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Human and experimental studies have revealed putative neuroprotective and pro-
cognitive effects of omega-3 polyunsaturated fatty acids (n-3 PUFA) in aging, evidencing
positive correlations between peripheral n-3 PUFA levels and regional grey matter (GM)
volume, as well as negative correlations between dietary n-3 PUFA levels and cognitive
deficits. We recently showed that n-3 PUFA supplemented aged mice exhibit better
hippocampal-dependent mnesic functions, along with enhanced cellular plasticity and
reduced neurodegeneration, thus supporting a role of n-3 PUFA supplementation in
preventing cognitive decline during aging. To corroborate these initial results and develop
new evidence on the effects of n-3 PUFA supplementation on brain substrates at macro-
scale level, here we expanded behavioral analyses to the emotional domain (anxiety
and coping skills), and carried out a fine-grained regional GM volumetric mapping
by using high-resolution MRI-based voxel-based morphometry. The behavioral effects
of 8 week n-3 PUFA supplementation were measured on cognitive (discriminative,
spatial and social) and emotional (anxiety and coping) abilities of aged (19 month-old
at the onset of study) C57B6/J mice. n-3 PUFA supplemented mice showed better
mnesic performances as well as increased active coping skills. Importantly, these effects
were associated with enlarged regional hippocampal, retrosplenial and prefrontal GM
volumes, and with increased post mortem n-3 PUFA brain levels. These findings indicate
that increased dietary n-3 PUFA intake in normal aging can improve fronto-hippocampal
GM structure and function, an effect present also when the supplementation starts at
late age. Our data are consistent with a protective role of n-3 PUFA supplementation in
counteracting cognitive decline, emotional dysfunctions and brain atrophy.

Keywords: aging, cognitive decline, omega-3 fatty acids, dietary supplementation, MRI, voxel-based
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INTRODUCTION

The constant worldwide growth of the elderly population has
amplified the interest in the prevention and improvement of
age-related cognitive decline. Such a process is characterized
by a progressive and irreversible loss of grey matter (GM)
in many brain regions, with a prominent atrophy of the
hippocampus and prefrontal lobes (Jernigan et al., 2001;
Driscoll et al., 2006; Masliah et al., 2006). Research on
environmental factors that affect age-related cognitive decline
has aroused growing interest in cost-effective interventions, such
as nutritional supplementation (Gómez-Pinilla, 2008; Maruszak
et al., 2014).

As major components of neuronal membranes and key
modulators of neuroinflammation, oxidative stress, and
neurogenesis (Luchtman and Song, 2013; Denis et al., 2015),
omega-3 polyunsaturated fatty acids (n-3 PUFA), particularly
docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA)
and docosapentaenoic acid (DPA), may exert beneficial and
neuroprotective effects on the aging brain. Consistently, rodent
studies have shown that n-3 PUFA supplementation improves
neurogenesis and synaptogenesis, executive functions and
learning abilities, while n-3 PUFA deficiency is associated with
memory deficits and impaired hippocampal plasticity (Fedorova
and Salem, 2006; Hooijmans et al., 2012; Denis et al., 2013;
Luchtman and Song, 2013; Maruszak et al., 2014). Human
longitudinal studies based on direct or indirect indices of
n-3 PUFA consumption have also provided evidence of n-3
PUFA beneficial role in aging. Namely, increased n-3 PUFA
consumption correlates with better cognitive functioning and
reduced risk for dementia (Beydoun et al., 2007; Dullemeijer
et al., 2007; Whalley et al., 2008; Cunnane et al., 2009; Kröger
et al., 2009; Samieri et al., 2011), higher total brain and regional
GM volumes (Conklin et al., 2007; Samieri et al., 2012; Tan
et al., 2012; Titova et al., 2013; Pottala et al., 2014) and reduced
white matter (WM) hyperintensity (Bowman et al., 2013;
Virtanen et al., 2013). However, interventional studies aimed at
establishing a causative effect of n-3 PUFA supplementation on
GM volumes and cognitive functions have produced inconclusive
results. In fact, although some studies reported that n-3 PUFA
supplementation improves cognition in healthy elderly subjects
(Yurko-Mauro et al., 2010; Witte et al., 2014) and in patients
with mild cognitive impairment (Chiu et al., 2008), other studies
failed to reveal any significant effect in healthy subjects (van de
Rest et al., 2008; Dangour et al., 2010; Geleijnse et al., 2012) and
in patients with Alzheimer’s disease (AD; Quinn et al., 2010).
Uncontrolled confounding factors, such as socio-economic
status, genetic background as well as healthy habits and lifestyle
(e.g., exercise, not smoking, sleep, social support, use of vitamin
supplement, etc.) may contribute to these inconsistent results and
make it difficult to isolate the specific neuroprotective impact
of n-3 PUFA-enriched diet on cognitive functions of elderly
people(Denis et al., 2013; Raji et al., 2014). Furthermore, the
enormousvariation in n-3 PUFA supplement kind and dosage,
and a general failure in controlling for n-6 PUFA dietary intake
may also account for the huge variability in human clinical and
interventional studies.

As a result, the impact of n-3 PUFA supplementation
on cognitive functions in the aging human brain and the
underlying neuronal substrates is still a matter of debate.
Studies under controlled environmental and genetic conditions
in animal models can help to disambiguate the complex
relationships among n-3 PUFA intake, cognitive performance
and GM morphometry. We recently demonstrated that 8-week
n-3 PUFA supplementation in aged mice robustly ameliorates
hippocampal functions via increased neurogenesis and reduced
neurodegenerative processes (Cutuli et al., 2014). However,
whether cellular-scale hippocampal changes can result in macro-
scale structural alterations detectable through volumetric MRI,
and whether n-3 PUFA effects are limited to hippocampal areas
or affect other neocortical and/or subcortical regions remain to
be determined.

