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The use and benefit of adjuvant chemotherapy to treat stage II colorectal cancer (CRC)
patients is not well understood since the majority of these patients are cured by surgery
alone. Identification of biological markers of relapse is a critical challenge to effectively
target treatments to the ∼20% of patients destined to relapse. We have integrated
molecular profiling results of several “omics” data types to determine the most reliable
prognostic biomarkers for relapse in CRC using data from 40 stage I and II CRC
patients. We identified 31 multi-omics features that highly correlate with relapse. The data
types were integrated using multi-step analytical approach with consecutive elimination
of redundant molecular features. For each data type a systems biology analysis was
performed to identify pathways biological processes and disease categories most affected
in relapse. The biomarkers detected in tumors urine and blood of patients indicated a
strong association with immune processes including aberrant regulation of T-cell and
B-cell activation that could lead to overall differences in lymphocyte recruitment for tumor
infiltration and markers indicating likelihood of future relapse. The immune response was
the biologically most coherent signature that emerged from our analyses among several
other biological processes and corroborates other studies showing a strong immune
response in patients less likely to relapse.
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INTRODUCTION
Colorectal cancer (CRC) is the third most commonly diagnosed
cancer in the United States in both men and women. In 2013,
an estimated 142,820 new cases will be diagnosed, and 50,830
deaths from CRC are expected to occur in the United States (ACS,
2013). Great effort is being made to identify molecular signatures
in CRC that both serve as prognostic markers of recurrence, and
that allow for identification of subgroups of patients who would
benefit from a particular chemotherapy. Equally important is the
identification of patients who might not benefit from particular
treatments based on their disease stage and molecular profile, in
an effort to spare them unnecessary toxicity.

Standard treatment for stage III colon cancer includes adju-
vant chemotherapy after surgery, which results in improvement
in progression-free and overall survival compared to surgery
alone (Schrag et al., 2001). However, a lower recurrence rate after
surgery makes the benefits of adjuvant therapy for earlier stage
CRC less clear (Chau and Cunningham, 2006). Virtually all stage
I colon cancers, and approximately 80% of stage II colon cancer
patients are cured by appropriate surgery (Benson, 2006; Lavery
and De Campos-Lobato, 2010) however, 20% of stage II patients

relapse, and many of them will die due to metastatic disease.
Adjuvant chemotherapy has no role in stage I and little or no
impact on relapse or overall survival in stage II colon cancer,
although there is a significant increase in disease-free survival
after therapy (Figueredo et al., 2008). Therefore, in early stage
colon cancer the benefits of adjuvant therapy must be weighed
against the risks of toxicity for 80% (higher in stage I) of the
target population that has been cured by surgery, and in consider-
ation of poor enhancement of overall survival in the relapse group
for stage II CRC patients. The challenge for personalized early
stage colon cancer treatment is to identify clinical or molecular
determinants of outcome in order to target treatments to those
individuals who are destined to relapse.

Personalized cancer treatment requires comprehensive genetic
information of individual cancers. While isolated analysis of
genomic data types are of clinical value, an integrated and com-
prehensive analysis of multiple genomic data types from individ-
ual cancers leverages the predictive power of each data type and
allows for an understanding of the complex molecular networks
that drive tumor behavior at systemic level. Such information is
extremely valuable in not only developing therapeutic strategies,
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but also predicting tumor response to specific treatment modal-
ities for individual cancers. Based on these predictions, target
patients may be identified and segregated into those who may
benefit and those not likely to benefit from a particular ther-
apy, and therefore be spared of “pain without gain.” The patient
community would be well served by the identification of effective
prognostic biomarkers in the serum or urine that could be used
to supplement the most common mechanism of prognostication
which is the AJCC tumor, node and metastases (TNM) staging
classification. The existence of a noninvasive method such as anal-
ysis of serum and urine to help diagnose the extent of disease or
predict outcome would likely result in significant improvements
in patient response by enabling much earlier, and more cost-
effective prognosis. Also, whole genome profiling is not always
feasible in a clinical setting and there is a need for a small set
of the most informative markers that can predict outcome and
response to therapies. We postulated that a multi-dimensional
molecular analysis of tumors followed by rigorous bioinformatics
analysis will yield a combination of features that serve as prognos-
tic biomarkers of relapse in stage II and stage I adenocarcinoma
of the colon.

Several molecular approaches are being used to identify
patients who may benefit from adjuvant chemotherapy due to a
higher risk for relapse. The most common methods include: gene
expression analysis for biomarker identification, immunohisto-
chemical assays for aberrant protein expression, chromosomal
and microsatellite instability (MSI) detection to find mutation
hotspots, and identifying gene variants through analysis of sin-
gle nucleotide polymorphisms. The objectives of our study were
to first use multi-omics molecular profiling data and to integrate
several data types using classification algorithms and multivari-
ate analysis to determine the “molecular portrait” of relapse; and
second, to use systems biology tools to elucidate functional mod-
ules, cellular processes and pathways that are most affected and
strongly associated with CRC relapse.

Many investigations have uncovered several critical genes and
pathways such as WNT, RAS2MAPK, PI3K, TGF-b, P53, and
DNA mismatch-repair pathways that are important in the initia-
tion and progression of CRC (Fearon, 2011). Multiple sequencing
analyses studies have identified numerous recurrently mutated
genes (TCGA, 2012). Attempts to correlate clinical outcome with
molecular signatures are usually confined to analysis of one data
type, for instance prediction of outcome in stage II CRC patients
with 4q deletions (Brosens et al., 2010), methylation levels of spe-
cific MINT loci as prognostic variables in patients with stage I and
II rectal cancers (de Maat et al., 2008), and the 12-gene recurrence
score gene expression study by CALGB (Venook et al., 2013).
Despite these advances, we do not have a fully integrated view
of the genetic and genomic changes and their significance for col-
orectal relapse. This is especially important in light of the single
clinically applicable genomic information that is used—the KRAS
status, where mutations predict lack of efficacy of EGFR anti-
bodies. Stage II CRC patients thus would benefit more from the
identification of better prognostic and predictive markers. Such
clinically useful biomarkers also could provide insights into the
biology behind recurrence, which may further help to target the
relevant pathways.

It is well established that the development of cancer is asso-
ciated with alterations in immune cells in the peripheral circu-
lation and also at the sites of tumor progression and metastasis.
Recently, a possibility has emerged that immune measures such
as tumor infiltrating lymphocytes (TILs) could serve as biomark-
ers or as surrogate endpoints of clinical outcome or responses.
Progress in our understanding of cellular and molecular path-
ways involved in immune responses to cancer has greatly facil-
itated the selection of the most relevant immune endpoints to
discover and evaluate (Pages et al., 2005; Galon et al., 2006;
Whiteside, 2013). To fully elucidate genetic underpinnings of
colorectal relapse, a systems biology approach is necessary to
characterize variants, mRNA, copy number, and metabolites, as
well as their interactions within the cells (Rodin et al., 2011)
as well as with other cells such as those from the immune
system within the tumor microenvironment. Gene set and path-
way association analyses are playing an increasingly important
role in explaining disease mechanisms through the identifica-
tion of functional genetic interactions (Rodin et al., 2011). An
integrative approach combining multiple data types can more
accurately capture pathway associations clinically actionable
variants.

In this pilot study we integrated the results of molecular pro-
filing of several omics data types to determine the most reliable
prognostic molecular signature for relapse in CRC. The data types
were integrated using multi-step analytical approach with con-
secutive elimination of redundant molecular features. As a result
a minimum number of most informative multi-omics features
were determined allowing for the best classification accuracy of
relapse phenotype. Taken together these data show that biomark-
ers detected in the tumors, urine and blood of patients collected
at the time of surgery point to a strong association of immune
processes and markers with likelihood of future relapse.

