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Celastrol, also named as tripterine, is a pharmacologically active ingredient extracted
from the root of traditional Chinese herb Tripterygium wilfordii Hook F with potent
anti-inflammatory and anti-tumor activities. In the present study, we investigated the
effects of celastrol on ulcerative colitis-related colorectal cancer (UC-CRC) as well
as CRC in vivo and in vitro and explored its underlying mechanisms. UC-CRC
model was induced in C57BL/6 mice by administration of azoxymethane (AOM) and
dextran sodium sulfate (DSS). Colonic tumor xenograft models were developed in
BALB/c-nu mice by subcutaneous injection with HCT116 and HT-29 cells. Intragastric
administration of celastrol (2 mg/kg/d) for 14 weeks significantly increased the survival
ratio and reduced the multiplicity of colonic neoplasms compared with AOM/DSS model
mice. Mechanically, celastrol treatment significantly prevented AOM/DSS-induced up-
regulation of expression levels of oncologic markers including mutated p53 and
phospho-p53, β-catenin and proliferating cell nuclear antigen (PCNA). In addition,
treatment with celastrol inhibited inflammatory responses, as indicated by the decrease
of serum tumor necrosis factor-α (TNF-α), interleukin (IL)-1β and IL-6, down-regulation of
cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS), and inactivation
of nuclear factor κB (NF-κB). Moreover, celastrol obviously suppressed epithelial-
mesenchymal transition (EMT) through up-regulating E-cadherin and down-regulating
N-cadherin, Vimentin and Snail. Additionally, we also demonstrated that celastrol
inhibited human CRC cell proliferation and attenuated colonic xenograft tumor growth
via reversing EMT. Taken together, celastrol could effectively ameliorate UC-CRC by
suppressing inflammatory responses and EMT, suggesting a potential drug candidate
for UC-CRC therapy.

Keywords: celastrol, ulcerative colitis, colorectal cancer, inflammation, epithelial-mesenchymal transition,
oncologic proteins

Frontiers in Pharmacology | www.frontiersin.org 1 January 2016 | Volume 6 | Article 320

http://www.frontiersin.org/Pharmacology/
http://www.frontiersin.org/Pharmacology/editorialboard
http://www.frontiersin.org/Pharmacology/editorialboard
http://dx.doi.org/10.3389/fphar.2015.00320
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.3389/fphar.2015.00320
http://crossmark.crossref.org/dialog/?doi=10.3389/fphar.2015.00320&domain=pdf&date_stamp=2016-01-13
http://journal.frontiersin.org/article/10.3389/fphar.2015.00320/abstract
http://loop.frontiersin.org/people/276514/overview
http://www.frontiersin.org/Pharmacology/
http://www.frontiersin.org/
http://www.frontiersin.org/Pharmacology/archive


Lin et al. Celastrol Ameliorates UC-CRC

INTRODUCTION

Ulcerative colitis (UC) is a chronic and non-specific
inflammatory bowel disease characterized by ulcer and erosion
of the rectum and colon (Khor et al., 2011). Epidemiological
studies have shown that UC is one of the three highest risk
factors for developing colorectal cancer (CRC) due to delayed
healing and chronic inflammation (Eaden et al., 2001). CRC is
the second most common cancer in women and the third in
men worldwide (Ferlay et al., 2010). Although UC-associated
CRC (UC-CRC) accounts for only 1–2% of all CRC cases in the
general population, it is considered as one of the most serious
complications of UC and accounts for approximately 10–15% of
all deaths in UC patients (Lakatos and Lakatos, 2008). However,
so far, there is no specific and effective treatment for UC and
UC-CRC. Therefore, to explore novel drugs with high efficacy
and low toxicity against UC and UC-CRC is very imperative and
significant.

Celastrol, a triterpene, is a pharmacologically active
ingredient extracted from the traditional Chinese medicinal
plant Tripterygium wilfordii Hook F (also named as Thunder
of God Vine) and exhibits significant activities in the treatment
of chronic inflammatory, autoimmune diseases, cancer, and
neurodegenerative diseases (Allison et al., 2001; Dai et al.,
2010; Ge et al., 2010; Venkatesha et al., 2011; Wong et al.,
2012). Recently, Shaker et al. (2014) have reported that celastrol
ameliorates dextran sulfate sodium (DSS)-induced colitis in
mice via modulating intestinal epithelial homeostasis, colonic
oxidative stress, and inflammatory cytokines. Meanwhile, several
studies have demonstrated that celastrol induces apoptosis in
human CRC cells through up-regulation of death receptors
and β-catenin pathway and suppresses invasion through down-
regulation of CXCR4 chemokine receptor (Sung et al., 2010;
Yadav et al., 2010; Lu et al., 2012). The above evidence led us to
investigate whether or not celastrol could prevent UC-CRC and
if so, through what mechanism.