In order to address these issues, in the present study
MRI volumetric measures of the entire brain (and not just
of hippocampal regions) as well as cognitive and emotional
functions not previously evaluated were assessed. To this aim in
aged inbred mice undergoing n-3 PUFA supplementation with
respect to isocaloric control conditions we measured cognitive
abilities in different spatial and discriminative tasks, and in tasks
assessing sociability and social memory. Age-related disorders are
in fact reported to affect social memory abilities (Riedel et al.,
2009). Notably, since in older populations cognitive decline is
frequently associated with depressive-like symptoms (Steffens
et al., 2006) and n-3 PUFA are reported to exert antidepressant
action (Freeman et al., 2006; Sublette et al., 2011), the behavioral
assessment was extended to emotional competencies in facing
coping skills. A control of anxiety levels was also performed.
Then, regional GM volumes were mapped by using high
resolution MRI-based whole-brain voxel-based morphometry
(VBM) (Dodero et al., 2013; Sannino et al., 2015). Finally, ex vivo
brain levels of n-3 PUFA and individual behavioral scores were
correlated with regional GM volumes to assess whether n-3 PUFA
levels can be considered reliable predictors of volume changes
and behavioral outcomes.

MATERIALS AND METHODS

Animals
Male aged C57B6/J mice (19 month-old at the onset of study;
35.57 ± 0.69 g) were used in the present research (Charles River
Laboratories, Italy). The animals were group-housed (three-four
mice/cage) with temperature (22–23◦C) and humidity controlled
(60 ± 5%), under a 12:12 h light/dark cycle with free access
to food and water. Animals were randomly divided in two
groups: (1) mice supplemented with an n-3 PUFA mixture
by daily gavage for 8 weeks (5 day/week) (Group name: n-3
PUFA; n = 11); (2) mice supplemented with olive oil by daily
gavage for the same period used as controls of an isocaloric
intake, as reported in previous studies (Kotani et al., 2006;
Oarada et al., 2008; Nakamoto et al., 2010; Sinn et al., 2010;
Danthiir et al., 2011; Vinot et al., 2011; Cutuli et al., 2014)
(Group name: Control; n = 10) (Figure 1). Animals’ weight was
recorded weekly throughout the study. No significant differences
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FIGURE 1 | Global timing of the experimental procedure. Experimental groups of aged mice (n-3 PUFA and controls), dietary supplementation duration
(8 weeks), behavioral testing (D/L, dark/light test; Y-M, Y-maze test with objects; MWM, Morris Water Maze; SMT, sociability and social memory test; EPM, Elevated
Plus Maze; PT, Porsolt test) and ex vivo neuroimaging (VBM) and metabolic analyses (n-3 PUFA brain levels) are indicated.

between groups were found in mice body weight during the
entire experimental period [two-way ANOVA (group × week):
group: F1,19 = 0.32, p = 0.58; week: F9,171 = 3.57, p = 0.0004;
interaction: F9,171 = 0.47, p= 0.89].

Food Supplementation
Food supplementation was performed by daily gavage to ensure
that all cagemates received the same controlled amount of dietary
supplements regardless of social hierarchy or appetitive drive.

n-3 PUFA group was supplemented with a volume of 0.015 ml
of fatty acids mixture (Pfizer, Italy) corresponding to a dose of
360 mg/kg/day of n-3 PUFA (Calviello et al., 1997; Cutuli et al.,
2014) mainly constituted by EPA (20:5 n-3; 63%), DHA (22:6 n-
3; 26%), DPA (22:5 n-3; 4%), and α-linolenic acid (ALA, 18:3
n-3; 1%) (Cutuli et al., 2014). Control group was supplemented
with the same volume of olive oil (Trasimeno, Italy) containing≈
4 mg/kg/day of n-3 PUFA constituted only by ALA (1%) (Cutuli
et al., 2014). The two groups of animals were fed ad libitum
with standard food pellets (Mucedola 4RF21 standard diet GLP
complete feed for mice and rats; Mucedola, Italy).

Experimental Procedures
Starting from the fifth supplementation week (Figure 1), mice
were tested in a number of behavioral tasks tapping distinct
cognitive and emotional functions: Dark/Light test, Y-maze test
with objects, Morris Water Maze (MWM), Sociability and Social
Memory test (SMT), Elevated Plus Maze (EPM), and lastly
Porsolt test. After behavioral testing, the animals were sacrificed
to perform VBM and biochemical analyses.

Behavioral Testing
Dark/Light Test
At the beginning of behavioral testing, anxiety levels and
exploratory behaviors were tested by means of the Dark/Light
test that is based on the innate rodent tendency to avoid
brightly illuminated areas and to spontaneously explore novel
environment (Crawley and Goodwin, 1980). Dark/Light test
was performed in an apparatus consisting of a parallelepiped
box containing two compartments: a dark compartment
(18 cm × 42 cm × 21 cm) with black walls, and a lighted
compartment (36 cm × 42 cm × cm 21 cm) with white walls.

The two compartments were separated by a wall pierced with an
open door (7 cm × 7 cm). The mouse was placed in the lighted
compartment facing the wall and allowed to freely explore both
compartments for 10 min.

The following parameters were analyzed: time spent in
each compartment; latency of first entrance into the dark
compartment; number of transitions to the dark compartment;
number of defecations.

Y-Maze Test with Objects
To assess novel object recognition memory we used a Y-Maze test
with objects (Winters and Bussey, 2005). The Y-Maze apparatus
was made of gray Plexiglas and consisted of three identical arms
(8 cm × 30 cm × 15 cm) with a 120◦ angle between adjacent
arms. The three arms were designated as: start arm, from which
the mouse started to explore the maze, and two choice arms,
containing or not objects. Y-Maze test with objects was performed
in a dimly lighted room and consisted of three trials. During the
first trial (habituation phase) lasting 5 min the mice placed in
the start arm were allowed to freely explore the Y-Maze arms
containing no objects. After 3 min-inter-trial interval (ITI) the
mice underwent the second trial (training phase) lasting 5 min
during which moving from the start arm they were allowed to
explore two identical objects put at the end of the choice arms.
After 1 h-ITI the mice underwent the last 5 min-trial (retention
phase) during which they were allowed to freely explore one copy
of the familiar object and a novel object put at the end of the
choice arms. During the ITI mice were put in their homecages.
Maze floor and walls were cleaned after each trial to remove
olfactory cues. Trials were recorded by a ceiling-mounted camera
and analyzed by a video analyser (Ethovision XT, Noldus, The
Netherlands).