RESULTS
ANALYSIS OVERVIEW
A schematic of our approach to identify the most informative
multi-omics markers of CRC relapse is shown in Figure 1. We
utilized frozen and paraffin tissue samples from 20 relapse and 20
relapse-free patients; the minimum follow up on each patient is
five years post-surgery. The clinical properties of these 40 sample
sets are described in Table 1. Samples were collected at the time
of surgery prior to initiation of any treatment. The clinical anal-
yses using KM plots and Cox regression analysis (Supplemental
Figure 1) showed that tumor stage and other variables related
to clinical chemistry parameters—Glucose, Bilirubin, Creatinine,
CRP, and triglycerides may be putatively associated with relapse
status and survival. Some of the confidence intervals of the haz-
ard ratios are extremely large and indicate that they are not stable.
Several clinical variables known to be linked with colon cancer
such as use of alcohol, tumor grade, BMI and gender did not show
significant association with outcome, indicating that the use of
clinical data alone with low sample size does not give enough pre-
dictive power. Therefore, we did not do any further analysis with
clinical data (no model adjustment was done), and focused our
investigation on the genomic data to see if it had better predictive
power.
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FIGURE 1 | Bioinformatics workflow of multivariate analysis. Feature
selection workflow for multi-omics profiling data from colorectal cancer
patient samples (for relapse outcome) shown. Feature numbers for each data

type are displayed [Gene—red, miRNA—green, CNV—cyan, serum
metabolites (positive)—pink, serum metabolites (negative)—purple, urine
metabolites (positive)—blue, urine metabolites (negative)—dark blue].

Initial supervised analysis of tissue samples resulted in 138
gene expression features, 78 miRNAs, and 37 cytobands signif-
icantly associated with CRC relapse. Biofluid analysis resulted
in 140 serum (+ve ESI mode) metabolites, 71 serum (−ve ESI
mode) metabolites, 101 urine (+ve mode) metabolites and 83
urine (−ve mode) metabolites. Using a rigorous cross-validation
approach of support vector machine learning algorithms and
recursive feature elimination (SVM-RFE) combined with random
forest based integrative analysis (RF-ACE) we reduced the most
informative feature list to 8 genes, 1 microRNA, 2 cytobands, and
13 metabolites from serum and 7 metabolites from urine. We
report on the details of the results below. Near 100% accuracy in

classification was achieved for 12 genes and 13 serum metabolites
(7 +ve mode and 6 −ve mode).

TUMOR TISSUE MOLECULAR PROFILING
A 12-gene panel predicts relapse
Normalized gene expression data were filtered by significance
using a t-test and further analyzed utilizing SVM-RFE to deter-
mine the most informative genes providing the best classifica-
tion of relapse vs. relapse-free samples (Figures 2A,B). A total
of 12 genes were identified that provide maximum accuracy of
classification (Table 2). The results of SVM-RFE analysis were
computationally validated using a leave-one out approach and
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Table 1 | Patient demographics, pathology, and biochemical

characteristics.

Characteristics No: (%)

GENDER

Male 22 (55)

Female 18 (45)

TUMOR GRADE

Grade 2 33 (82.5)

Grade 3 7 (17.5)

TUMOR STAGE

I 12 (30)

II* 24 (60)

IIA* 4 (10)

RELAPSE/RECURRENCE

Yes 20 (50)

No 20 (50)

VITAL STATUS

Alive 36 (90)

Dead 4 (10)

AGE

≤40 1 (2.5)

41–55 3 (7.5)

56 70 25 (62.5)

>70 11 (27.5)

TOTAL NUMBER OF LYMPH NODES

10 20 19 (47.5)

20 30 9 (22.5)

30 40 6 (15)

40 50 3 (7.5)

50 60 3 (7.5)

GLUCOSE

<60 mg/dl 0 (0)s

60–100 mg/dl (reference range) 21 (52.5)

>100 mg/dl 10 (25)

Unknown 9 (22.5)

BILIRUBIN

≤1.1 mg/dl (reference range) 36 (90)

>1.1 mg/dl 1 (2.5)

Unknown 3 (7.5)

CRP LEVEL (C-REACTIVE PROTEIN)

≤5 mg/l (reference range) 25 (62.5)

>5 mg/l 11 (27.5)

Unknown 4 (10)

CREATININE

≤1.1 mg/dl (reference range) 32 (80)

>1.1 mg/dl 4 (10)

Unknown 4 (10)

BMI (BODY MASS INDEX)

Underweight (BMI <18.5) 1 (2.5)

Normal (BMI ≥18.5 and < 25) 17 (42.5)

Overweight (BMI ≥25 and < 30) 12 (30)

Obese (BMI ≥30) 10 (25)

(Continued)

Table 1 | Continued

Characteristics No: (%)

DISEASE LOCALIZATION

Sigmoid colon 14 (35)

Ileocaecal 4 (10)

Left flexure 1 (2.5)

Rectum 14 (35)

Transverse colon 2 (5)

Ascending colon 5 (12.5)

*Stage II refers to a tumor that has infiltrated into but not penetrated through

the muscularis propria. Stage IIA is a “group staging” of tumor that includes

nodal and metastatic status and indicates a tumor that has infiltrated into the

outer layers of the colon (T3) but did not yet involve nodes (N0) and did not

metastasize (M0) to distant organs.

resulted in near 100% accurate classification (95% confidence
interval: 0.9758–1.000) of the samples in two groups—relapse vs.
relapse-free.

Pathways and biological processes involved in CRC relapse
The 12 most informative genes analyzed for pathway enrichment
and GO categories identified biological processes and pathways
related to immune response, immune cell signaling, and traffick-
ing (Supplemental Table 1). Eleven out of twelve genes (the excep-
tion being OR6S1) were found to be a part of known interaction
networks (Figure 3) with major biological functions involving
cell mediated immune response, cell movement and hemato-
logical system development and function. For example immune
responders such as chemokines (e.g., CXCL11) and cytokine sig-
nal transducers including interleukin-1 receptor associated kinase
(IRAK)-M, also known as IRAK3 were down-regulated in the
relapse cases. This finding supports the results of our pathway
analysis of 138 differentially expressed genes where we also found
significant enrichment of immune response categories. The fact
that after recursive feature elimination 11 of the 12 most infor-
mative genes are directly involved in immunological functions
underlines a central role for immune response alterations in
clinical outcome of relapse.

MicroRNAs (miRNAs) involved in immune response regulation
detected
Normalized gene expression data were filtered by significance
using t-test and further analyzed utilizing SVM-RFE to determine
the most informative miRNAs providing the best classification of
relapse vs. relapse-free samples (Figures 2C,D). Out of 80 differ-
entially expressed microRNAs, 25 provided maximum accuracy
of classification (Supplemental Table 2). The results of SVM-RFE
analysis were computationally validated using a leave-one out
approach and resulted in 88% accuracy in classification (95%
confidence interval: 0.7885–0.9855) of relapse and relapse-free
samples.

We conducted downstream systems biology analysis of tar-
gets of the top 25 microRNAs from SVM-RFE using combi-
natorial target enrichment analysis for KEGG pathways (miR-
Path v.2.0 (Vlachos et al., 2012) and gene ontology enrichment
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FIGURE 2 | Features selected by SVM-RFE machine learning method

for tissue based analysis. Minimal number of features were selected
for each data type providing maximum accuracy of classification for
clinical outcome. Gene expression SVM-RFE results (A) and ROC Curve
showing confidence intervals (B) based on top 12 genes are shown.

microRNA expression SVM-RFE results (C) and ROC Curve showing
confidence intervals (D) based on top 25 microRNAs are shown. DNA
copy number alterations by CIN Index for cytobands are shown.
SVM-RFE (E) and ROC Curve showing confidence intervals (F) based
on top 16 cytobands.

Table 2 | Short list of 12 genes from SVM.

ID Entrez gene name Location Type(s)

ARHGAP28 Rho GTPase activating protein 28 Cytoplasm Other

CDA Cytidine deaminase Nucleus Enzyme

CEACAM19 Carcinoembryonic antigen-related cell adhesion molecule 19 Unknown Other

CXCL11 Chemokine (C-X-C motif) ligand 11 Unknown Cytokine

CXCL13 Chemokine (C-X-C motif) ligand 13 Extracellular space Cytokine

DNASE1L1 Deoxyribonuclease I-like 1 Cytoplasm Enzyme

IFIT5 Interferon-induced protein with tetratricopeptide repeats 5 Plasma membrane other

IRAK3 Interleukin-1 receptor-associated kinase 3 Cytoplasm KINASE

OR6S1 Olfactory receptor, family 6, subfamily S, member 1 Plasma membrane G-protein coupled receptor

PCOLCE2 Procollagen C-endopeptidase enhancer 2 Extracellular space Other

PDE9A Phosphodiesterase 9A Cytoplasm Enzyme

TNIP3 TNFAIP3 interacting protein 3 Unknown Other

analysis tools from the MiRo software package (Giskeodegard
et al., 2010). The CRC pathway was significantly enriched with
26 targets of 19 microRNAs from the top 25. In addition,
pathways relevant to immune response signaling (Supplemental
Table 3), T-cell receptor signaling (39 genes by 20 microRNAs),

B-cells receptor signaling (34 genes by 20 microRNAs) and
chemokine signaling (70 genes by 20 microRNAs) were also
enriched (Supplemental Figure 2). One of the highly-ranked
microRNAs, miR-934, is predicted to target APC as well as mul-
tiple target genes within categories such as antigen presentation
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FIGURE 3 | Gene network shown for the short list of selected genes in Table 2. Genes in the short list are shown with yellow outline. Direct downstream
interactions include TNF, NFkB, and ERK1/2.