Chronic inflammation plays a crucial role in the procession
of UC tumorigenesis through the induction of cellular DNA
damage, telomere shortening, and senescence (Risques et al.,
2011). Various initiating factors have been found to be involved in
cancer-related inflammation such as nuclear factor κB (NF-κB),
tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, and IL-6
(Zhu et al., 2013). The epithelial-mesenchymal transition (EMT)
is a process characterized by the loss of epithelial cell markers
including E-cadherin, and the acquisition of a mesenchymal
phenotype with expression of mesenchymal proteins such as
Vimentin, which serves important functions in tumor initiation,
progression, invasion, and metastasis (Guarino et al., 2007;
Thiery et al., 2009; Chen et al., 2013). Recent studies have
demonstrated that EMT also contributes to the pathogenesis of
UC and colorectal carcinogenesis, and those factors involved
in the development of inflammation are also crucial for the
signaling pathways of EMT (Zhu et al., 2013; Tahara et al., 2014).
Thus, we hypothesized that the natural agent celastrol might
be a promising candidate for the treatment of UC-CRC via
suppressing inflammatory responses and epithelial-mesenchymal
transition.

In the present work, to test this hypothesis, we developed
an azoxymethane (AOM)/DSS-induced UC-CRC mouse model,
and demonstrated that celastrol effectively alleviated UC-CRC
via suppressing inflammatory response and EMT. In parallel,
the in vivo and in vitro anti-tumor activities and molecular
mechanisms of celastrol in human CRC cell lines and xenograft
mouse models were further determined. Here, our findings
suggest that celastrol has potentials in the treatment of UC-CRC
and provide new useful clues regarding its possible mechanisms.

MATERIALS AND METHODS

Cells, Animals, and Materials
Human colorectal adenocarcinoma cell lines HCT116 and HT-29
were obtained from Shanghai Institute of Cell Resource Center
of Life Science (Shanghai, China). All cells were cultured in
McCOY’s 5A medium (Sigma-Aldrich, St. Louis, MO, USA)
supplemented with 10% fetal bovine serum (FBS; Hyclone, USA),
100 mg/ml streptomycin and 100 U/ml penicillin at 37◦C in
humidified atmosphere with 5% CO2.

Male C57BL/6 mice (n = 65, 6–8 weeks old) used for UC-
CRC models and male BALB/c-nu mice (n = 36, 5 weeks old)
used for colorectal tumor xenograft models were purchased from
Vital River Laboratory Animal Technology Co. Ltd (Beijing,
China). All animals were housed under controlled conditions
(temperature 22 ± 1◦C, humidity 40–60% and 12 h dark/light
cycle) and free access to a standard laboratory diet and water
for 2 weeks. All animal care and experimental procedures were
carried out in accordance with the recommendation of the
Animal Care Ethics and Use Committee of China Medical
University and approved by this Committee.

Celastrol (≥98%) was purchased from Dalian Melone
pharmaceutical Co., Ltd (Dalian, China). For in vitro studies,
celastrol was dissolved in dimethyl sulfoxide (DMSO; Sigma–
Aldrich) at a stock concentration of 44 mM. For animal
experiments, celastrol was dissolved in DMSO at 20 mg/ml and
then diluted with 0.9% saline to the final concentrations (1%
DMSO) before administration.

Development of UC-CRC Model and
Treatment Procedure
The procedures of induction of UC-CRC model by AOM and
DSS were presented in Figure 1A. In the study, 65 mice were
randomly divided into three groups: 15 mice in the control
group, 30 mice in model group (AOM/DSS), and 20 mice in
celastrol group (AOM/DSS + celastrol treatment). To develop
the UC-CRC model, the mice were given a single intraperitoneal
injection of AOM (10 mg/kg body weight in 0.9% saline, Sigma–
Aldrich) at first week following adaptation. One week later, the
animals were given 3% DSS (Mpbio, Solon, OH, USA) added to
the drinking water for 7 days followed by 14 days of drinking
water for recovery, and this cycle was repeated twice. Celastrol
(2 mg/kg/d) or the vehicle (1%, v/v, DMSO in normal saline)
was administrated by gavage daily from first week until the
end of 14th week. During the total experimental periods, body
weights and survival ratio were measured every week. At the
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FIGURE 1 | Effects of celastrol on the general health and survival of mice treated with azoxymethane (AOM) and dextran sodium sulfate (DSS).
(A) Experimental protocol for ulcerative colitis-related colorectal cancer (UC-CRC) model and treatment. The details were described in the section “Materials and
Methods.” (B) Effect of celastrol (2 mg/kg) on body weight of mice. Body weight of each mouse was measured once per week. (C) Effect of celastrol (2 mg/kg) on
survival ratio of mice. Survival status of each mouse was recorded every week. Fifteen mice in the control group, 30 mice in model group, and 20 mice in celastrol
group. (D) Effect of celastrol (2 mg/kg) on colon weight and colon length. At the end of experiment, colon tissues were removed and the weight and length were
measured. Data are presented as mean ± SD. ∗∗p < 0.01 vs. the control group; #p < 0.05 and ##p < 0.01 vs. the AOM/DSS model group.

end of the experiment, blood was collected for ELISA, then
mice were sacrificed and colon tissues were removed. After
measuring the weight and length, the colons were slit open
longitudinally along the main axis and washed with phosphate

buffer saline (PBS, pH 7.4). The number of tumors in the colons
was recorded, and the diameter of each tumor was measured
using a sliding caliper, then total tumor area of each colon
was calculated. Subsequently, some colon tissues were fixed
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in 4% paraformaldehyde buffer for further histopathological
examination and immunohistochemical analysis, while others
were flash-frozen in liquid nitrogen and kept at −80◦C for
western blotting analysis.