To evaluate the preference for the novel object (novelty) total
time spent in contact with the familiar vs. novel object during
the retention phase was analyzed. The discrimination index was
calculated: contact time with the novel object (Tno) minus contact
time with the familiar one (Tfo)/total contact time with both
objects.

Morris Water Maze
Morris Water Maze test is a well validated test to assess
localizatory abilities in rodents during aging (Chen et al., 2000;
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Carrié et al., 2002). The mice were placed in a circular white
pool (diameter 140 cm) filled with 24◦C water made opaque by
the addition of atoxic acrylic white color (Giotto, Italy) (Cutuli
et al., 2014). An escape platform (diameter 5 cm) with a rough
surface was placed in the middle of the NW quadrant 20 cm
from the side walls. It was submerged 0.5 cm under the water
level. The pool located in a room uniformly lighted by four lamps
(25 W each) was surrounded by several extra-maze cues. The
water maze was surmounted by a video camera whose signal was
relayed to a monitor and to the image analyser (Ethovision XT,
Noldus, The Netherlands). The protocol consisted of a 16-trial
Place phase and a 1-trial Probe phase. During the Place phase,
mice were submitted to four consecutive sessions made by four
90 s-trials per day. During the 15 min-inter-trial interval (ITI)
mice were put in their home cages. At the beginning of each trial,
mice were gently released into the water from pseudo-randomly
varied starting points and were allowed to swim around to find
the hidden platform. Mice that did not locate the platform within
90 s were gently guided there by the experimenter. After mice
climbed the platform, they were allowed to remain on it for 30 s.
After 24 h, mice were submitted to the Probe phase, in which the
platform was removed and the mice were allowed to search for it
for 60 s.

To evaluate localizatory memory the following MWM
parameters were analyzed: time spent and distance swum to
reach the platform during the Place phase; distance swum in
the previously rewarded quadrant during the Probe phase. The
navigational strategies were classified in three main categories,
regardless of whether the platform was reached or not: Circling
(C): circular swimming with inversion of direction and counter-
clockwise and clockwise turnings; Searching (S): swimming
around the pool in all or some quadrants, visiting the same
area more than once; direct Finding (F): swimming toward the
platform without any foraging around the pool. Two researchers
unaware of the individual specimen’s group categorized the
swimming trajectories drawn by the image analyzer. They
attributed the dominant behavior in each trial to a specific
category. Categorization was considered reliable only when their
judgments were consistent.

Sociability and Social Memory Test
Sociability and SMT assesses social motivation and interest in
social novelty, respectively (Nadler et al., 2004; Riedel et al.,
2009; Cutuli et al., 2013). Rodents normally prefer to spend more
time with another rodent (sociability) and investigate a novel
intruder more than a familiar mouse (social novelty). Age-related
disorders are reported to affect social memory abilities (Riedel
et al., 2009). The apparatus consisted of a white rectangular
wooden box (54 cm × 42 cm × 21 cm) divided in three 18 cm-
wide chambers by two transparent Plexiglas walls with an open
middle door (3.5 cm× 3.5 cm). Each lateral chamber contained a
small metal cage (9 cm × 8 cm) with mesh-like holes in which
stranger mice were confined for social interactions. The test
comprised three trials: habituation, Sociability and SMT. During
the habituation trial, the mice were allowed to freely move in
the apparatus for 5 min. During Sociability trial, an unfamiliar
juvenile (35–45 pnd) mouse conspecific (Stranger 1) was placed

inside the small metal cage in one of the lateral chambers
(randomly selected and counterbalanced for each group). The
experimental mouse was placed in the apparatus and it was
allowed to freely explore the three chambers and contact the small
metal cages for 5 min. During SMT, another unfamiliar juvenile
mouse (Stranger 2) was placed inside the metal cage in the
opposite lateral chamber that was empty during the Sociability
session. The experimental mouse was allowed to freely move and
contact the metal cages for 5 min. ITI between habituation and
Sociability trials lasted 3 min, while ITI between Sociability trial
and SMT lasted 1 h. Mice behavior was recorded by a video
camera mounted on the ceiling. The resulting video signal was
relayed to a monitor and to an image analyzer (Ethovision XT,
Noldus, The Netherlands).

Time spent in each lateral chamber during Sociability and
SMT was recorded. Discrimination indexes were calculated:
sociability index = contact time with the Stranger 1 (TS1) minus
contact time with the empty cage (Te)/total contact time; social
memory index = contact time with the Stranger 2 (TS2) minus
contact time with the Stranger 1 (TS1)/total contact time.

Elevated Plus Maze
Elevated Plus Maze is a well validated test to assess anxiety levels
in rodents based on their natural aversion to open spaces (Ruehle
et al., 2013; Cutuli et al., 2014). The maze was formed by a wooden
structure in the shape of a cross with a central platform and four
35 cm × 6 cm arms raised 100 cm above the ground. The north
and south arms were open, the east and west arms were enclosed
by walls 20 cm high. During a 5-min trial the mouse was placed
in the central platform and allowed to freely explore the maze.
Since mice avoid open areas by confining movements to enclosed
spaces or to the edges of a bounded space, a typical mouse tends
to spend the majority of trial time in the closed arms. The entire
apparatus was cleaned after each trial to remove olfactory cues.
Trials were recorded by a ceiling-mounted camera and analyzed
by an image analyzer (Ethovision XT, Noldus, The Netherlands).

The following EPM parameters were measured: total entries
and total time spent in the open and closed arms; number of
defecations.