(AP3B1, HLA-DPB1), immune response (HLA-DPB1, LILRB4,
FYB, IL1F5, CLEC5A, CRTAM, CTSS, CCL7, CD300LF, IL20)
and inflammatory response (THBS1, F11R, CCL7, ATRN, IL1F,
CLEC7A, C6). In a consecutive multivariate analysis by RF-ACE,
microRNA-934 was found to be the top ranked microRNA signif-
icantly associated with relapse in our analyses (importance score:
0.0189).

Overall, pathway and gene ontology enrichment analysis of
microRNA targets for the 25 top microRNAs indicated involve-
ment of these microRNAs in the regulation of many genes in
pathways related to T and B cell signaling and regulation of
immune response by chemokines.

DNA copy number alterations
Data on DNA copy number analysis were used to calculate the
chromosome instability (CIN) index at the whole chromosome
and cytoband levels. CIN index data were filtered by signifi-
cance using a t-test and further analyzed utilizing SVM-RFE to
determine the most informative panel of cytobands that pro-
vided the best classification of relapse vs. relapse-free samples
(Figures 2E,F). Sixteen cytobands were identified that provided
maximum accuracy of classification (Supplemental Table 2). The
results of SVM-RFE analysis were validated using a leave-one-out
cross-validation approach and resulted in 95% accuracy in clas-
sification (95% confidence interval: 0.7767–1.000) of the relapse
and relapse-free samples.

As reported earlier (Brosens et al., 2010), we observed 4q
deletions in the relapse cases. A systems biology analysis was

performed to identify the functional role of genes located on
those cytobands with significant CIN index indicating genomic
instability. This analysis determined several biological processes
and pathways related to immune response, immune cell signal-
ing and trafficking, as well as cancer, cell cycle regulation, and cell
proliferation (Figure 4).

Additional analysis was done at the level of gains and losses
related to CIN index; genes located on cytobands with significant
loss or gains were further analyzed separately. Pathway enrich-
ment of the genes located on cytobands with gains resulted in
11 Gene Ontology cell processes related to either immunity or
inflammation. These processes included T cell receptor signaling,
T cell co-stimulation, positive regulation of T cell mediated cyto-
toxicity, and cytokine-mediated signaling. The least statistically
significant pathway had a p-value of 0.0035.

Pathway enrichment of genes from cytobands with loss
resulted in three gene ontology based cell processes related to
either immunity or inflammation: (1) positive regulation of
interleukin-17 production (p < 0.001), (2) negative regulation
of activated T cell proliferation (p = 0.0026); and (3) positive
regulation of natural killer cell differentiation (p = 0.0026). In
addition, several other GO categories related to cancer, cell cycle
and cell proliferation were enriched.

Mutation analysis
Data from exome sequencing analysis were processed to identify
mutations in the tumor samples. Variants were annotated and fil-
tered to determine a subset of mutations that are most likely to
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FIGURE 4 | Systems biology analysis of amplified and deleted cytoband

regions. Downstream analysis of genes located on cytobands with
significantly abnormal CIN index in cohort of patients with relapse shown.

Biological processes affected the most by genes located on significantly
altered cytobands include antigen processing and presentation, T-cell
activation and immune response.

affect protein structure and/or function in samples with relapse
and were not present in relapse-free samples (Supplemental
Figure 3A). Several distinct types of variants were detected includ-
ing variants in gene coding regions, 3′-UTRs, and in non-coding
RNA genes (Supplemental Figure 3B). A full list of filtered, non-
synonymous variants is shown in Supplemental Table 4. Systems
biology analysis of pathways and biological processes allowed us
to map these subsets of variants to specific pathways that are
enriched with mutations found in our analysis. Several categories
relevant to known cancer related pathways were found as well
as biological processes related to T-cell activation and antigen
presentation (Table 3; Figure 5). Variants in 8 relapse cases were
mapped predominantly to one branch of the antigen presentation
pathway related to activation of CD4+ Lymphocytes. Variants in
genes involved in PKC, PKC-Theta, and PTEN Signaling path-
ways were found in 14 of the relapse cases and in none of the
relapse-free cases.

Burden testing (Li and Leal, 2008) was performed on vari-
ant data obtained from exome sequencing with a focus on rare
variant detection to ensure that the presence of more common
mutations does not affect major trends detected by Ingenuity®
Variant Analysis (IVA). Results from burden testing were compa-
rable to the analysis in IVA. Enrichment analysis of the burden test
of genes from tumor samples (relapse vs. relapse-free) resulted in
several immune-related and inflammatory pathways, including:
innate immune response (p = 0.0024); neutrophil degranula-
tion (p = 0.0052); inflammatory response (p = 0.0056); negative
regulation of interferon-alpha biosynthetic process (p = 0.016);
positive regulation of chemokine (C-C motif) ligand 5 produc-
tion (p = 0.016); interferon-gamma-mediated signaling pathway
(p = 0.035); and positive regulation of interleukin-8 production
(p = 0.037).

In summary, variant data point to biological processes and
pathways related to immune system response such as T- and
B-cell activation and antigen presentation as being affected in

patients destined to relapse when compared to those destined to
be relapse-free.

BIOFLUID PROFILING RESULTS
Metabolomic profiling data were generated from serum and urine
samples collected immediately prior to surgery from the same
cohort of patients used for tissue profiling results.

Serum metabolomics profiles
A matrix of m/z values for features from serum samples (pos-
itive and negative charge) was used to filter for significantly
different metabolites between relapse and relapse-free groups and
further analyzed utilizing the SVM-RFE algorithm to determine
the metabolites that provide the best classification of relapse
vs. relapse-free. Fifteen features comprised the serum positive
dataset (Figures 6A,B) and 9 features for the serum negative data
set (Figures 6C,D). Twenty-four serum features/metabolites pro-
vided maximum accuracy (near 100%) of classification with a
95% confidence interval of 0.9832–1.000 for the positive mode
and a 95% confidence interval of 0.9700–1.000 for the negative
mode (Supplemental Table 2).

Urine metabolomics profiles
Similarly, a matrix of m/z values for features from urine samples
(positive and negative charge) was filtered on significance by t-test
and then analyzed with SVM-RFE algorithms. Sixteen features
from the urine positive dataset (Figures 6E,F) and 18 features
from the urine negative dataset (Figures 6G,H) were identified.
These 34 urine features/metabolites provided a maximum accu-
racy of classification (95%) with a 95% confidence interval of
0.9170–1.000 for the positive mode and a 95% confidence interval
of 0.8914–0.9950 for the negative mode (Supplemental Table 2).

Leave-one-out cross validation was performed to ensure
reproducibility of classification results for both serum and
urine based metabolomics data. These two sets of metabolites
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Table 3 | Pathway enrichment for variants present only in relapse cases.

Name p-Value No. of genes No. of variants No. of cases No. of controls

PKC_Theta, signaling in T lymphocytes 3.98E-02 14 17 14 0

PTEN signaling 2.68E-02 12 12 14 0

iCOS-iCOSL signaling in T helper cells 4.24E-02 11 13 11 0

Amyotrophic lateral sclerosis signaling 6.56E-03 12 12 11 0

Altered T cell and B cell signaling in rheumatoid arthritis 3.39E-02 10 12 11 0

CTLA4 signaling in cytotoxic T lymphocytes 1.01E-02 11 12 10 0

IL-4 signaling 1.54E-03 10 12 9 0

Calcium-induced T lymphocyte apoptosis 4.05E-02 8 10 8 0

Nur77 signaling in T lymphocytes 3.18E-02 8 9 8 0

Graft-versus-host disease signaling 4.04E-02 7 8 8 0

Antigen presentation pathway 6.03E-03 6 7 8 0

B cell development 3.17E-04 7 8 7 0

Complement system 1.24E-03 7 7 7 0

Role of BRCA1 in DNA damage response 1.64E-02 7 7 7 0

IL-17 signaling 3.83E-02 7 7 7 0

Regulation of IL-2 expression in activated and anergic T lymphocytes 2.68E-02 1 1 6 0

Phospholipase C signaling 2.77E-02 6 7 5 0

Signaling by rho family GTPases 1.21E-02 4 4 4 0

Tec kinase signaling 1.38E-02 3 3 3 0

Leukocyte extravasation signaling 2.88E-02 3 3 3 0

RhoGDI signaling 6.63E-03 2 2 1 0

Total of 21 pathways are significantly enriched. Table is sorted by number of cases showing these variants within genes in the enriched pathways.