Histopathological Examination
For histopathology analysis, paraformaldehyde fixed colonic
tissues were dehydrated in gradient alcohol, embedded in paraffin
and cut into serial sections at 5 μm. Then, these sections
were stained with haematoxylin and eosin (H&E) solution
and observed under an optical microscope (DP73, OLUMPUS,
Japan). Pathological assessment was performed independently
and blindly by two pathologists.

Immunohistochemical Staining
For immunohistochemical examination, paraffin-embedded
colonic sections were deparaffinized in xylene and hydrated
in gradient alcohol. Then, antigen retrieval was performed by
heating in pre-boiling buffer in a microwave for 10 min. Next,
slides were incubated in 3% hydrogen peroxide solution for
15 min to quench endogenous peroxidase activity and then
blocked by 10% goat serum in PBS (pH 7.4) for 15 min at
room temperature. Subsequently, slides were incubated with
primary antibodies in a humidified chamber at 4◦C overnight:
cyclooxygenase-2 (COX-2; 1:300), inducible nitric oxide synthase
(iNOS; 1:300), β-catenin (1:200), E-cadherin (1:200), N-cadherin
(1:200; BOSTER, Wuhan, China), proliferating cell nuclear
antigen (PCNA; 1:100), Vimentin (1:300), Snail (1:100; Bioss,
Beijing, China), or p53 (1:50), p-p53 (1:50; Santa Cruz, Dallas,
TX, USA). After incubation with biotinylated goat anti-rabbit
secondary antibody (1:200; Beyotime, Jiangsu, China) and
avidin-biotin-horseradish peroxidase (HRP; Beyotime, Jiangsu,
China), slides were visualized using diaminobenzidine (DAB),
counterstained with haematoxylin and observed under an optical
microscope.

Enzyme-Linked Immunosorbent Assays
(ELISA) for TNF-α, IL-1β, and IL-6
The levels of TNF-α, IL-1β, and IL-6 in the serum were
measured using commercial Mouse TNF-α, IL-1β, and IL-6
ELISA Kits (BOSTER, Wuhan, China), respectively, according
to the manufacturer’s protocols. Briefly, 100 μl diluent standard
or sample serum was added into the antibody-coated wells and
incubated for 90 min at 37◦C. After washing, samples were
incubated with the biotinylated polyclonal antibody for 60 min
at 37◦C. Then, 100 μl avidin-peroxidase complex solution was
added and incubated for 30 min at 37◦C. After washing, 90 μl
3,3′,5,5′-Tetramethylbenzidine (TMB) color liquid was added,
and the mixture was protected from light for 30 min at 37◦C.
Finally, 100 μl stop solution was pipetted to stop the reaction,
and the optical density was determined at 450 nm using a plate
reader (ELX-800, BIOTEK, USA).

Cell Viability Assays
MTT assay was used to measure the anti-proliferative effect of
celastrol on two kinds of CRC cell lines HCT116 andHT-29. Cells

were seeded in 96-well plates at a density of 3000 cells/well and
were allowed to attach for overnight. Then cells were treated with
0–40 μM celastrol for 24 and 48 h. After the treatment, 20 μl of
MTT (5 mg/ml, Sigma–Aldrich) dissolved in PBS was added to
each well and incubated at 37◦C for 4 h. Subsequently, the media
with MTT were removed and the formazan granules generated
by live cells were dissolved in 200 μl DMSO. The absorbance at
490 nm was measured using a plate reader.

Human Colorectal Tumor Xenograft
Model and Treatment
HT-29 or HCT-116 cells (1 × 107) suspended in 0.2 ml of serum-
free McCOY’s 5A medium were inoculated subcutaneously into
the right flank of male 5-week-old BALB/c nude mice. The tumor
diameters were measured with digital caliper every 3 days and
their volumes were calculated following a standard formula:
length × width2/2. On 10th day after inoculation, for two
colorectal tumor models, mice were, respectively, randomized
into three groups (n = 6) and treated with either vehicle (model
group) or celastrol (1 mg/kg or 2 mg/kg) by gavage daily for
the duration of the experiment (18 days). By the end of the
experiment, mice were sacrificed, and then all tumor xenografts
were removed and measured followed by being flash-frozen in
liquid nitrogen and kept at −80◦C for western blotting analysis.

