42,
p = 0.20).

Structural Gray Matter Imaging Results
Significant regions of reduced GMP and regression relating GMP
to task performance for bvFTD and CBS/PCA patients are shown
in Figure 2. Peak coordinates of GM atrophy and regression
analyses are summarized in Tables 2 and 3 respectively. MRI
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FIGURE 2 | Regions of significantly reduced GM density relative to controls (blue) and regression relating GM density to task performance (red) for
behavioral variant frontotemporal degeneration (A) and corticobasal syndrome and posterior cortical atrophy (B).

data for the MCI group was not analyzed as this group was not
impaired on the BCET.

Figure 2 illustrates significant GM atrophy in bvFTD patients
that is apparent bilaterally in lateral frontal, medial frontal,
anterior temporal, and medial temporal cortices. Coordinates
for peak voxels are provided in Table 3, suggesting more
extensive atrophy on the right. Peak coordinates are provided in
Table 4 for the regression analysis relating BCET mean Z-score
cognitive estimation performance to reduced GMP. As illustrated
in Figure 2, this implicated right lateral prefrontal cortex in
cognitive estimation in bvFTD, as well as right orbital frontal,
right hippocampus and left thalamus.

In the CBS/PCA patient group, Figure 2 shows that atrophy is
restricted to the right hemisphere, focused in parietal, occipital,
insular, and superior and posterior temporal cortices. Peak
voxels for the atrophy analysis are summarized in Table 3. The
regression analysis in CBS/PCA, summarized in Figure 2 and

TABLE 3 | Anatomic locations of significant GM atrophy.

Anatomic locus
(Brodmann area)

MNI Coordinates P-value Cluster Size
(voxels)

x y z

bvFTD < Eld

L insula −34 22 6 <0.001 21104

R dorsolateral
prefrontal (46)∗

40 26 28 <0.001 n/a

R insula∗ 38 8 2 <0.001 n/a

R anterior cingulate
(32)∗

2 40 4 <0.001 n/a

L thalamus −18 −32 0 <0.001 849

L middle temporal (21) −52 4 −32 <0.001 74

CBS/PCA < Eld

R inferior parietal (40) 36 −48 42 <0.001 286

R middle occipital (18) 36 −82 8 <0.001 893

R fusiform (37) 48 −44 −26 <0.001 209

R insula 34 −20 16 <0.001 323

bvFTD, behavioral variant frontotemporal dementia; CBS, corticobasal syndrome;
PCA, posterior cortical atrophy. ∗Subpeak at this location.

Table 4, related reduced cognitive estimation performance to
GMP in right inferior parietal cortex, as well as right insula and
fusiform cortices.

White Matter Imaging Results
After determining the GM regions related to cognitive estimation
deficits in patients with bvFTD and patients with CBS/PCA, we
examined the WM tracts related to GM atrophy to determine
if they also displayed disease. As illustrated in Figure 3, we
observed distinct patterns of reduced FA (shown in orange)
relative to controls for each of the patient groups. This showed
that WM associated with the GM regions related to cognitive
estimation mean Z-score is also diseased. We display the tracts
from the tractography analysis that are associated with (i.e., pass
through) the reduced FA clusters (Figure 3, RGB streamlines).
Peak coordinates of reduced FA are summarized in Table 5.

In patients with bvFTD, there is significantly reduced FA in
WM related to the regions implicated in the regression analysis
relating GM atrophy to cognitive estimation performance. These
regions include bilateral genu of the corpus callosum, the ILF, the

TABLE 4 | Regressions of task performance with GM atrophy.

Anatomic locus
(Brodmann area)

MNI Coordinates P-value Cluster Size
(voxels)

x y z

bvFTD mean Z-score

R dorsolateral
prefrontal (46)

52 32 10 0.026 11

R orbital frontal (11) 12 60 −10 0.002 14

R hippocampus 28 −38 0 0.024 23

L thalamus −12 −28 0 0.008 11

CBS/PCA mean Z-score

R inferior parietal (40) 36 −30 38 0.013 18

R fusiform (37) 48 −48 −26 0.014 24

R insula 36 −6 8 0.005 11

bvFTD, behavioral variant frontotemporal dementia; CBS, corticobasal syndrome;
PCA, posterior cortical atrophy.
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FIGURE 3 | Significantly reduced FA in WM tracts (RGB) associated
with GM atrophy regions related to cognitive estimation task
performance (cyan) for patients with behavioral variant frontotemporal
degeneration (A) and for patients with corticobasal syndrome and
posterior cortical atrophy (B). We also illustrate WM regions with reduced
FA (orange). Please refer to Table 5. ∗Red: left–right, green: anterior–posterior,
blue: inferior–superior.

rostral portion of the inferior fronto-occipital fasciculus, as well
as WM in right inferior frontal gyrus that is proximal to the right
inferior frontal cortical region implicated in the GM regression
analysis with cognitive estimation performance.