Porsolt Test
Mice were gently placed in individual glass cylinders (height
40 cm; diameter 18 cm) containing 20 cm water at 28 ± 2◦C.
Mice were exposed to the apparatus for 10 min. At the end of
the test mice were removed from the cylinder, allowed to dry in
a small cage placed under a heat source and returned to their
homecages. The behavior exhibited by each animal during the
test was recorded by using a frontally mounted camera. Later, an
observer blind to the treatment received by each animal manually
scored the videos (Ethovison XT, Noldus, The Netherlands).

Duration and frequency of the following behaviors were taken
into account (Keers et al., 2012; Costa et al., 2013):

– passive behaviors: immobility= total absence of movement;
paddling = small movements of one of the posterior paws not
producing displacement;

– active behaviors: swimming = large and horizontal
movements of the paws leading to displacement of the body
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around the cylinder; climbing = vigorous vertical movements
of the forepaws, directed against the wall of the tank, leading to
displacement the body around the cylinder.

Sample Preparation and MR Acquisition
High-resolution morpho-anatomical T2-weighted MR imaging
of ex vivo mouse brains was performed in paraformaldehyde
(4% PFA; 100 ml) fixed specimens. Standard sample preparation
and MRI acquisition have been recently described (Dodero
et al., 2013). Briefly, C57Bl/6 mice supplemented with n-3
PUFA (all 87-week-old) and age-matched controls supplemented
with olive oil were deeply anesthetized with an intraperitoneal
avertin injection (375 mg/kg) and their brains were perfused
in situ via cardiac perfusion. The perfusion was performed
with phosphate buffered saline followed by paraformaldehyde
(4% PFA; 100 ml). Both perfusion solutions were added
with a Gadolinium chelate (Prohance, Bracco, Milan) at a
concentration of 10 and 5 mM, respectively, to shorten
longitudinal relaxation times. Brains were imaged inside intact
skulls to avoid post-extraction deformations. A multi-channel
7.0 Tesla MRI scanner (Bruker Biospin, Milan) was used
to acquire anatomical images of the brain, using a 72 mm
birdcage transmit coil, a custom-built saddle-shaped solenoid
coil for signal reception, and the following imaging parameters:
FLASH 3D sequence with TR = 17 ms, TE = 10 ms,
α = 30◦, matrix size of 260 × 180 × 180, field of view of
1.83 cm × 1.26 cm × 1.26 cm and voxel size of 0.07 mm
(isotropic).

Image Processing and Analysis
Inter-group morpho-anatomical differences in local GM volumes
were mapped with VBM (Ashburner and Friston, 2000) using
ANTs (Avants et al., 2009). Registration-based VBM procedure
on the mouse brain has been thoroughly described (Pagani et al.,
2012) and is briefly reported herein to provide a comprehensive
description of all the experimental procedures involved.

First, all the high-resolution T2W images were corrected
for intensity non-uniformity and skull stripped to remove
extra-brain tissue. Second, a study-based template was created
aligning pre-processed images to a common reference space
using affine and diffeomorphic registrations. Third, individual
images of the two groups were registered to the study-based
template using affine and diffeomorphic registrations. Fourth,
spatially normalized images were segmented to calculate tissue
probability maps using Markov Random Field to enforce the
spatial smoothing of the tissues. The separation of the different
tissues is improved by initializing the process with the probability
maps of the study based template previously segmented. Fifth,
the Jacobian determinants of the deformation field were extracted
and applied to modulate the GM probability maps calculated
during the segmentation. This procedure allowed the analysis
of GM probability maps in terms of local volumetric variation
instead of tissue density. Jacobian determinants were also
normalized by the total intracranial volume to further eliminate
overall brain volume variations. Sixth, the resulting modulated
GM probability maps were smoothed using a Gaussian kernel

with a sigma of three voxel width and employed for voxel-
wise statistics and thresholded with a cluster-based procedure as
implemented in FSL.

Regional GM volume differences between n-3 PUFA and olive
oil supplemented mice were mapped using a two-sample t-test
(p < 0.01) followed by a cluster correction using a significant
cluster threshold of p = 0.01 (Worsley et al., 1992). To ensure
inter-group differences were not due to segmentation-artifacts
reflecting indirect alterations in GM intensity, we performed
tensor based morphometry (TBM) on the same subjects. TBM
is a procedure that does not require tissue segmentation and
can be used to map inter-group differences in local brain
volume independent of the nature of the tissue quantified.
The pre-processing steps employed for TBM are the same of
VBM, with the exception of the segmentation, which is not
performed.

To assess the correlations among the regional GM volumes, n-
3 PUFA level and behavioral performances, we also performed
voxel-wise Pearson’s correlation mapping by using individual
n-3 PUFA brain concentration levels and behavioral scores
as regressors (p < 0.05, followed by cluster level significance
correction with a threshold of p= 0.01).

To explicit the correlative relationship between variables
obtained in univariate maps, mean GM volumes were quantified
in representative bilateral cubic (9 × 9 × 9 voxels) regions
of interest (ROIs) centered in hippocampal foci exhibiting
inter-group differences or areas of significant correlation. The
exact anatomical location of the hippocampal ROIs selected for
correlations is shown in Supplementary Figure S1.