Cytoplasmic and Nuclear Protein
Extraction
Nuclear proteins and cytoplasmic proteins were extracted from
the colon tissues using the Nuclear and Cytoplasmic Protein
Extraction Kit (Beyotime, Jiangsu, China) according to the
manufacturer’s instructions. Briefly, colon tissues were cut
into small pieces and homogenized with cytoplasmic protein
extraction agent A and B. After centrifuging at 1500 g for 5 min at
4◦C, the supernatant was collected as partial cytoplasmic protein
and the pellet was dissolved with cytoplasmic protein extraction
agent A supplemented with PMSF. After incubation on ice for
15 min, cytoplasmic protein extraction agent B was added and
incubated for 1 min on ice. Then, the samples were centrifuged
at 12,000 g for 5 min at 4◦C, and the supernatant was combined
with the above cytoplasmic protein. The pellet was re-suspended
in nuclear extraction buffer supplemented with PMSF on ice for
30 min and the supernatant containing the nuclear protein were
obtained following centrifuging at 12,000 g for 10 min at 4◦C. All
protein extracts were stored at −80◦C.

Western Blot Analysis
Colon tissues and tumor tissues were lysed in RIPA buffer
(Beyotime, Jiangsu, China) with protease and phosphatase
inhibitors on ice for 1 h. The lysates were centrifuged at 12,000 g
for 10 min at 4◦C and the supernatant was collected as the
total lysate protein. HCT116 and HT-29 cells were treated
with celastrol (0–40 μM) for 48 h, then were harvested and
lysed in RIPA buffer supplemented with PMSF and phosphatase
inhibitors on ice for 1 h. After centrifuging the cell suspension
at 12,000 g for 10 min at 4◦C, the suspension was collected as
the whole cell protein. The protein concentration was determined
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with BCA Protein Assay Kit (Beyotime, Jiangsu, China) and a
plate reader according to the manufacturer’s instructions.

For Western blot analysis, 40 μg of protein from each sample
was separated by electrophoresis on 8–13% PAGE-1% SDS
gels, and transferred onto polyvinylidene difluoride membranes
(Millipore, Billerica, MA, USA). After blocking with 5% non-
fat milk in TBST (0.1%) for 1 h at room temperature, the
membranes were incubated with appropriate primary antibody
overnight at 4◦C: COX-2 (1:400), iNOS (1:400), NF-κB p65
(1:500), β-catenin (1:400), E-cadherin (1:400), N-cadherin (1:400;
BOSTER,Wuhan, China), PCNA (1:500), Vimentin (1:500), Snail
(1:500; Bioss, Beijing, China), or p53 (1:200), p-p53 (1:200;
Santa Cruz, Dallas, TX, USA). Then, the blots were washed four
times for 5 min each in TBST and incubated with secondary
HRP-conjugated goat anti-rabbit or anti-mouse IgGs (1:5000;
Beyotime, Jiangsu, China) for 45 min at 37◦C. The interest
proteins were visualized using enhanced chemiluminescence
(ECL; 7Sea, Shanghai, China) and the densitometry of band
was analyzed through Gel-Pro-Analyzer system (Liuyi, Beijing,
China). Equal loading of protein was confirmed by stripping
the blots and re-probing with Histone H3 (1:500; Bioss, Beijing,
China) or β-actin antibody (1:1000; Santa Cruz, Dallas, TX,
USA). Nuclear NF-κB p65 band densities were normalized to
Histone H3, while other band densities were normalized to
β-actin.

Statistical Analysis
Data were presented as mean ± SD (standard deviation)
of three independent experiments unless otherwise specified.
All statistical analyses were performed using GraphPad Prism
Software Version 5.0 (GraphPad Software Inc., La Jolla, CA,
USA). Data between two groups were compared with two-
tailed independent t-test and data from more than three groups
were analyzed by One-Way ANOVA followed by Bonferroni
test. Counting data were analyzed with non-parametric test
(Mann–Whitney test). Kaplan–Meier survival analysis was used
to evaluate the survival ratio. p< 0.05 was considered as statistical
significance.

RESULTS

Celastrol Improves the General Health
and Survival of Mice Treated with
AOM/DSS
As shown in Figure 1B, body weight loss was significant in
mice treated with AOM in combination with three cycles of
DSS during the experimental period compared with the control
mice. However, this symptom was alleviated in mice treated
with celastrol (2 mg/kg) during the recovery periods when they
received tap water without DSS. According to the Kaplan–Meier
survival curves (Figure 1C), celastrol treatment also significantly
increased the survival ratio of AOM/DSS-treated mice from 11th
week to the end of experiment. In agreement with previous
studies (Li et al., 2010), exposure to AOM and DSS caused a
significant increase in colon weight and decrease in colon length,

which was considered as a result of apparent mucosal thickening.
Notably, such remarkable increase in colon weight to colon
length ratio in mice receiving AOM and DSS was significantly
reduced by celastrol treatment (Figure 1D).

