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Recent evidence for the fractionation of the default mode network (DMN) into functionally
distinguishable subdivisions with unique patterns of connectivity calls for a reconceptual-
ization of the relationship between this network and self-referential processing. Advances
in resting-state functional connectivity analyses are beginning to reveal increasingly com-
plex patterns of organization within the key nodes of the DMN – medial prefrontal cortex
and posterior cingulate cortex – as well as between these nodes and other brain systems.
Here we review recent examinations of the relationships between the DMN and various
aspects of self-relevant and social-cognitive processing in light of emerging evidence for
heterogeneity within this network. Drawing from a rapidly evolving social-cognitive neu-
roscience literature, we propose that embodied simulation and mentalizing are processes
which allow us to gain insight into another’s physical and mental state by providing privi-
leged access to our own physical and mental states. Embodiment implies that the same
neural systems are engaged for self- and other-understanding through a simulation mech-
anism, while mentalizing refers to the use of high-level conceptual information to make
inferences about the mental states of self and others. These mechanisms work together
to provide a coherent representation of the self and by extension, of others. Nodes of the
DMN selectively interact with brain systems for embodiment and mentalizing, including the
mirror neuron system, to produce appropriate mappings in the service of social-cognitive
demands.

Keywords: functional connectivity, embodiment, mentalizing, autobiographical memory, medial prefrontal cortex,
posterior cingulate cortex

INTRODUCTION
DEFINING THE SELF AND BRAIN NETWORKS FOR SELF-RELATED
PROCESSING
The importance of self-knowledge has been asserted by philoso-
phers, religious leaders, and thinkers cross-culturally. The Chinese
philosopher Lao-Tzu claimed: “He who knows others is wise; He
who knows himself is enlightened.” The English cleric C. C. Colton
wrote, “He that knows himself knows others, [ . . .],” emphasizing
the importance of self-knowledge for the sake of understanding
others, as did Gandhi, who wrote, “He who knows himself, knows
God and all others” (Gandhi, 1955). Throughout history, several
examples exist of thinkers who have realized that representations
of the self and others are intimately intertwined – that the self
is a social stimulus. Current psychological theories suggest that
the self may be considered a “special” stimulus, but also imply
that it has similarities to other familiar and non-familiar stim-
uli that can be considered on a continuum of “familiarity” (e.g.,
kin recognition; Platek and Kemp, 2009) and “knowledge” (e.g.,
self-knowledge; Klein et al., 2002). For example, simulation the-
ory proposes that in order to understand others we look inside
ourselves to mentally simulate how we might act in given social
situations (Gordon, 1986). Conversely, Gallotti and Frith (2013)

have recently suggested that in order to understand ourselves, we
pay close attention to the social behavior of others.

One major and useful distinction that has guided research on
the neural representation of the self is that between the physical
and psychological aspects of the self (Gillihan and Farah, 2005).
Physical aspects of the self are typically examined in studies of self-
face recognition, body recognition, agency, and perspective taking.
Psychological aspects of the self tend to be operationalized with
studies examining autobiographical memory and self-knowledge
or self-referential processing (SRP) of personality traits. This
conceptual distinction bears out in neuroimaging work, which
suggests that physical or embodied self-related processes and psy-
chological or evaluative self-related processes rely on distinct yet
interacting large-scale brain networks (Lieberman, 2007; Uddin
et al., 2007; Molnar-Szakacs and Arzy, 2009; Molnar-Szakacs and
Uddin, 2012). For the purposes of the current review, the princi-
pal neural networks we will consider are the default mode network
(DMN) and the human mirror neuron system (MNS).