n-3 PUFA Quantification by GC/MS
After imaging, the brain content of n-3 PUFA was quantified.
Fatty acids were extracted using the method reported by Folch
et al. (1957) with slight modifications. Briefly, brains were
homogenized in CHCl3/MeOH (2:1 v/v) to a final dilution of
20-fold of the original sample volume, assuming that the tissue
has the same specific gravity of water. Heptadecanoic acid was
used as internal standard. The resulting organic phase was
evaporated to dryness in a speed-vac at room temperature and
then derivatized with BSTFA-TMCS 99:1 v/v (Sigma–Aldrich,
Italy) for 1 h at 60◦C. Derivatized samples were transferred in
the injection vial and added with 20% v/v of Acetone. GC/MS
analyses were performed using a Focus GC (Thermo Scientific,
USA) equipped with 30 m × 0.25 mm fused silica capillary
column SLBTM-5MS (Supelco) and connected to a PolarisQ
mass spectrometer (Thermo Scientific, USA). Two micro liter
of samples were injected in split mode (1:10 ratio), the injector
temperature was set at 200◦C; the carrier gas was Helium
and the flow rate was maintained constant at 1 ml/minute.
The initial oven temperature of 100◦C was held for 1 min
and then raised to 250◦C at 10◦C/minute and maintained for
6 min. After then the oven temperature was increased up to
310◦C at 20◦C/min and held for 5 min. Mass transfer line was
maintained at 280◦C and the ion source at 200◦C. Analyses
were performed in Selected Ion Monitoring (SIM) mode and
fatty acids were identified by comparison with commercial
standards.
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Statistical Analyses
All data were tested for normality (Shapiro–Wilk’s test) and
homoscedasticity (Levene’s test) and presented as mean ± SEM.
Behavioral data and biochemical correlates were analyzed by
using one- and two-way ANOVAs (with group as between-factor
and compartment/session/strategy/arm/behavior as within-
factors) followed by Tukey’s HSD tests. Values of p < 0.05 were
considered significant (Statistica 7, Statsoft).

Ethical Statement
All experimental procedures were performed in accordance
with the Italian law (D.L. 116, 1992 Italian Ministry of
Health, Rome), and in agreement with the European Union
Directive (2010/63/EU). All surgical procedures were performed
under deep anesthesia and all efforts were made to minimize
suffering and reduce the number of animals that were used. All
experimental procedures were approved by the Italian Ministry
of Health (Ministerial Decree number 232/2012-B, 10-2012).

RESULTS

n-3 PUFA Supplemented Mice Exhibit
Improved Mnesic Functions
To verify the ability of n-3 PUFA supplementation to improve
mnesic function in the aged brain, both experimental aged mice
groups were submitted to a battery of behavioral tests measuring
hippocampal-dependent cognitive abilities (Figure 2). n-3 PUFA
supplemented mice demonstrated better novelty recognition
abilities in the Y-Maze test with objects (F1,19 = 6.13, p = 0.02,
Figure 2A) as well as in the MWM (Figure 2B). In the latter
test, no inter-group differences were observed during Place in
latency (group: F1,19 = 0.52, p = 0.48; session: F3,57 = 4.85,
p = 0.004; interaction: F3,57 = 0.74, p = 0.53) and distance
swum (group: F1,19 = 0.17, p = 0.69; session: F3,57 = 17.23,
p < 0.000001; interaction: F3,57 = 0.30, p = 0.82) to reach
the hidden platform. No differences were also observed in
navigational strategies (group: F1,19 = 1.55, p = 0.22; strategy:
F2,38 = 310.94, p < 0.000001; interaction: F2,38 = 1.66,
p = 0.20), with Searching as the most used strategy (p = 0.0001).
However, during Probe phase n-3 PUFA mice exhibited higher
platform location retention as measured by distance swum in the
previously rewarded (platform) quadrant (F1,19 = 6.14, p= 0.02),
thus supporting a beneficial effect of n-3 PUFA supplementation
on hippocampal mnesic functions. Accordingly, while all mice
displayed an equal preference for social stimuli (sociability
index: F1,19 = 0.41, p = 0.53), n-3 PUFA supplementation
significantly improved mnesic performances in SMT as indicated
by the increased social memory index observed in n-3 PUFA
supplemented mice (F1,19 = 10.88, p= 0.004; Figure 2C).

n-3 PUFA Supplemented Mice Exhibit
Improved Coping Skills and Unmodified
Anxiety Levels
As reduced hippocampal volumes, depression and cognitive
deterioration are frequently associated in older populations

FIGURE 2 | n-3 PUFA supplementation effects on mnesic
performances. (A) Discrimination index in Y-Maze test with objects.
(B) Distance (cm) swum in the previously rewarded quadrant during Probe
phase of MWM. (C) Social memory index in SMT. Asterisks inside the graphs
indicate the significance levels of comparisons between groups: ∗p < 0.05,
∗∗p ≤ 0.01.
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FIGURE 3 | n-3 PUFA supplementation effects on coping skills.
(A) Swimming duration (s) and frequency in Porsolt test. (B) Paddling duration
(s). (C) Climbing frequency. (D) Active vs. passive behavior duration (s).
Asterisks inside the graphs indicate the significance levels of comparisons
between groups: ∗p < 0.05, ∗∗p ≤ 0.01, or ∗∗∗p ≤ 0.001.

(Videbech and Ravnkilde, 2004; Steffens et al., 2006), Porsolt
test was used to assess depressive-like behaviors and coping
strategies in the two experimental groups (Figure 3). Depressive-
like traits appeared to be less prominent in n-3 PUFA
supplemented mice with respect to controls as evidenced by
higher duration (F1,19 = 4.69, p = 0.04) and frequency
of swimming (F1,19 = 45.10, p < 0.000001), as well as
higher frequency of climbing (F1,19 = 19.55, p = 0.0003)
and lower duration of paddling (F1,19 = 8.61, p = 0.008)
(Figures 3A,C). No treatment differences were observed for
the remaining parameters (immobility, duration: F1,19 = 0.37,
p = 0.55; frequency: F1,19 = 2.42, p = 0.14; paddling, frequency:
F1,19 = 3.01, p = 0.09; climbing, duration: F1,19 = 1.47,
p = 0.24). Interestingly, ANOVA performed on active vs. passive

behaviors (group: F1,19 = 1.33, p = 0.26; behavior: F1,19 = 3.53,
p = 0.08; interaction: F1,19 = 4.68, p = 0.04) revealed that the
total duration of active behaviors (swimming + climbing) was
significantly higher than the total duration of passive behaviors
(immobility + paddling) in n-3 PUFA supplemented mice than
in controls (p = 0.04) (Figure 3D), indicating increased use of
active coping strategies in n-3 PUFA supplemented mice.