Celastrol Reduces the Multiplicity of
Colonic Neoplasms and the Expression
of Oncogenic Proteins
Treatment with AOM and DSS led to 100% incidence of
colonic neoplasms with multiplicity of 9.67 ± 2.07 per
mouse in model group. Although celastrol administration
(2 mg/kg) failed to reduce the incidence of colonic neoplasms,
not only did celastrol treatment significantly decrease
the number of small neoplasms (diameter < 3 mm) but
also the number of large neoplasms (diameter > 3 mm;
Figures 2A,B). Additionally, celastrol led to an over 40%
reduction in the number of total tumors and a more than
50% decrease in tumor area (Figures 2C,D). Histologically,
crypt destruction, inflammatory cell infiltration, and colon
epithelial hyperplasia were observed in the tumor-adjacent
colon tissues of AOM/DSS-treated mice. Nevertheless, these
symptoms were remarkably mitigated in mice receiving celastrol
(Figure 2E). There was no colonic tumor observed in the control
group.

We also determined the expression levels of neoplastic
markers by immunohistochemistry and western blotting.
Existing evidence indicate that p53 mutation is an early event
of UC-CRC progression, which has been shown to be present
in approximately 50% of patients with UC-CRC (Lashner et al.,
2003). In general cases, the immunohistochemical staining
and western blot of p53 mainly represent the accumulated
mutated proteins due to the much longer half-life of mutated
p53 than the active wild-type protein (Lashner et al., 2003).
As shown in Figures 3A,B, the expression levels of p53 and
p-p53 proteins in colonic neoplasms of AOM/DSS model
mice were significantly increased compared with the control
group, implicating the involvement of p53 mutation in our
UC-CRC model. Additionally, the expression of oncologic
proteins β-catenin and PCNA were dramatically up-regulated
in model group. These changes suggested that AOM/DSS-
induced UC-CRC was phenotypically similar to human
UC-CRC. More noteworthy was that such increase in the
expression levels of these neoplastic markers induced by
AOM/DSS was significantly suppressed by celastrol treatment
(2 mg/kg).

Celastrol Inhibits Inflammatory
Responses in AOM/DSS-Induced Mice
Overproduction of pro-inflammatory cytokines such as TNF-α,
IL-1β, and IL-6 by activated macrophages plays an important role
in the pathogenesis of UC (Murano et al., 2000). As illustrated
in Figure 4A, the levels of serum TNF-α, IL-1β, and IL-6 in the
AOM/DSS model group were significantly higher than in control
group, as assessed by ELISA. Such increase in the levels of these
inflammatory makers induced by AOM/DSS was attenuated by
treatment with celastrol.
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FIGURE 2 | Effects of celastrol on the burden of colonic neoplasms in AOM/DSS-treated mice. Colon tissues were removed, the number and size of
tumors in each colon was measured, and the tumor area was calculated. (A,B) Effect of celastrol (2 mg/kg) on multiplicity of colonic neoplasms in different sizes
(diameter > 3 mm and diameter < 3 mm). (C) Effect of celastrol (2 mg/kg) on the total number of tumors per mouse. (D) Effect of celastrol (2 mg/kg) on the total
tumor area per mouse. (E) Representative colonic sections from the control mice, AOM/DSS model mice, and AOM/DSS in combination with celastrol (2 mg/kg)
treated mice were stained with haematoxylin and eosin (H&E) for histological assessment. Original magnification was 200×. Data are presented as mean ± SD
(n = 6). #p < 0.05 vs. the AOM/DSS model group.

COX-2 and iNOS are two pro-inflammatory enzymes which
are considered to be vital in the pathological process of UC
(Dudhgaonkar et al., 2007). Additionally, iNOS acts in synergy
with COX-2 to promote the inflammatory response (Sklyarov
et al., 2011). Therefore, we evaluated the effects of celastrol on
COX-2 and iNOS protein expression in the colonic tissue of
AOM/DSS-induced mice. The results of immunochemical and
western blot analyses showed that exposure of mice to AOM/DSS
led to a significant increase in the expression of COX-2 and
iNOS compared with the untreated mice. Oral administration of
celastrol was able to obviously reduce the up-regulation of both
pro-inflammatory proteins (Figures 4B,C).

Nuclear factor κB, a key transcription factor that mediates
inflammatory signaling pathways, also plays a critical role in

the pathophysiology of UC and CRC (Atreya et al., 2008;
Paradisi et al., 2009). Normally, NF-κB is localized to the
cytoplasm in an inactive form. During inflammatory stimulus,
NF-κB is activated and translocates into the nucleus where
it regulates the transcription of multiple genes involved in
inflammatory response (Karrasch and Jobin, 2008). In order
to evaluate whether celastrol also has an effect on NF-κB
activation in our animal model of UC-CRC, the cytoplasmic
levels and the nuclear levels of NF-κB p65 protein in
colon tissues were determined, respectively, using western blot
analysis. As shown in Figure 4C, compared with control
group, the expression of NF-κB p65 protein in the cytoplasm
was significantly decreased, whereas the nuclear NF-κB p65
levels were obviously increased in the AOM/DSS-treated
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FIGURE 3 | Effects of celastrol (2 mg/kg) on the oncogenic protein expression in AOM/DSS-treated mice. (A) The expression of p53, p-p53, β-catenin,
and proliferating cell nuclear antigen (PCNA) in normal colonic tissues or colonic tumor tissues was evaluated using immunohistochemical staining. Shown are
representative section of colon tissues from the control group, UC-CRC model group and celastrol-treated group. Original magnification was 400×. (B) The
expression levels of p53, p-p53, β-catenin, and PCNA in colonic tissues from each group were determined by western blot analysis. Representative bands are
shown (left), and the relative band intensity ratio was analyzed (right). Data are presented as mean ± SD (n = 6). ∗∗p < 0.01 vs. the control group; #p < 0.05 and
##p < 0.01 vs. the AOM/DSS model group.