FIGURE 5 | Pathway analysis of top variants from exome sequencing

data. Three pathways highly enriched with non-synonymous variants found
exclusively in relapse patients are shown. (A) Antigen presentation pathway
affected in 8 relapse cases shown. Variants with predicted activation effect

were mapped predominantly to one branch of pathway related to activation
of CD4+ Lymphocytes. (B) PKC-Theta Signaling in T-Lymphocytes affected
in 14 relapse cases shown. (C) PTEN Signaling affected in 14 relapse cases
shown.

were combined and annotated using an in-house metabolomics
annotation pipeline (under review, BMC Bioinformatics, briefly
described in Methods). A total of 25 putative metabolites from
serum and 76 metabolites from urine were annotated and
mapped to known pathways (Table 4). Since multiple candi-
date metabolites with similar m/z ratios were annotated by this
pipeline, the list of putative metabolites was manually curated to
select the most likely candidate for each m/z peak. The final list of
25 putative metabolites from urine and 6 metabolites from serum

was added to a combined list of most informative features and
further analyzed using multivariate analysis methodology (results
below).

Several annotated metabolites in serum and urine are involved
in signaling and/or regulation of immune response and inflam-
mation. Chenodeoxyglycocholic acid in serum has been reported
as one of the metabolic biomarkers of Crohn’s Disease (Jansson
et al., 2009). Notoginsenosides were reported as immuno-
logic adjuvants (Sun et al., 2006). 4-Hydroxy-2-butenoic acid
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FIGURE 6 | Features selected by SVM-RFE machine learning method

for biofluids based analysis. Results of feature selection for
metabolomics data in biofluids samples by SVM-RFE and ROC curves with
confidence intervals are shown. Minimal number of features were selected
for each data type providing maximum accuracy of classification for clinical
outcome. Metabolites in Serum (positive charge) SVM-RFE results (A) and

ROC Curve (B) based on top 15 metabolites. Metabolites in Serum
(negative charge) SVM-RFE results (C) and ROC Curve based (D) on top 9
metabolites. Metabolites in Urine (positive charge) SVM-RFE results (E)

and ROC Curve (F) based on top 16 metabolites. Metabolites in Urine
(negative charge) SVM-RFE results (G) and ROC Curve (H) based on top
18 metabolites.

Table 4 | Pathway enrichment analysis. Enrichment of top most informative metabolites in serum and urine.

Pathway p-Value Members_input_overlap % Source

URINE (POS+NEG)

L-dopachrome biosynthesis 0.000593058 HMDB01229; HMDB04067 2 (28.6) HumanCyc

Caffeine metabolism 0.001835499 HMDB03099; HMDB11107 2 (16.7) SMPDB

Caffeine metabolism—homo sapiens (human) 0.00417735 HMDB03099; HMDB11107 2 (11.1) KEGG

Dopamine metabolism 0.008658165 HMDB01229; HMDB04067 2 (7.7) Wikipathways

Tyrosine metabolism 0.01805096 HMDB01229; HMDB04067 2 (5.3) SMPDB

Tyrosine metabolism—homo sapiens (human) 0.038659718 HMDB01229; HMDB04067 2 (3.5) KEGG

Pathway p-Value Members_input_overlap Candidates contained Source

SERUM (POS+NEG)

Bile acid biosynthesis 0.001594724 HMDB00631; HMDB00637 2 (4.3) SMPDB

gamma-lactone in the serum positive group is known to mod-
ify T and B cell mediated immune responses (Ritchie et al.,
2003). Carnitine metabolites are altered in kidney cancers (Ganti
et al., 2012) and are involved in immune and inflammatory
responses.

COMBINING MOLECULAR FEATURES FROM TISSUE AND BIOFLUIDS
Assuming that molecular profiling features of different types
might provide complementary information with regard to
association with clinical outcome we have applied multivari-
ate analysis using a modified version of the Random Forest
algorithm called RF-ACE (http://www.genome.gov/Multimedia/

Slides/TCGA1/TCGA1Erkkila.pdf) to find the best combina-
tion of tissue based and biofluid based molecular correlates
of relapse. As a result, a combined list of multi-omics fea-
tures were ranked based on importance score indicating the
degree of association of each feature with future clinical relapse
(the significance of association was determined by p-values).
Additional information was generated with regard to mutual
interconnection of various features based on Kendall rank
correlation.

The resulting list of candidate biomarkers was filtered on a
p-value threshold of 0.01 and was further analyzed using the
Regulome Explorer network visualization tool. A list of features
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ranked by importance score is presented in Supplemental materi-
als (Supplemental Table 5).

This set of multi-omics features was further analyzed and
mapped to the relevant human genome location using Regulome
Explorer circos plots and network representation of correla-
tions between the features. Mapping based on the association
among genes, microRNA, CNVs and other features yielded mul-
tiple “hubs” at various genomic coordinates (Figure 7A) with
multiple features clustered at chromosomes 1, 3, 4, 14, and X.
A small subset of features had direct significant association to
relapse with p ≤ 1E-30 (Figure 7B; Supplemental Table 6) and
consisted of 8 genes, 1 microRNA, 2 cytobands, 13 metabo-
lites from serum, and 7 metabolites in urine. Among 8 genes
from this list of top predictors of relapse, five were previ-
ously identified as directly involved in regulation of immune
response, as well as microRNA- 934 that was annotated as tar-
geting immune response, antigen presentation and inflammatory
response. Cytoband 4q34.2 was among those cytobands that had
a significant CIN index associated with copy number loss. Genes
located on this cytoband were related to immune response and T-
and B- cell trafficking as indicated previously (DNA copy number
alterations).

In addition, network based mapping has shown a high degree
of correlation between several feature types such as metabolites
and several genes and microRNAs indicating a computation-
ally based association of biofluid based markers with aberrantly
expressed features in tumor tissue. Network representation of
these associations has identified several “hubs” among the top
genes that are relevant to the biological processes of immune
response, antigen presentation and cytokine regulation of lym-
phocyte trafficking. For example a network of genes and corre-
lated metabolites in urine (Supplemental Figure 4) revealed high
connectivity with 4 genes—CXCL13, TNP3, IFIT5 and CDA indi-
cating that biofluid derived metabolite analysis might be relevant
to the same underlying biological processes that were detected in

tissue i.e. regulation of T-cell activation and lymphocyte traffick-
ing in the context of CRC clinical biology.

VALIDATION OF MOLECULAR RESULTS BY HISTOPATHOLOGICAL
ANALYSIS OF TUMOR SECTIONS
Previous studies have shown that lymphocyte infiltra-
tion of tumors provides a protective anti-tumor response
(Deschoolmeester et al., 2010; Liu et al., 2012). To corroborate
prior results and the results of our molecular profiling analyses,
we performed a blind immunohistochemical assessment of
tumor sections from a subset of 15 cases representing 7 relapse
and 8 relapse-free patients. We hypothesized that the combina-
tion of molecular features we found to be associated with relapse
could regulate T-cell and B-cell activation in patients leading to
differences in tumor lymphocyte content.