Patients with CBS/PCA also show reduced FA in WM regions
related to results of regression analysis of GM atrophy and
cognitive estimation performance. However, in contrast to the
patients with bvFTD, the patients with CBS/PCA displayed

TABLE 5 | Anatomic locations of reduced FA.

Anatomic locus MNI Coordinates P-value Cluster Size
(voxels)

x y z

bvFTD < Eld

Genu of corpus
callosum

−13 30 0 <0.001 4373

R crus of fornix/stria
terminalis

23 −36 8 <0.001 1552

L inferior longitudinal
fasciculus

−38 −14 −16 <0.001 931

R inferior frontal gyrus
WM

31 30 11 <0.001 206

CBS/PCA < Eld

R inferior temporal
gyrus WM

52 −51 −12 <0.001 125

R superior longitudinal
fasciculus

56 −40 −10 <0.001 113

bvFTD, behavioral variant frontotemporal dementia; CBS, corticobasal syndrome;
PCA, posterior cortical atrophy.

regions of significantly reduced FA in WM of the right temporal-
parietal region, including vertical portions of the SLF.

We did not observe a significant correlation between FA and
BCET performance.

Discussion

Cognitive estimation is a complex process that we use
commonly in the face of imprecise knowledge about quantities
associated with familiar objects. Central components of cognitive
estimation include executive resources needed to formulate a
reasonable probability, and knowledge of numbers. We found
that patients with bvFTD and CBS/PCA, but not MCI, are
significantly impaired with cognitive estimation. Thus, they
have difficulty estimating the number of slices in a loaf of
bread, and other common, day-to-day estimates involving
quantity, time and distance. This appears to be due in part
to disease that compromises a frontal-parietal network that
plays a crucial role in probabilistic and quantitative components
of cognitive estimation. We consider each of these issues
below.

Patients with bvFTD have significant deficits with executive
resources and social functioning. This results in one of the
cardinal clinical features of bvFTD – an impairment of
judgment that manifests clinically as inappropriate behaviors
largely unmodulated by social norms (Rascovsky et al., 2011).
Difficulty estimating the range of appropriate responses in a
social situation is analogous to the difficulty that we observe
when bvFTD patients are attempting to estimate a quantity
associated with a familiar object like a loaf of bread. A range
of responses is provided by healthy controls when asked to
estimate a quantity such as the number of slices in a loaf
of bread. This is because we generally do not have a precise
representation of quantities associated with these kinds of
objects. Nevertheless, we can provide a reasonable estimate
that is close to the actual quantity. This can be inferred semi-
quantitatively through a multistep process such as estimating
the thickness of a bread slice, estimating the length of a loaf
of bread, and then estimating the number slices in the loaf.
Alternately, a reasonable approximation can be offered that
is within the rough Poisson distribution of one’s experiences
with a loaf of bread. Regardless of the specific basis for
estimation, patients with bvFTD tend to provide an estimate
that is more distant from the average quantity provided by a
reference population of young healthy controls. For example,
evidence has been shown suggesting that bvFTD patients have
difficulty developing a multistep strategy that can support the
estimation process (Carey et al., 2008; Johns et al., 2009; Poletti
et al., 2011), and it is possible that this strategic deficit limits
the ability to formulate a reasonable estimation. Alternately,
fMRI work has shown that probability estimation activates
dlPFC (Casey et al., 2001), an area that is compromised in
bvFTD, and these patients may have difficulty with developing a
Poisson distribution that captures the likelihood of a particular
quantity associated with the target concept. While some work
has shown a deficit in number knowledge in bvFTD patients
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(Halpern et al., 2003), it is less likely that this can explain the
estimation impairment. The number deficit in these patients
thus appeared to depend specifically on the performance of
complex calculations rather than a deficit in number knowledge.
It is unlikely that these patients did not understand the target
concept since there was no correlation between their estimation
performance and measures on tasks requiring semantic memory.
While bvFTD patients can be apathetic or distractible, these
characteristics are unlikely to account for their poor estimates
of quantity since their responses were not totally unrelated
to the range of quantities for the estimation; for example,
they never responded with a very small number like “1” or
a three-digit quantity when asked to estimate the number
of slices in a bread loaf. It does not appear that working
memory limitations can explain their deficit because they
were asked to judge only one object concept at a time and
there was no interference that could have compromised their
ability to hold the concept in mind while they were making a
judgment.