model group, suggesting that NF-κB pathway may undergo
activation. Nevertheless, celastrol reversed the decrease of
cytoplasmic p65 protein and the increase of nuclear p65
protein induced by AOM/DSS. These results indicate that
celastrol may suppress AOM/DSS-mediated activation of NF-κB
signaling.

Celastrol Inhibits AOM/DSS-Induced
EMT
A hallmark of EMT is down-regulation of epithelial marker
E-cadherin and up-regulation of mesenchymal markers
N-cadherin and Vimentin, which is characterized by the loss
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FIGURE 4 | Effects of celastrol (2 mg/kg) on the levels of inflammation cytokines and proteins in AOM/DSS-treated mice. (A) The levels of tumor
necrosis factor-α (TNF-α) (a), interleukin (IL)-1β (b), and IL-6 (c) in serum from the control mice, AOM/DSS model mice and AOM/DSS in combination with celastrol
treated mice were determined using ELISA assay. (B) The expression levels of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) in normal
colonic tissues or colonic tumor tissues was evaluated using immunohistochemical staining. Representative stained colonic sections from each group are shown.
Original magnification was 400×. (C) The expression levels of COX-2 and iNOS as well as cytoplasmic and nuclear NF-κB p65 in colonic tissues from each group
were determined by western blot analysis. Representative bands are shown (left), and the relative band intensity ratio was analyzed (right). C, cytoplasm; N, nuclear.
Data are presented as mean ± SD (n = 6). ∗∗p < 0.01 vs. the control group; ##p < 0.01 vs. the AOM/DSS model group.

of cell–cell adhesion and the gain of migratory and invasive
phenotype (Yang et al., 2014). Snail, a zinc finger transcription
factor, has been proved as a key regulator for EMT induction in
CRCs (Nieto, 2002; Vandewalle et al., 2009). It is demonstrated
that Snail suppresses E-cadherin transcription by binding to the
E-box site within its promoter, resulting in EMT (Peinado et al.,
2007). In this study, the expression of EMT regulatory proteins

in the colon tissue was detected with immunohistochemical
staining and western blot analysis. As shown in Figure 5A,
significant down-regulation of E-cadherin and up-regulation of
N-cadherin, Vimentin, and Snail were observed in AOM/DSS-
induced UC-CRCmice compared with control group, suggesting
the occurrence of EMT in the model group. Celastrol treatment
was shown to dramatically increase the expression of E-cadherin
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FIGURE 5 | Effects of celastrol (2 mg/kg) on the expression levels of EMT-related proteins in AOM/DSS-treated mice. (A) The expression levels of
E-cadherin, N-cadherin, Vimentin, and Snail in normal colonic tissues or colonic tumor tissues was assessed using immunohistochemical staining. Representative
colonic sections from the control group, UC-CRC model group and celastrol-treated group are shown. Original magnification was 400×. (B) The expression levels of
E-cadherin, N-cadherin, Vimentin, and Snail in colonic tissues from each group were determined by western blot analysis. Representative bands are shown (left), and
the relative band intensity ratio was analyzed (right). Data are presented as mean ± SD (n = 6). ∗∗p < 0.01 vs. the control group; #p < 0.05 and ##p < 0.01 vs. the
AOM/DSS model group.
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FIGURE 6 | Effects of celastrol on cell proliferation and EMT-related protein expression in CRC cells in vitro. (A) HCT116 (a) and HT-29 (b) cells were
exposed to celastrol (0, 20, and 40 μM) for 24 and 48 h, and cell viability was determined by MTT assay. (B) The expression levels of E-cadherin, N-cadherin,
Vimentin, and Snail in HCT116 and HT-29 cells treated with celastrol (0–40 μM) for 48 h were determined by western blot analysis. Representative bands are shown
(left), and the relative band intensity ratio was analyzed (right). Data are presented as mean ± SD from three independent experiments. ∗p < 0.05 and ∗∗p < 0.01 vs.
control (0 μM).

and decrease the expression of N-cadherin, Vimentin, and
Snail. Similarly, western blot analysis further confirmed the
effects of celastrol on the expression levels of E-cadherin,
N-cadherin, Vimentin, and Snail (Figure 5B). Taken together,
these observations suggest that celastrol can repress EMT in
UC-CRC model.

Celastrol Inhibits Proliferation and EMT
of HCT116 and HT-29 Cells
The effect of celastrol on the viability of CRC cells HCT116
and HT-29 was determined using MTT assay. As shown in
Figure 6A, celastrol treatment led to a significant reduction of
cell viability in concentration- and time-dependent manner. It is
demonstrated that the inhibitory rates were more than 80% after
the treatment with 40 μM celastrol for 48 h in both cell lines.
These findings indicate that celastrol is a potent inhibitor of CRC
cell proliferation.