Importantly, no inter-group differences in terms of anxiety
levels and explorative behaviors were observed. In fact, in
the Dark/Light test all mice spent more time in the dark
compartment than in the lighted one (group: F1,19 = 0.09,
p = 0.76; compartment: F1,19 = 9.26, p = 0.007; interaction:
F1,19 = 0.98, p = 0.33), without differences in the latency of
first entrance (F1,19 = 1.87, p = 0.19), number of transitions
into the dark compartment (F1,19 = 0.53, p = 0.48), and
total defecations (F1,19 = 0.07, p = 0.79). These findings were
confirmed also in the EPM test during which all mice spent
significantly more time in the closed than open arms (group:
F1,19 = 0.05, p = 0.82; arm: F1,19 = 1450.51, p < 0.000001;
interaction: F1,19 = 0.12, p = 0.73), showing similar number
of total entries (F1,19 = 0.03, p = 0.87) and no differences in
defecation number (F1,19 = 2.59, p= 0.12).

n-3 PUFA Supplemented Mice Exhibit
Foci of Increased Hippocampal and
Cortical GM Volume
High-resolution voxel-wise VBM mapping revealed prominent
bilateral areas of increased GM volume in the posterior
hippocampus, plus additional foci of GM increase in the
retrosplenial and medial prefrontal cortices in n-3 PUFA
supplemented mice compared to controls (p < 0.01, cluster-
based correction, Figure 4). No foci of significant GM volume
reduction were observed throughout the brain in n-3 PUFA
supplemented mice (p < 0.01, cluster-based correction). TBM
of n-3 PUFA and control groups produced similar inter-group
difference maps with clear involvement of foci of hippocampal,
retrosplenial and prefrontal areas (p < 0.01, cluster-based
correction Supplementary Figure S2). The presence of
analogous findings in VBM and TBM maps corroborates a
supplementation-specific impact on the GM volumes mapped
with VBM.

Cognitive and Behavioral Performances
Positively Correlate with
Fronto-Hippocampal GM Volume
In an attempt to probe the relationship between cognitive and
behavioral performance and regional GM volumes, and locate
the brain substrates underlying the different performance levels
of the two groups, voxel-wise regression of individual behavioral
parameters was performed on GM maps at the subject level.
Figure 5 depicts significant voxel-wise correlation mapping
obtained by using individual behavioral scores as regressors.
Consistent with univariate mapping of supplementation effects,
foci of significant voxel-wise correlations were observed in
hippocampal formation when behavioral scores from MWM and
Porsolt test were used (p < 0.05, cluster-based correction). In
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FIGURE 4 | n-3 PUFA supplementation increases hippocampal and prefrontal GM volume. VBM morphometric analysis revealed significantly increased
(p < 0.01, cluster corrected at a significance level of 0.01) regional GM volume in hippocampal formation, prefrontal and retrosplenial cortex in n-3 PUFA
supplemented compared to control mice. 3D rendering of the sagittal and coronal slices is also visualized. HPC, hippocampus; mPFC, medial prefrontal cortex; RS,
retrosplenial cortex.

FIGURE 5 | Behavioral performances are positively correlated with hippocampal GM increase. Voxel-wise correlation mapping of behavioral scores and
GM volume. Foci of correlation between GM volume and enhanced MWM spatial mnesic performances (a) and increased coping skills in the Porsolt test (b) were
found in the same regions exhibiting univariate increased GM volume. Scatter plots indicate significant Pearson’s correlations between n-3 PUFA concentrations and
hippocampal mean GM volume (continuous lines), and the 95% CI (dotted lines). Red triangles indicate n-3 PUFA supplemented subjects, yellow triangles indicate
the control group subjects. HPC, hippocampus; MWM, Morris Water Maze; PT, Porsolt test.

good agreement with univariate inter-group maps, additional
foci of significant correlation were found in retrosplenial and
medial prefrontal cortices, an effect that, however, did not
survive cluster-based correction (Supplementary Figure S3).
Overall, these findings support the involvement of the mapped
GM substrates in the improved cognitive and increased coping
skills exhibited by n-3 PUFA supplemented mice. No significant
correlations were found for any of the remaining behavioral
variables mapped.

n-3 PUFA Supplemented Mice Exhibit
Increased EPA and DHA Brain Levels
To assess effectiveness of the supplementation regime, the
concentrations of EPA, DHA, and DPA, the three major
n-3 PUFA components of cell membranes, were measured.
EPA+DHA+DPA/Arachidonic Acid (AA) ratio was also
measured given its postulated role in cognitive dysfunction and
neuroinflammation (Rao et al., 2007; Labrousse et al., 2012).
EPA and DHA, but not DPA, levels were found to be increased
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FIGURE 6 | Positive correlations between n-3 PUFA levels and fronto-hippocampal GM volume. Voxel-wise correlation mapping of total brain EPA (a),
DHA (b) and n-3 PUFA/AA concentrations (c) and GM volume revealed foci of significant correlation in the same regions exhibiting univariate increased GM
(hippocampal, prefrontal, retrosplenial, and orbitofrontal areas). Histograms report mean concentrations with error bars indicating SEM. Scatter plots indicate
significant Pearson’s correlations between n-3 PUFA concentrations and hippocampal mean GM volume (continuous lines), and the 95% CI (dotted lines). Red
triangles indicate n-3 PUFA supplemented subjects, yellow triangles indicate the control group subjects. HPC, hippocampus; mPFC, medial prefrontal cortex; RS,
retrosplenial cortex; OFC, orbitofrontal cortex; EPA, eicosapentaenoic acid; DHA, docosahexaenoic acid; AA, arachidonic acid. Asterisks inside the graphs indicate
the significance levels of comparisons between groups: ∗∗p ≤ 0.01, or ∗∗∗p ≤ 0.001.

in the n-3 PUFA group in comparison to controls, as revealed
by one-way ANOVAs (EPA: F1,19 = 68.36, p < 0.000001; DHA:
F1,19 = 7.11, p = 0.01; DPA: F1,19 = 0.10, p = 0.75). Moreover,
one-way ANOVA on the EPA+DHA+DPA/AA ratio revealed
a significant increase of EPA + DHA + DPA/AA ratio in n-3
PUFA group in comparison to controls (F1,19 = 7.55, p = 0.01)
(Figure 6).