Patients with bvFTD have disease predominantly in prefrontal
regions of the brain. Many studies have associated deficits on
measures of executive functioning with atrophy of the frontal
lobe (Manes et al., 2002; Kramer et al., 2003; Alvarez and
Emory, 2006; Libon et al., 2009). In the present study, we
found that frontal lobe atrophy is associated with impaired
cognitive estimation as well. In particular, regression analyses
associated their deficit in cognitive estimation with atrophy in
dlPFC and orbital frontal cortex. dlPFC is an area that has
been associated with probability estimation in fMRI studies
of healthy controls (Casey et al., 2001). This area also has
been associated with the strategic development of multistep
planning such as that required to perform a task like the
Tower of London (Baker et al., 1996; Newman et al., 2003).
Orbital frontal cortex has been associated with mental flexibility
(Milner, 1963; Kim and Ragozzino, 2005; Eslinger et al., 2007;
Stalnaker et al., 2007; Evans et al., 2015), and disease in this
area may be contributing to performance by limiting the ability
to assess more than a limited range of possible quantitative
estimates.

There is also disease in WM regions in bvFTD, and this
appears to contribute to the cognitive estimation deficit in these
patients. WM disease in the anterior corpus callosum may
interrupt information transfer between hemispheres. Disease in
ILF may interfere with relating visual or imaged representations
of objects in visual association cortex to frontal regions important
for estimation. DiseasedU-fibers in orbital frontal regions may be
important for mental flexibility.

Cognitive estimation also depends in part on number
knowledge. The current study shows that patients with CBS/PCA
have difficulty with cognitive estimation; we attribute their
deficit to limited knowledge of numbers. The estimation process
thus is being applied over the domain of a quantitative
property of a familiar object, and knowledge of quantity is
necessary to support this process. Much work has demonstrated
a significant deficit in number knowledge in these patients
(Halpern et al., 2004; Koss et al., 2010; Morgan et al.,
2011; Spotorno et al., 2014). Some have observed executive

limitations in patients with CBS (Huey et al., 2009), and we
cannot rule out that this also may be contributing to their
deficit.

Many imaging studies (Whitwell et al., 2007, 2010b; Lehmann
et al., 2011) and autopsy-verified assessments (Alladi et al.,
2007; Murray et al., 2007; Pantelyat et al., 2011) underline
the distribution of disease in the parietal lobe in CBS/PCA.
Extensive fMRI work in healthy adults has associated the
parietal lobe with number knowledge (Rueckert et al., 1996;
Pinel et al., 1999), and thus it is not surprising that these
patients have difficulty with processing a quantity – in this
case, developing a quantity estimation. Consistent with these
findings, the regression analysis found that cognitive estimation
in CBS/PCA is related to cortical atrophy in the right inferior
parietal lobule. The insula may be playing a role in evaluating the
value of a correct response on this measure (Singer et al., 2009).
We also observed WM disease in CBS/PCA that is associated
with these GM regions. Disease in the vertical portion of the
SLF and posterior temporal regions may contribute to relating
visual or imaged object representations processing in visual
association cortex to parietal regions important for quantity
processing.

Specificity for our proposed fronto-parietal network comes
from our observation that MCI patients, our dementia control
group, were not impaired in their estimation abilities. This
observation suggests that cognitive estimation difficulties
are related to a specific neuroanatomic network and that
our results are not simply related to non-specific or global
neurodegeneration of the brain. These participants were
matched with the focal patient groups for MMSE, a brief
neuropsychological evaluation of cognitive functioning.
Furthermore, we did not find a significant correlation
relating disease severity to estimation abilities. These results
further support our hypothesis that a network specifically
involving frontal and parietal regions is involved in cognitive
estimation.

Several caveats should be kept in mind when evaluating our
findings. We examined a small number of patients, and a larger
cohort is needed to evaluate estimation performance. Because
of power limitations, we used a relatively liberal threshold to
relate performance to regional cortical atrophy. Nevertheless,
we believe that these findings are likely to be valid because
regressions are in areas of known disease for each patient
group, the regressions encompass areas of disease consistent
with predictions based on previous work, and the findings
are unique to each group. We also did not observe a direct
correlation between FA and BCETperformance. It is possible that
heterogeneity between groups such as the amount of WMdisease
in individuals associated with distinct underlying pathological
sources (McMillan et al., 2013) may have obscured our findings.
Additional work in larger and pathologically confirmed samples
are necessary to further explore the potential contributions of
WM to cognitive estimation. While regression analyses relating
performance to structural imaging provide converging evidence
implicating the estimation process and knowledge of quantity in
the estimation deficit in these patients, it would be useful to have
additional evidence about estimation with this task from other
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sources such as fMRI activation or rTMS in healthy adults.
With these caveats in mind, our findings are consistent with
the hypothesis that a frontal-parietal network plays a central
role in the process of cognitive estimation. Based on studies of
patients with focal neurodegenerative disease, we observed that
patients with predominantly prefrontal disease and patients with
predominantly parietal disease have difficulty with estimating a
quantitative property of a familiar object. This is consistent with
the claim that a large-scale frontal-parietal network plays a crucial
role in cognitive estimation.
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