A panel of antibodies recognizing CD3, CD4, CD8, and CD20
permitted the detection of the major T- and B-lymphocyte sub-
sets. IHC staining results were scored in a blinded fashion for
each marker and scores were compared between the relapse and
relapse-free groups. The results of histological evaluation and
scoring demonstrated a significantly higher fraction of infiltrating
CD3 and CD8 lymphocytes in the relapse-free cases (Figure 8).
Figure 9 shows a representative images with a high content of
CD3 (Figure 9B) and CD8 (Figure 9C) staining in sample A579
(relapse-free) while IHC staining of B349 tumor (relapse) showed
a markedly decreased lymphoid component with few CD3 posi-
tive T-cells (Figure 9E) and almost no CD8 T-cells (Figure 9F).
We observed down-regulation of many cytokines related genes
in relapse patients. This observation is consistent with an over-
all decrease in infiltrating lymphocytes as they are controlled
and/or activated by cytokines. Detailed enrichment analysis of
top 12 genes SVM cross-validation analysis showed biologi-
cal functions relating to lymphocyte migration, chemotaxis and
attraction of lymphocytes including specific subpopulations of
Th0, Th1, B1 and memory lymphocytes (Supplemental Table 1).

FIGURE 7 | Top 31 features associated with relapse. (A) Results of
multivariate analysis and integration of tissues-based and bio-fluid based top
omics features. Features were mapped onto genomic coordinates on a circos
plot, with edges indicating pairs of features with significant association of

changes between them found in samples with relapse. Several clusters of
features were evident with “hotspots” at chromosomes 1, 3, 4, and x. (B)

Top multi-omics features associated with relapse ranked based on p-value of
significance of association P ≤ 1E-30.
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For example, CXCL11 and CXCL13 cytokine genes that are regu-
lators of T- and B- lymphocytes were down-regulated in relapse
cases. The downregulation of these genes in the relapse group
correlates with a potential downregulation of related biological
functions as detected by histopathology assessment of infiltrating
cells in tumor cut sections. These findings are also in accord with
previous studies by Galon et al (Pages et al., 2005; Galon et al.,
2006).

DISCUSSION
Cancer is increasingly becoming a BIG DATA problem. While
looking at a single data type (such as driver mutations) has
served us well in a small percentage of patients with non-
small cell lung cancer (Shaw et al., 2013) and in patients with
chronic myeloid leukemia (Yeung and Hughes, 2012), scientists

FIGURE 8 | Immunohistochemistry detection of infiltrating

lymphocytes. Scoring results for CD3, CD4, CD8, CD20 detection as well
as overall scoring of infiltrating lymphocytes (lymphocyte component).
Heatmap presenting unsupervised hierarchical clustering results for 15 cut
sections (7 samples with relapse and 8 samples without relapse). Relapse
samples clustered together except for sample#A632. Relapse-free samples
clustered together except for 2 samples (A628 and A651).

are beginning to question the core premises of leading mod-
els of cancer therapy wherein cells become malignant when
they develop mutations leading to uncontrolled proliferation.
A recent study on the development and progression of colon
cancer demonstrated that DNA alone is not the sole driver
of a tumor’s behavior (Kreso et al., 2013). In this study we
have shown in stage II and stage I CRC patients that serum
and urine metabolomics signatures have a very high accuracy
of prediction when compared to somatic mutations alone. A
mounting body of evidence suggests the need for an integrated
approach, combining information on cellular properties, metabo-
lites, and post-translational modifications of proteins in addition
to genomic and patient phenotype information to enhance pro-
vide better understanding of clinically relevant cancer biology
(Ge et al., 2003; Toyoda and Wada, 2004; Joyce and Palsson,
2006).

We have integrated the results of molecular profiling of sev-
eral omics data types to determine the most reliable prognostic
molecular correlates for relapse in CRC. The top 31 features were
identified that highly correlated with relapse and consisted of 8
genes, 1 microRNA, 2 cytobands, 13 metabolites from serum,
and 7 metabolites in urine. The data types were integrated using
multistep analytical approach with consecutive elimination of
redundant molecular features. A computational analysis was per-
formed based on SVM-RFE algorithm for each data type to
determine the minimal number of most informative features
allowing for the best classification accuracy of future relapse. For
each data type a systems biology analysis was performed to iden-
tify pathways, biological processes and disease categories that are
affected the most based on short lists of features determined by
SVM-RFE. To further investigate the relative contributions of all
data types a multivariate analysis was conducted on a combined
matrix of the most informative features using a novel method
that is an improvement over the standard random forest analysis
of heterogeneous features. As a result, multi-omics features were
ranked based on degree of association with the clinical outcome
of relapse.

FIGURE 9 | Histopathological staining showing enhanced infiltration

in relapse-free cases. HandE (A), CD3 (B) and CD8 (C) for sample
A579 (relapse-free) showing prominent lymphoid component which is
T-cell (CD3) and also showing CD8 positive cytotoxic T-cells surrounding

the tumor. Corresponding pictures from B349 (relapse case) showing
HandE staining (D) and markedly decreased lymphoid component with
few CD3 positive T-cells (E) and almost no CD8 positive cytotoxic
T-cells (F).
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A system biology focused analysis of a panel of multi-omics
candidate biomarkers revealed major biological pathways and
processes that are affected by the molecular anomalies in patients
with relapse when compared with relapse-free patients. The
results of integration were further analyzed by mapping multi-
omics features onto genomic locations using a circos plot pro-
vided by the tool Regulome Explorer. These integrative and
systems biology analyses suggest the relevance of tumor-immune
system interactions and cytokine regulation of immune response
in affecting disease outcome. This was reflected in the molecu-
lar changes observed at the level of genes, microRNAs, DNA copy
number variation, and single nucleotide variations.

INFLAMMATION IN COLORECTAL CANCER
The role of immune cells and the inflammatory response has been
established in several types of cancer. The presence of immune
cells and inflammation has been documented in every stage of
cancer—from tumorigenesis to metastasis (Grivennikov et al.,
2010). In CRC, the functionality (i.e., Th1 vs. Th2 vs. T-reg vs.
Th17), relative density, and location (relative to tumor tissue) of
immune cells all influence clinical outcome, regardless of tumor
staging (Tosolini et al., 2011). Previous studies have demonstrated
the prognostic implications identifying tumor-specific immune
cells via differential gene expression analyses and in situ immuno-
histochemistry. Similarly, the differential expression and presence
of particular cytokines and chemokines can also influence tumor
progression, and in some cases can even be used for prognoses
(Wang et al., 2009).

MULTI-OMIC SIGNATURE OF CRC RELAPSE
Gene expression profiling provides a quick overview of gene
activity and thereby the major events at the cellular level. A
high proportion of the differentially expressed genes associ-
ated with CRC relapse phenotype were found to play a critical
role in immune response functions. For example chemokines
(CXCL11 and CLXL13) and cytokine signal transducers including

IRAK3 were downregulated in relapse cases. CXCL11 has
angiostatic properties and promotes the migration of cytotoxic
T lymphocytes toward tumors triggering tumor cell apopto-
sis (Berencsi et al., 2007) while CXCL13, a B cell attracting
chemokine is responsible for the development of secondary lym-
phoid tissue in the gut (Carlsen et al., 2002). IRAK3 is a negative
regulator of the Toll-like receptor/Interleukin (IL)-1 receptor
(TLR/IL-1R), which plays a fundamental role in the immune
response (Janssens and Beyaert, 2003) and the NFKB path-
way. TLR mediates the induction of pro-inflammatory cytokines
and chemokines, We therefore performed a network analysis
(Figure 10) of these and other genes from expression profiling
data to understand a possible role for these genes in colon cancer
recurrence. Interestingly, pathway analysis identified several com-
mon target genes, all of which had a complex interaction network
with the TNF receptor, FAS (CD95) (Figure 10). CD95 is thought
to play a crucial role in controlling colon tumor growth via tumor
immune-surveillance. It is not only lost in a high percentage of
CRCs (Moller et al., 1994), but is also impaired in patients who
develop CRC relapse after curative-attempt surgery (Strater et al.,
2005).

Integrative analysis of CNVs, gene expression and miRNA
identified several regions with aberrant CIN index mapping to
chr 1p, 3q, 4p, 4q, and 15q associated with CRC-relapse pheno-
type. Chromosomal instability especially of 4q (Brosens et al.,
2011; Kodeda et al., 2012) and 15q (Brosens et al., 2011) have
been previously associated with local recurrence in colon cancers
after surgical resection. Pathway analysis of genes in these regions
predominantly converged to immune response and inflammation
processes, besides biological processes involving cell proliferation
and cell-cycle progression (Figure 4).