n-3 PUFA Brain Levels Positively
Correlate with Fronto-Hippocampal GM
Volume
To further probe the relationship between n-3 PUFA
supplementation and GM morphometric alterations mapped,
voxel-wise correlations of n-3 PUFA levels of individual subjects
were generated. Voxel-wise correlation of total EPA, DHA
and n-3 PUFA/AA concentrations revealed foci of significant
correlations in the hippocampal, retrosplenial and prefrontal
regions, as well as orbitofrontal areas (p < 0.05, cluster-based
correction; Figure 6). Additional foci of significant voxel-
wise correlations between GM volumes and DHA levels were
found in the medial prefrontal cortex in uncorrected statistics

maps (Supplementary Figure S4). The anatomical location of
these correlations is consistent with the effects of n-3 PUFA
supplementation on GM volume and behavioral performance
changes.

DISCUSSION

As main components of synaptic membranes, n-3 PUFA
have an important role in keeping structure and function of
aged brain, a feature that has promoted research on their
dietary supplementation as a strategy to counteract aging-related
cognitive decline. However, despite encouraging epidemiological
evidence linking enhanced peripheral n-3 PUFA levels to
improved cognitive performance and brain structure (Denis
et al., 2015), interventional studies on n-3 PUFA supplementation
have so far produced inconsistent results. This issue could
reflect methodological inconsistencies such as the contribution
of genetic and environmental factors that cannot be effectively
controlled in human studies. In the present work we sought
to overcome these limitations by investigating the relationships
between GM volumes, cognitive and emotional performances,
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and n-3 PUFA cerebral levels in genetically homogeneous
inbred aged mice reared in controlled laboratory conditions.
In particular, we investigated whether long-term n-3 PUFA
supplementation starting at old age may produce behavioral
improvements and how the eventual improvements can be
related to underlying neuroanatomical substrates. The present
results strongly corroborate the emerging view of a pro-cognitive
and neuroprotective function of n-3 PUFA supplementation on
the aged brain (Denis et al., 2013; Varteresian and Lavretsky,
2014). Specifically, n-3 PUFA supplemented mice exhibited
improved mnesic functions and coping skills, and presented
foci of greater GM volumes in fronto-hippocampal areas.
The increased GM volumes correlated with better mnesic
performances, increased active coping skills, and enhanced total
brain n-3 PUFA concentrations. Collectively, these findings
indicate that the n-3 PUFA-induced neuroprotective effects are
able to take place even when the supplementation starts at
late age. Importantly, the present results were obtained through
commonly available supplements (i.e., commercially available n-
3 PUFA mixture and olive oil) and employing a well-established
brain structural VBM readout to maximize ecological validity and
translational value.

The effects here reported develop our recent evidence of a
beneficial cognitive effects of n-3 PUFA supplementation in aged
mice (Cutuli et al., 2014) and indicate that the n-3 PUFA-induced
hippocampal changes observed at the cellular scale are associated
to the macro-scale structural alterations detectable with MRI
mapping. Furthermore, the here observed improvements in
many facets of mnesic (localizatory, discriminative and social)
function, convincingly support an overall n-3 PUFA pro-
cognitive action in aging. n-3 PUFA interventional studies in
humans also sustain this view evidencing delayed cognitive
decline in elderly people with (Yurko-Mauro et al., 2010) or
without (Danthiir et al., 2011) subjective memory complaints,
and in patients with mild cognitive impairment (Chiu et al., 2008)
or very mild AD (Freund-Levi et al., 2006).

Importantly, in the present research n-3 PUFA
supplementation exerted beneficial effects not only on cognitive,
but also on emotional behaviors. Specifically, n-3 PUFA
supplemented mice showed more active coping responses,
without inter-group differences in anxiety levels. It is well-known
that depression is a multifaceted disorder frequently associated
with aging, metabolic disorders and neurodegenerative diseases
(Lang and Borgwardt, 2013), and that it is linked to prefrontal
and hippocampal atrophy (McNamara and Liu, 2011; Erickson
et al., 2012; Vu and Aizenstein, 2013). In agreement with
the few previous experimental and clinical findings (Puri
et al., 2001; Schipper et al., 2011; Samieri et al., 2012; Lang
and Borgwardt, 2013), our results indicate that n-3 PUFA
supplementation is able to improve coping abilities by preserving
fronto-hippocampal functionality. As a further note, it is
important to remember that the n-3 PUFA deficiency has
been associated with the dysfunction of neuronal membrane
stability and catecholaminergic neurotransmission linked to
the etiology of depressive symptoms (Su, 2009). Recently, it
has been proposed that EPA and DHA increase serotoninergic
transmission by reducing prostaglandin levels and increasing

neuronal membrane fluidity (Patrick and Ames, 2015). Given
that in the Porsolt test selective serotonin and norepinephrine
reuptake inhibitors are reported to increase swimming and
climbing behaviors respectively (Renault and Aubert, 2006),
we cannot exclude that the n-3 PUFA beneficial effects may be
ascribed also to an influence of these nutrients on serotoninergic
and noradrenergic neurotransmission.

The use of a three-dimensional hypothesis-independent
GM mapping approach allowed us to identify following n-3
PUFA supplementation extra-hippocampal foci of increased GM
volume, such as retrosplenial and prefrontal areas. Analogous
findings have been recently reported in an interventional study
in aged humans receiving prolonged n-3 PUFA supplementation
describing improved cognitive functions and increased GM
volumes in the hippocampus, precuneus (area reciprocally
connected with the adjacent retrosplenial cortex) and frontal
areas (Witte et al., 2014). Although the exact mechanisms
underlying the involvement of cortical regions remain to
be determined, it can be advanced that in n-3 PUFA
supplemented mice the preservation of prefrontal structural
integrity is functionally driven by the direct afferents stemming
from CA1 and subicular hippocampal regions (Hoover and
Vertes, 2007). This hypothesis is consistent with enhanced
neuroplasticity phenomena (such as increased neurite outgrowth,
synaptogenesis, angiogenesis), and decreased neurodegenerative
processes (such as apoptosis, astrocytosis) observed in the
hippocampus of n-3 PUFA supplemented animals (Gómez-
Pinilla, 2008; Thomas and Baker, 2013; Cutuli et al., 2014;
Dyall, 2015). Speculatively, it can be hypothesized that the same
neuroplastic processes may act at prefrontal and retrosplenial
level promoting structural preservation.