To gain further insight into the effect of celastrol on
EMT in CRC, we determined the changes in expression of
epithelial and mesenchymal markers in CRC cells with celastrol
treatment for 48 h by western blot analysis. As shown in
Figure 6B, celastrol significantly increased the expression of
epithelial characteristic E-cadherin and decreased the expression
of mesenchymal characteristics N-cadherin and Vimentin in
both HCT116 and HT-29 cell lines. The transcription factor Snail
was also down-regulated in a concentration-dependent manner.
Therefore, these results suggest that celastrol can ameliorate EMT
of CRC cells.

Celastrol Inhibits Tumor Growth and EMT
in Murine Models of Xenograft Tumor
To test the in vivo anti-tumor efficacy of celastrol, we
established nude mice models bearing inoculated HCT116
and HT-29 tumors. Remarkably, in both CRC models, mice
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FIGURE 7 | Effects of celastrol on tumor growth in xenograft CRC models in vivo. (A,B) Effect of celastrol (1 and 2 mg/kg) on tumor volumes in nude mice
bearing HCT116 tumors (A) and HT-29 tumors (B). (C,D) Effect of celastrol on tumor weight in each mouse bearing HCT116 tumors (C) and HT-29 tumors (D).
(E,F) The image of tumor tissues from each mouse bearing HCT116 tumors (E) and HT-29 tumors (F). Data are presented as mean ± SD (n = 6). ∗p < 0.05 and
∗∗p < 0.01 vs. the model group (0 μM).

treated with celastrol (2 mg/kg) displayed attenuated tumor
growth compared with untreated mice (Figures 7A,B). The
overall size and weight of the tumors in the celastrol-
treated groups (2 mg/kg) was obviously lower than that
of model group (Figures 7C–F). Analysis of tumor weights
revealed that the inhibitory rates for HCT116 and HT-29
xenograft mice treated with 2 mg/kg celastrol were 45.5
and 41.6%, respectively. Throughout the treatment schedule,
there was no significant difference in mean body weight
between celastrol-treated mice and untreated mice (data not
shown).

We also investigated the effect of celastrol on EMT in
nude mice with CRC and the results were consistent with
that of CRC cells. As shown in Figure 8, the expression of
E-cadherin was obviously up-regulated and the expression
of N-cadherin, Vimentin, and Snail was significantly down-
regulated in mice administered with 2 mg/kg celastrol
compared to others. Collectively, these data further confirm
that celastrol exhibits potent anti-tumor efficacy on CRC by
down-regulating EMT.

DISCUSSION

Ulcerative colitis-related CRC is an irreversible malignant
colonic disease with high mortality for which there is no
effective therapies capable of curing or at least preventing
the progressive course. Currently, increasing interest is being
focused on exploring underlying mechanisms involved in UC-
CRC and novel potential agents in animal models. During
the preclinical study, AOM/DSS-induced model is the most
commonly used non-hereditary UC-CRC mouse model, which
can mimic the development of CRC in human patients. Based
on the previous reports (Okayasu et al., 1996; Greten et al.,
2004), we established a UC-CRC mouse model by three cycles
of DSS administration in combination with AOM pretreatment,
which led to 100% incidence of colonic neoplasms as well as
marked symptoms including body weight loss, colon weight
increase, and colon length shortening. In this study, we
found that celastrol treatment significantly reduced the number
of colonic neoplasms and tumor area, improved the above
symptoms, and increased the survival rate of AOM/DSS-treated
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FIGURE 8 | Effects of celastrol on the expression levels of EMT-related proteins in xenograft CRC mice. The expression levels of E-cadherin, N-cadherin,
Vimentin, and Snail in HCT116 tumors and HT-29 tumors from each group were determined by western blot analysis. Representative bands are shown (Left), and
the relative band intensity ratio was analyzed (Right). Data are presented as mean ± SD (n = 6). ∗∗p < 0.01 vs. the model group (0 μM).

mice. In addition, celastrol was also shown to inhibit CRC
cell proliferation and attenuate tumor growth in xenograft
CRC models. These results suggest that celastrol can be
considered as a potential therapeutic drug in ameliorating
UC-CRC.