A set of genes harboring potentially deleterious variants found
in relapse sample was compared with most informative genes and
microRNAs that were differentially expressed between relapse and
relapse-free samples. No overlap was found indicating that most
informative differentially expressed genes and microRNAs were

FIGURE 10 | Pathway analysis of FXR/NR1H4 gene. Pathway analysis
showed FXR in a complex network with significant genes identified from
other omics data in our analysis. Blue highlight: Gene expression top features

from SVM analysis; Red highlight: Key molecule in immune reaction in CRC
(from literature); and Green highlight: Key molecule for serum metabolite bile
acid- from literature.
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not directly affected by deleterious mutations. However when
upstream and downstream neighbors were considered, we found
significant overlap of variant harboring genes with the genes
upstream and downstream of DEGs. Similarly, we found over-
lap between genes harboring variants and microRNA target genes
downstream of differentially expressed microRNAs. These find-
ing indicate possible causative relationships between functionally
significant mutations and aberrant expression of genes that are
regulatory partners of mutated genes.

With respect to the metabolite profile, SVM-RFE analy-
sis identified bile acid components as major metabolites in
the CRC-relapse group. Bile acids, especially deoxycholate, in
high cellular concentration promotes proliferation of colon can-
cer cells (Kawano et al., 2010) and are thought to play a
major role in inflammation associated colon cancer (Wagner
and Cohen, 1991; Modica et al., 2008; Gadaleta et al.,
2010). Farnesoid X receptor (FXR/NR1H4) is a key regula-
tor of bile acid metabolism (16037564) and its expression
is often decreased or absent in CRC cells (Maran et al.,
2009; Torres et al., 2013). Pathway analysis of FXR/NR1H4
gene showed FXR in a complex network with significant
genes identified from other omics data in our analysis.
Further, network analysis identified FXR as a critical compo-
nent of nuclear receptors that regulates intestinal immunity
via regulating the expression of cytokines, including TNFalpha
(Figure 10).

Seven of the miRNAs identified in our analysis have been
implicated in colon cancer based on published data from the
Ingenuity knowledgebase, and for many, their impaired status has
been reported in other cancers. Specific roles for these miRNAs
have included cell proliferation, cellular senescence and tumor
cell migrations (Ding et al., 2010; Kim et al., 2012; Li et al., 2012).

Enrichment analysis of microRNA targets for 25 microRNAs
(Supplemental Table 2) showed that 26 of their predicted target
genes mapped to the KEGG CRC pathway. These genes were tar-
geted by at least one of the 19 microRNAs from the top 25. Several
pathways related to T- and B-cell receptor signaling were also sig-
nificantly enriched with multiple gene targets of these selected
microRNAs (Supplemental Figure 2).

When top features from all data types were integrated using
the RF-ACE method and filtered for high significance (p ≤
1E-30), miRNA-934 was among the top 31 combined features
selected. This miRNA has a computationally predicted gene tar-
get (APC) that plays a central role in CRC. The APC gene
encodes a tumor suppressor protein involved in the WNT sig-
naling pathway. Inappropriate activation of this pathway through
loss of APC function has been shown to contribute to cancer
progression in familial adenomatous polyposis (Rustgi, 2007).
Several microRNA-934 target genes play a role in immune and
inflammatory response, and antigen presentation (Lagana et al.,
2009).

Finally, histological examination of frozen tissue sections from
CRC patients with and without relapse was consistent with our
findings of immune response genes as key predictors of CRC
relapse (Figures 8, 9). The findings of tumor infiltrating CD8
and CD4 immune cells in the tissues from relapse-free patients is
consistent with earlier reports on the reduction of CD8+ (Zlobec

et al., 2008) and CD4+ cells (McMillan et al., 1997; Holcombe
et al., 1999) as highly predictive of local recurrence of CRC while
their presence associated with longer recurrence free survival
(Holcombe et al., 1999; Chew et al., 2011; Muthuswamy et al.,
2012).

These results suggest that a complex interaction between
cancer cells and host immune mechanisms can predispose to
either an anti- tumor or a pro-tumor environment. This inter-
action plays a critical role in not only tumor development
and metastasis, but also tumor recurrence (Strater et al., 2005;
de Souza and Bonorino, 2012). The present study was an
attempt to identify molecular markers of CRC relapse from
an integrative analysis of multi-omics data type, and the anal-
ysis consistently pointed to disruptions in genes involved in
immune response and inflammatory processes associated with
CRC relapse. We show that this integrated analysis model
is feasible and could be utilized in informing decision mak-
ing processes. Identification of involved pathways can also
guide the selection of patients who may benefit from post-
surgical chemotherapy with drugs that inhibit key genes in
that pathway.

Metabolomics is a rapidly evolving field that aims to iden-
tify and quantify the concentration changes of all the metabo-
lites in a given tissue or biofluid (i.e., the metabolome from a
patient), usually in support of developing therapeutics or diag-
nostics. In fact, the anticipated contribution of metabolomics
to the field of biomedicine is highlighted by its presence in the
NIH Roadmap/NIH Common Fund initiatives. The application
of metabolomics to help understand the manifestation(s) and
progression of complex diseases like gastrointestinal (GI) can-
cers represents a powerful means to identify the earliest markers
associated with phenotypic outcomes like recurrence and drug
response. This method, if clinically validated can provide an eco-
nomical and non-invasive method for prognostic and diagnostic
purposes.

Projects such as TCGA provide comprehensive insights into
functional anomalies relating to cell growth, proliferation, and
immune response by comparing markers between normal and
cancer tissue. This effort was aimed at cataloging changes
at the molecular level in CRC relapse that can be detected
years before the phenotypic changes surface by linking compre-
hensive multi-omic analyses to carefully defined clinical end-
points. It builds on prior knowledge from literature, pub-
lic datasets, and experimental evidence to filter down to a
few key players with potential for prognostication in CRC
relapse. The immune response was the biologically most coher-
ent signature that emerged from our analyses among sev-
eral other biological processes, and corroborates other studies
showing a strong immune response in patients less likely to
relapse.

While promising, these discovery results are preliminary, and
in most cases, validation of these potential immune biomark-
ers remains to be performed in appropriate future case-control
validation trials. Nevertheless, there is an expectation that
in the near future, some of these immune biomarkers will
serve as reliable intermediate endpoints facilitating the man-
agement of patients with CRC and providing insight into the
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selection of the most effective therapeutic strategies for these
patients.

MATERIALS AND METHODS
PATIENT COHORT—CLINICAL AND DEMOGRAPHIC INFORMATION
CRC patient biospecimens with extensive clinical and follow-up
data were selected from the Indivumed GmbH biobank for 40
patients (20 relapse and 20 no relapse). The patients consisted of
12 with late stage I, and 28 with stage II (Table 1). Four patients
(out of 12) with late stage I had experienced relapse (∼33%), and
it is important to note that 12 patients (out of 28) with stage II
were relapse-free (∼43%). Therefore, the relapse-free group of
samples, and group with relapse are both represented by mixture
of late stage I and stage II patients. Only nine stage II patients
(out of 28) had rectal cancer; of these 6 had relapsed within 5
years.

A highly standardized process of biospecimen collection (e.g.,
documentation of time between surgical resection and postsurgi-
cal fixation and assurance of postsurgical fixation within 10 min)
minimizes the risk of significant data variation because of pre-
analytical factors such as fixation time after surgical resection. Of
more than 180 clinical attributes, 64 were short listed based on
relevance to clinical outcome and biomarker analysis. Key clin-
ical characteristics are summarized in Table 1. Since the main
clinical attribute of interest was “relapse,” it was important to
understand which of the 64 attributes were relevant to relapse.
For this, KM plots and Cox regression models were used to select
the key clinical attributes (Supplemental Figure 1). Cox’s propor-
tional hazards model estimates relative risk and is widely used in
the analysis of survival data to explain the effect of explanatory
variables on survival times. Various subsets of clinical data were
applied as input to the Cox model. Results from the Cox model
as well as manual inspection of data elements by GI oncologists
were selected to be important clinical attributes for correlation
with molecular data.

SAMPLE PREPARATION
All genomic analyses were performed on tumor tissue samples
except for DNA copy number analysis, which included paired
samples of tumor and adjacent non-tumor tissue. Adjacent non-
tumor samples were used for normalization of copy number
measurements.

RNA isolation and miRNA expression profiling
Total RNA, including miRNAs and other small molecules of
RNA, were isolated from frozen tissue samples and extracted
using the miRNeasy Mini Kit (QIAGEN, Valencia, CA), and from
serum samples and extracted using the miRNeasy Serum/Plasma
Kit (QIAGEN, Valencia, CA), according to the manufacturer’s
instructions. miRNA expression profiling was performed on
384-well format miRNA assays plates (Taqman Array Human
MicoRNA A+B Cards, V3.0, Applied Biosystems, Foster City, CA)
using qRT-PCR on a 7900HT Real-Time PCR System (Applied
Biosystems, Foster City, CA).