Finally, the contribution of WM changes should also be
taken into account. Indeed, recent correlational studies reported
positive associations between n-3 PUFA levels and GM or WM
volumes (Bowman et al., 2012, 2013; Samieri et al., 2012; Tan
et al., 2012; Titova et al., 2013; Virtanen et al., 2013; Pottala
et al., 2014; Raji et al., 2014). Recently, Witte et al. (2014)
suggested that the superior WM microstructural architecture of
n-3 PUFA supplemented older adults could be linked to higher
myelination, increased fiber packing density and reduced axonal
damage that sustain better cognitive performances by improving
axonal transmission.

The presence of positive regional association between n-
3 PUFA brain levels and GM volumes might be linked to
increased regional volume resulting from n-3 PUFA induced
increased membrane fluidity and reduced neuroinflammation
processes. Specifically, research on the aging brain has shown
that major biochemical changes affect the neuronal membrane
that is the site of action for many essential functions, such
as neurotransmission, regulation of membrane-bound enzymes,
control of the ionic channels structure and activity, and receptors
maintenance (Yehuda et al., 2002). During aging, the level of
cholesterol and its toxic metabolites greatly increases in neuronal
membranes, thus reducing the membrane fluidity. On the other
hand, n-3 PUFA concentration in aged neuronal membranes
decreases (Yehuda, 2012). Interestingly, in the present study EPA
and DHA levels, and n-3 PUFA/AA ratio increased following n-3
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PUFA supplementation. Thus, it can be argued that by increasing
membrane fluidity, n-3 PUFA supplementation may prevent
and/or counteract brain aging.

In addition, EPA and DHA have an anti-inflammatory role
by giving rise to mediators, such as resolvins and neuroprotectin
D1 (Bazan et al., 2011; Calder, 2011), and decreasing age-
related microglial activation, oxidative stress, and increased
pro-inflammatory cytokines (Martin et al., 2002; Maher et al.,
2004; Lynch et al., 2007; Kelly et al., 2011; Trépanier et al.,
2015). Accordingly, the present increased n-3 PUFA brain
concentrations may result in anti-inflammatory effects, thus
contributing to neuroprotective actions against brain atrophy
and cognitive decline. Among the multifactorial processes
underlying n-3 PUFA beneficial effects on brain structural
parameters, cognition, and affective regulation, also theincreased
monoaminergic and cholinergic neurotransmission should be
taken into account (Willis et al., 2009; Jiang et al., 2012). In
any case, future research on this topic is warranted to pinpoint
the cellular and sub-cellular determinants of n-3 PUFA induced
volumetric enhancement at cortical level.

CONCLUSION

Collectively, the present findings suggest that n-3 PUFA
supplementation in old age helps maintaining brain functionality
by counteracting reductions in GM volume in prefrontal and
retrosplenial cortices, as well as in hippocampus. In this respect,
n-3 PUFA appear ideal candidates for cognition-enhancing and
antidepressant nutritional interventions aimed to promote active
and healthy aging. This issue is of growing relevance, given
the pressing need to maintain cognitive functions in the elderly
Western population, whose life expectancy increasingly rises.
Moreover, our study supports the use of VBM measurements
in human population as a surrogate mechanistic marker for n-3
PUFA pro-cognitive action in controlled supplementation trials
assessing their therapeutic use in the healthy and diseased aged
brain.
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FIGURE S1 | Anatomical location of the hippocampal bilateral cubic ROIs.
Three-dimensional rendering and slice representation of the anatomical location of
the bilateral cubic (9 × 9 × 9 voxels) ROIs centered in hippocampal foci exhibiting
significant correlations with behavioral scores and PUFA (p < 0.01, cluster-based
correction at a significance level of 0.01). HPC, hippocampus.

FIGURE S2 | Tensor Based Morphometry (TBM) corroborates
supplementation-specificity of increased GM volume mapped with
VBM. n-3 PUFA supplementation increases hippocampal and prefrontal GM
volume as seen with TBM (p < 0.01, cluster-based correction at a
significance level of 0.01). Note the overlap with VBM analysis (Figure 4).
HPC, hippocampus; mPFC, medial prefrontal cortex; RS, retrosplenial cortex;
OFC, orbitofrontal cortex.

FIGURE S3 | Behavioral performances are positively correlated with
fronto-hippocampal GM volume. Consistent with univariate inter-group
mapping, voxel-wise correlation of behavioral scores and GM volume prior to
cluster-based correction revealed foci of significant correlation in hippocampal
and prefrontal regions. GM-behavioral performance correlation map for MWM
spatial mnesic performances (A) and coping skills in the Porsolt test (B).
The prefrontal effects did not survive cluster-based correction (p = 0.01,
Figure 5). HPC, hippocampus; mPFC, medial prefrontal cortex; RS,
retrosplenial cortex.

FIGURE S4 | Positive correlations between n-3 PUFA levels and
fronto-hippocampal GM volume. Consistent with univariate inter-group
mapping, voxel-wise correlation between total brain EPA (A), DHA (B) and n-3
PUFA/AA concentrations (C) and GM volume prior to cluster-based correction
revealed foci of significant correlation in hippocampal and prefrontal regions. For
EPA, prefrontal effects did not survive cluster-based correction (p = 0.01,
Figure 6). EPA, eicosapentaenoic acid; DHA, docosahexaenoic acid; AA,
arachidonic acid; HPC, hippocampus; OFC, orbitofrontal cortex; mPFC, medial
prefrontal cortex; RS, retrosplenial cortex.
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