UC-CRC is a well-known multistep process during which
the epithelial cells in colon undergo inflammation-dysplasia-
carcinoma. An inflammatory environment is considered to play
a key role in the initial stage of pathogenesis of UC-CRC. A large
body of evidence suggests that activation of NF-κB is strongly
induced in the inflamed colon from UC-CRC patients as well as
in experimental UC-CRC models (Wullaert et al., 2011; Lin et al.,
2014). The nuclear translocation of NF-κB can lead to increased
levels of certain pro-inflammatory cytokines, such as TNF-α,
IL-1β, and IL-6 in patients with UC (Ogata and Hibi, 2003). NF-
κB activation can also promote expression of pro-inflammatory
mediators including COX-2 and iNOS, which further deteriorates
inflammatory responses and subsequently results in damage to
the colonic tissues (Sakthivel and Guruvayoorappan, 2013). As
to the effects of celastrol on inflammatory mediators in serum
and colon tissues, we found that celastrol obviously decreased
the overproduction of serum TNF-α, IL-1β, and IL-6, down-
regulated the overexpression of COX-2 and iNOS proteins, and
inhibited the activation and nuclear translocation of NF-κB
in UC-CRC mice. These findings were in agreement with the
previous studies supporting the notion that celastrol functioned
as a potent NF-κB inhibitor in different in vivo and in vitro
models for inflammation and cancer diseases (Pinna et al., 2004;
Kannaiyan et al., 2011; Shaker et al., 2014).

There is increasing evidence supporting the promotional role
of EMT in UC-CRC progression, which is associated with the

loss of adhesive constraints, enhanced motility, the acquisition
of stem cell-like properties, and immune escape (Bates, 2005;
Zhu et al., 2013). Among a group of regulators involved in
EMT, Snail has been identified as a central mediator of EMT
by directly down-regulating E-cadherin in the progression of
CRC (Fan et al., 2012). These findings imply that inhibiting
EMT may be an ideal strategy for the treatment of UC-CRC.
In a recent study, Kang et al. showed that celastrol could
markedly inhibit TGF-β1-mediated EMT through regulating the
expression of Snail and E-cadherin in Madin-Darby Canine
Kidney (MDCK) and A549 cell lines (Kang et al., 2013). However,
the possible effect of celastrol on EMT in UC-CRC model is
unclear. As expected, our data demonstrated that the down-
regulated E-cadherin as well as the up-regulated N-cadherin,
Vimentin, and Snail by AOM/DSS could be inhibited by
celastrol treatment. Moreover, the suppression of EMT was
also involved in the inhibitory roles of celastrol in human
CRC cell proliferation in vitro (HCT116 and HT-29 cells) and
xenograft colonic tumor growth in vivo. Therefore, the results
presented here suggest that the alleviative effect of celastrol
on AOM/DSS-induced UC-CRC may be partially mediated by
suppressing EMT, although the detailed mechanisms need to be
explored.

P53 is a tumor suppressor protein which plays an
important role in cell cycle, DNA repair, apoptosis,
senescence, and angiogenesis (Sionov and Haupt, 1999).
Increasing evidence indicates that p53 mutations and loss of
heterozygosity are the early events during the progression
of UC-CRC (Garrett et al., 2009; Scarpa et al., 2014). It is
interesting that wild-type p53 protein has a short half-life
and cannot be determined using immunohistochemical
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staining, therefore, the positive p53 immunochemical results
denote mutated p53 protein (Seyedmajidi et al., 2013). Here,
we found that celastrol treatment remarkably down-regulated
the expression of the dysfunctional p53 and p-p53. Moreover,
β-catenin and PCNA, as two important oncogenic transcription
factors, have also been reported to play crucial roles during
UC-associated colon carcinogenesis (Cappello et al., 2003;
Nelson and Nusse, 2004; Clevers, 2006; Georgescu et al., 2007).
Our results clearly demonstrated that the expression levels
of β-catenin and PCNA in colonic tissues were significantly
up-regulated by AOM/DSS, which was in line with previous
studies (Lin et al., 2014, 2015). Nevertheless, administration of
celastrol significantly prevented up-regulation of these neoplastic
markers. These data reveals that celastrol could execute its
protective effect against UC-CRC by preventing the process of
carcinogenesis.

During the progression of UC-CRC, there is abundant
evidence for the complex relationship among inflammation,
EMT, and carcinogenesis. Several inflammatory mediators, such
as TNF-α, IL-6, TGF-β, and NF-κB have been reported to
be involved in the whole progression including triggering
inflammatory cascade, promoting EMT and facilitating cell
transformation and malignancy (Landskron et al., 2014).
β-catenin, an important downstream regulator of the Wnt
signaling pathway, also participates in EMT procession by
binding to membranous E-cadherin (Munding et al., 2012).
Our present findings suggest that celastrol can prevent the
development of UC-CRC in mice via targeting multiple
mechanisms across the pathological progression, including
alleviating inflammation, intervening EMT, and suppressing
carcinogenesis.

CONCLUSION

Our studies demonstrated for the first time that celastrol
could effectively prevent UC-related colonic carcinogenesis in
AOM/DSS mice model. The mechanisms involved in this effect
of celastrol on UC-CRC were associated with suppression
of inflammatory responses, intervention of EMT as well as
down-regulation of mutated p53 and p-p53 proteins, oncogenic
proteins β-catenin, and PCNA. Furthermore, the effect of
celastrol on EMT reversal was also confirmed in CRC cells
in vitro and the colon cancer xenograft in vivo. Based on the
data presented here, we believe that celastrol may be a potential
therapeutic agent for UC-CRC treatment and the research on its
more precise mechanisms is ongoing in our group.
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