RNA isolation and mRNA (exon) expression profiling
Total RNA was isolated from frozen tissue samples and extracted
using the RNeasy Mini Kit (QIAGEN, Valencia, CA) according to

the manufacturer’s instructions. Expression profiles were deter-
mined using Affymetrix GeneChip Human Exon 1.0 ST Arrays
according to the manufacturer’s instructions (Affymetrix, Santa
Clara, CA, USA). The arrays were scanned using the Affymetrix
GeneChip scanner 3000 7G system. Gene- and exon-level expres-
sion signal estimates were derived from cell intensity files (CEL)
generated from Affymetrix GeneChip Exon 1.0 ST arrays.

DNA isolation and genome-wide SNP and CNV analysis
Genomic DNA was isolated from frozen tissue samples and
extracted using standard salting out protocols which included
proteinase K digestion followed by precipitation with phe-
nol:chloroform:isoamyl alcohol (25:24:1). SNP and CNV data
were obtained using the Affymetrix Genome-wide Human
SNP array 6.0 according to the manufacturer’s instructions
(Affymetrix, Santa Clara, CA, USA). The arrays were scanned
using the Affymetrix GeneChip scanner 3000 7G system with the
Affymetrix Genotyping Console (version 4.1.2) software.

DNA isolation and exome sequencing
Genomic DNA was isolated as described above. Exome libraries
were created according to the manufacturer’s standard protocol
for SOLiD library preparation (Applied Biosystems, Carlsbad,
CA, USA). Three µg of genomic DNA was sheared via sonica-
tion using the Covaris (S-Series) instrument (Covaris, MA, USA).
The ends of fragmented DNA were repaired and ligated to SOLiD
P1 and A1 adapters provided in the Agilent Human All Exon
50 Mb Kit according to the manufacturer’s instructions (Agilent,
Santa Clara, CA, USA). The exomes were then captured using the
Agilent Human All Exon 50 Mb Kit, and the amplified library was
purified withAMPure XP beads (Beckman Coulter Genomics,
Danvers, MA). Sequencing was performed using the Applied
Biosystems SOLiD v4 sequencer (Life Technologies Corporation,
CA, USA) using 50bp single end read libraries with 1 sample per
quad (4 samples per slide).

Metabolomics profiling methods for Biofluids
Metabolite extraction. Urine samples were processed as described
previously (Galon et al., 2006). Briefly, the samples were thawed
on ice and vortexed. For metabolite extraction, 20 µL of urine
was mixed with 80 µL of 50% acetonitrile (in water) contain-
ing internal standards [10 µL of debrisoquine (1 mg/mL) and
50 µL of 4-nitrobenzoic acid (1 mg/mL). For metabolite extrac-
tion from serum175 µL of 66% acetonitrile (in water) containing
internal standards was added to 25 µL of plasma. The samples
were incubated on ice for 15 min and centrifuged at 14,000 rpm
at 4◦C for 20 min. The supernatant was transferred to a fresh
tube and dried under vacuum. The dried samples were resus-
pended in 100 µL of solvent A (98% water and 2% acetonitrile)
for UPLC-ESI-Q-TOF-MS analysis.

UPLC-ESI-QTOF-MS based data acquisition. Each sample
(5 µL) was injected onto a reverse-phase 50 x 2.1 mm BEH
1.7 mm C18 column using an Acquity UPLC system (Waters
Corporation, USA). The gradient mobile phase comprised of
water containing 0.1% formic acid solution (A) and acetoni-
trile containing 0.1% formic acid solution (B). Each sample was
resolved for 10 min at a flow rate of 0.5 mL/min.
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The UPLC gradient consisted of 100% A for 0.5 min then a
ramp of curve 6 to 60% B from 0.5 to 4.5 min, then a ramp
of curve 6 to 100% B from 4.5 to 8.0 min, a hold at 100% B
up to 9.0 min, then a ramp of curve 6 to 100% A from 9.0 to
9.2 min, followed by a hold at 100% A up to 10 min. The col-
umn eluent was introduced directly into the mass spectrometer by
electrospray. Mass spectrometry was performed on a quadrupole-
time-of-flight mass spectrometer operating in either negative or
positive electrospray ionization mode with a capillary voltage of
3.2 kV and a sampling cone voltage of 35 V. The desolvation gas
flow was 800 L/h and the temperature was set to 350◦C. The
cone gas flow was 50 L/h, and the source temperature was 150◦C.
The data were acquired in the V mode with a scan time of 0.3 s,
and inter-scan delay at 0.08 s. Accurate mass was maintained by
infusing sulfadimethoxine (311.0814 m/z) in 50% aqueous ace-
tonitrile (250 pg/mL) at a rate of 30 mL/min via the lockspray
interface every 10 s. Data were acquired in centroid mode from
50 to 850 m/z mass range for TOF-MS scanning for each sam-
ple in positive and negative ionization mode and checked for
chromatographic reproducibility.

BIOINFORMATICS SOFTWARE PLATFORM
The primary platform for data analysis and integration for
this study was G-DOC® (Georgetown Database of Cancer).
The datasets from this study were loaded to G-DOC for
further mining and analysis using the methods described
(Madhavan et al., 2011). The G-DOC web portal (http://gdoc.
georgetown.edu) includes a broad collection of bioinformat-
ics and systems biology tools for analysis and visualization
of four major “omics” types: DNA, mRNA, microRNA, and
metabolites. By providing a powerful but easy to use inter-
face, G-DOC was designed specifically to address the activa-
tion barrier for use of biomedical informatics tools by basic,
clinical, and translational researchers. G-DOC contains a wide
variety of analytic tools and capabilities, including integrated
viewers for genomic features and three-dimensional drug-
target complex structures. To help support effective patient
group comparisons, G-DOC supports flexible clinical criteria
browsing to enable selection of specific patient cohorts, and
facilitates the generation of detailed reports and informative
publication-quality plots. G-DOC also allows researchers to
securely share knowledge with others through a powerful suite of
collaboration-enabling features operating within its secure envi-
ronment. This study is publicly accessible through the G-DOC
web portal.

DATA PROCESSING
mRNA expression data
mRNA expression data processing was done as previously
described (Madhavan et al., 2011). Briefly, pre-processing of
microarray data primarily involves normalization with either
RMA (Robust Multichip Average) (Irizarry et al., 2003) or
Quantile Normalization (Bolstad et al., 2003) followed by log
transformation of the data. More information on these standard
normalization strategies is available at http://www.bioconductor.
org. Significant post-processing effort is expended to ensure data
quality and retention of the biological information provided.

miRNA expression data
RT-qPCR data were proccessed using comparative C(T) method
(Livak and Schmittgen, 2001) and normalized to the average
signal of endogenous controls (Schmittgen et al., 2008). These
microRNA reporter Ids are mapped to mature miRNA acces-
sion numbers in miRBase (Kozomara and Griffiths-Jones, 2011)
and hyperlinked to on-line public databases (miRBase, Entrez
and iHOP), providing instant access to comprehensive microRNA
genomic and deep sequencing information as well as predicted
targets. miRNAs are also mapped on the genome using the
JBrowse genome browser interface in G-DOC for integrative data
visualization.

Metabolomics data
The metabolomics data for this study were processed into a data
matrix format with samples as columns and features/metabolites
as rows, and were normalized row-wise or column-wise in a
sequential manner to minimize systematic variance and improve
the performance for downstream statistical analysis. To annotate
the metabolites, we used a home-grown annotation database and
a knowledge driven network methodology (under review, BMC
Bioinformatics). Briefly, we use a translational research workflow
that allows integrative analysis of metabolomics data with other
complementary ‘omics’ technologies including transcriptomics,
proteomics and genomics using knowledge-driven networks. This
network-based view of interconnected functional partners aids in
bringing new insights about their mutual involvement associated
with the phenotype of interest and more granular understand-
ing of interdependence and interconnectivity between different
underlying biochemical processes and pathways at a systems
level. In conjunction, we use a fully cross-referenced database
(MetPlus DB) by integrating the data from the three most com-
prehensive metabolite databases tailored largely toward mam-
malian metabolomics including HMDB, HUAMNCYC & LIPID
MAPS with cross-referencing information for linking to sev-
eral other mainstream chemoinformatics/bioinformatics reposi-
tories including KEGG, METLIN, ChEBI, FooDB, Pubchem, and
Chemspider to provide unambiguous knowledge on clinically and
physiologically relevant metabolites.

DNA copy number data
Raw data from Affymetrix SNPchip was pre-processed using D-
Chip (Wong and Li, 2003) to extract a signal for individual
probes. Piecewise constant segments of copy number profiles
were estimated based on the Fused Margin Regression (FMR)
method (Feng et al., 2010). Probe-level data were further proc-
cessed to calculate copy number segments and chromosomal
instability index (Kuo et al., 2009), one of the value-added anal-
yses that come pre-generated within G-DOC. Segment data were
used for calculation of CIN index at the level of whole chromo-
somes and individual cytobands (Kuo et al., 2009).

Somatic variant analysis
Whole exome data were pre-processed by vendor (EdgeBio) to the
level 2 (TCGA, 2012) and BAM files were further analyzed using
the Ingenuity Variant Analysis platform. A multi-sample VCF
files was created for all 40 samples and uploaded to the private
IVA cloud where the variant list was filtered to obtain a short
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list of non-synonymous, potentially deleterious variants. These
variants were mapped to genomic regions, and further aggre-
gated at the levels of gene, pathways, biological processes and
diseases. The results of variant analysis are made available on-line
as supplement material for the paper.

Additional statistical analysis was performed on variant
data obtained from exome sequencing with a focus on rare
variant detection to ensure that presence of more com-
mon mutations does not affect major trend detected by
IVA analysis. Multi-sample VCF files for tumor samples were
both analyzed using gene-level Burden test using the PLINK
software package.

Genes that were determined by Burden tests as significantly
affected by CNV in relapse group vs. relapse-free were further
analyzed using pathway enrichment analysis to determine major
biological processes that are significantly affected by detected
variants.

STATISTICAL AND BIOINFORMATICS ANALYSIS
Initial filtering
Normalized data were filtered on significance of changes between
two groups of samples—with or without relapse using two-sided
student T-test assuming unequal variance with p-values threshold
at 0.05 and 0.01. A standard R-based package for T-test was used
(Gentleman et al., 2004).

Individual data type analysis to identify best features
All results reported for individual data types were done using uni-
variate analysis. Normalized and pre-filtered on significance data
were analyzed using R-based package for Support Vector Machine
(Bioconductor) with Recursive Feature Elimination (SVM-RFE).
From the pre-filtered feature sets, we determined the most infor-
mative feature associated with the clinical outcome (relapse). All
features for each data type were ranked by using the following
iterative steps—(1) train the classifier using SVM; (2) compute
the ranking criterion for all features; and (3) remove the fea-
ture with the smallest ranking criterion. Starting with the whole
feature pool, we trained the SVM classifier based on the clini-
cal information, and calculated the classification accuracy with
leave-one-out cross-validations. Then the feature with minimum
absolute weight (which is viewed as the feature contributing the
least to the classification) was deleted from the classifier feature
set. This cycle of calculations was repeated for each remaining
feature until none were left. Using this recursive procedure, a
subset of features was determined based on criteria for best per-
formance of trained classifier with the minimal number of top
ranked features.

ROC curves analysis
For each data type, a minimal number of features that pro-
vide maximum accuracy of classification were used to generate
Receiver-Operator Curves (ROC). ROC curves were generated
with 95% confidence intervals using the R package pROC (Robin
et al., 2011), an open-source package to analyze ROC curves.
Leave-one-out cross validation was used to validate the results
of the ROC analysis and bootstrapping option was selected to
generate confidence intervals.

Multivariate integrative analysis to rank heterogeneous features
The combined matrix of most informative features from each data
type was generated by multivariate analysis using Random Forest
with Artificial Contrast Elimination (RF-ACE). The RF-ACE
overcomes potential issues identified in using just the Random
Forest method, namely—the importance score yields mere rank-
ing of associations, the importance score is not normalized, the
prediction performance could be better, and existing RF imple-
mentations often lack flexibility. The RF-ACE implementation
used in this study adds flexibility and improves performance over
the standard Random Forest method. Features of this method
include: support for string literals and a variety of data formats,
normalized importance scores, inclusion of a statistical testing
framework for associations, and better predictive power with
Gradient Boosting Trees (http://www.genome.gov/Multimedia/
Slides/TCGA1/TCGA1Erkkila.pdf).

Addressing overfitting
Overfitting is a major problem when global profiling data are used
to classify the samples. In our study, a multi-step data reduction,
feature ranking, and various cross-validation procedures were
applied to each type of omics data as well as during integration of
multiple data types (Figure 1). In our analysis we have attempted
to address this problem in several ways:

First, we pre-filtered data on significance of differences
between case and control that led to a reduction in total number
of features considered. Second, we applied the Recursive Feature
Elimination algorithm in conjunction with SVM for each data
type, which allowed ranking the features and selecting a min-
imal number of features allowing for maximum classification
accuracy. The SVM-RFE algorithm has been reported in the liter-
ature as one of the best classification algorithms for addressing an
overfitting for gene expression analysis (Guyon et al., 2002). For
each data type this algorithm was applied with a rigorous cross
validation procedure. At each step in SVM-RFE we use 2-fold
cross-validation with 10,000 permutations. This was a variation
of k-fold cross-validation. For each fold, we randomly assigned
data points to two sets d0 and d1 (which were implemented by
shuffling the data array and then splitting it in two), we then train
on d0 and test on d1, followed by training on d1 and testing on
d0. This has the advantage that our training and test sets are both
large compared to the k-fold cross-validation method, and each
data point is used for both training and validation on each fold
(Picard and Cook, 1984; Arlot and Celisse, 2010). After this step,
the number of features for each data type was reduced from hun-
dreds to fewer than 30. Third, the ROC was calculated for each set
of minimal number of features and validated using the leave-one-
out cross-validation procedure. Forth, during integrative analysis
we applied RF-ACE, which provided additional feature ranking
based on importance score; this step involved the application
of cross-validation with 10,000 random permutations. Although
the total number of features was reduced to only 112 even
before application of RF-ACE, this additional ranking proce-
dure allowed us to narrow down the list of potential biomarkers
to only 31.

Overall, the problem of overfitting was directly addressed in
our analysis by multiple computational procedures of feature

Frontiers in Genetics | Cancer Genetics November 2013 | Volume 4 | Article 236 | 16

http://www.genome.gov/Multimedia/Slides/TCGA1/TCGA1_Erkkila.pdf
http://www.genome.gov/Multimedia/Slides/TCGA1/TCGA1_Erkkila.pdf
http://www.frontiersin.org/Cancer_Genetics
http://www.frontiersin.org/Cancer_Genetics
http://www.frontiersin.org/Cancer_Genetics/archive


Madhavan et al. Multi-omics profiling of colorectal cancer

reduction, ranking, elimination and cross–validation, which were
applied consecutively for individual data types as well as for
combination of multiple molecular features. While we firmly
believe that we have comprehensively addressed this computa-
tional problem known as overfitting in machine learning classi-
fication, a related biological issue of validation of classification
results remains an open question and could only be addressed
through additional experimental studies with a larger sample size
of independently derived samples.

Integrative data visualization
The results of RF-ACE analysis were visualized using Regulome
Explorer on-line tools (http://explorer.cancerregulome.org/). All
data types were mapped to a circos plot with genomic coordi-
nates. Correlation of features was represented as edges between
corresponding nodes.

Systems biology analysis
Pathways and GO enrichment analysis for individual data types
were performed using open source pathway enrichment analysis
(Reactome) and commercial packages Ingenuity pathway anal-
ysis and Pathway Studio. Integrative network analysis of tissue
based data types was done using subnetwork enrichment analy-
sis (Pathway Studio) as well as commercial and open source tools
for microRNA target analysis (miRPath 2.0, MiRo, TarBase 6.0,
mirBase 18.0, and IPA microRNA analysis tools).

PUBLIC ACCESS TO DATA
G-DOC: https://gdoc.georgetown.edu/ (once you register, select
CRC_MADHAVAN_2013_01)

Exome sequencing data variant analysis: https://variants.
ingenuity.com/lvCRC_Georgetown_2013 (Ingenuity requires
free registration to access public datasets).
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