The repeated observation that the medial prefrontal cortex
(MPFC), posterior cingulate cortex (PCC), lateral parietal cor-
tices, and medial temporal lobes paradoxically exhibit high lev-
els of activity during resting baseline and decreases in activity
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Molnar-Szakacs and Uddin Self and the default mode network

during externally oriented cognitive tasks led to the initial char-
acterization of these regions as belonging to a “default mode”
of human brain function (Shulman et al., 1997; Gusnard and
Raichle, 2001; Raichle et al., 2001; McKiernan et al., 2003; Frans-
son, 2006). This set of regions is more active when individuals rest
than when they are engaged in goal-directed tasks. Importantly,
these cortical regions tend to fluctuate in a coherent manner –
a phenomenon termed functional connectivity – which further
supports the notion that they constitute a network of function-
ally related processing areas (Greicius et al., 2003; Fox et al., 2005;
Golland et al., 2008). This network has also been referred to as
the “task-negative network” (Fox et al., 2005), or the “cortical
midline structures” (Northoff et al., 2006), and was originally
proposed as a system for evaluating “information broadly aris-
ing in the external and internal milieu” (Raichle et al., 2001).
The DMN has been posited to underlie a variety of general
functions such as stimulus-independent (Mason et al., 2007) or
task-unrelated thought (McKiernan et al., 2006), as well as social-
cognitive or self-related processes, including episodic memory
(Greicius and Menon, 2004), memory consolidation (Miall and
Robertson, 2006), social processing (Iacoboni et al., 2004; Uddin
et al., 2005), and various forms of self-related processing (Gus-
nard et al., 2001; Wicker et al., 2003b; Buckner and Carroll, 2007).
More specifically, the DMN’s involvement is observed most con-
sistently during the psychological task of reflecting on one’s own
personality and characteristics (SRP), rather than during physical
self-recognition (Qin and Northoff, 2011).

The MNS was first identified in non-human primates. Mirror
neurons are active when an agent performs an action, and when
it observes that same action being performed, in essence, creat-
ing an agent-independent connection between actor and observer
(Rizzolatti and Sinigaglia, 2010). Based on the property of mirror
neurons to internally simulate actions performed by others, it has
been proposed that the MNS may provide the link between the
physical representation of the self as related to the physical repre-
sentation of others (Uddin et al., 2005, 2006, 2007). That is, when
we see another’s hand grasping an object, we activate the regions of
our brain that control grasping; when we hear sounds associated
with someone else’s action, we activate the appropriate movement
regions of our brain; and by extension, when we observe the emo-
tional states of others, we can feel the same emotion in empathy (Carr
et al., 2003; Gazzola et al., 2006; Molnar-Szakacs et al., 2006). These
mirror-like processes are influenced by the observer’s perspective
and the goal of the action itself, which appears to be even more
important than the way in which an action is performed (Gazzola
et al., 2007). The brain regions involved in creating these inter-
personal links include the MNS and its associated regions – the
inferior frontal gyrus (IFG)/premotor cortex (PMC), the ante-
rior insula (AI), primary sensory and primary motor cortices, the
inferior parietal lobule (IPL), and the superior temporal sulcus
(STS).

The physical/psychological distinction, while perhaps simplis-
tic, has facilitated the study of the neural networks underlying
self-related processes. As the face is the most identifiable marker
of the physical aspect of the self, it has been the subject of extensive
study at the behavioral and neural levels. In particular, in our own
work, we observed that the pattern of signal increases in the right

IFG and right IPL were related to the amount of self-face presented
in morphed stimuli (morphed with the face of a familiar other). In
other words, the greater amount of “self” present in the stimulus,
the greater the activation in right fronto-parietal regions (Uddin
et al., 2005). These regions overlap the human MNS, whose role is
to map the actions of others onto one’s own motor repertoire via
a simulation mechanism (Rizzolatti et al., 1996). Similar findings
have since been published (Sugiura et al., 2005; Platek et al., 2006;
Uddin et al., 2006), supporting the role of the human MNS in
physical self-recognition.

Psychological aspects of the self, such as those accessed through
personality traits, likely evoke a representation of the self pre-
dominantly through linguistic aspects of the self-schema (Faust
et al., 2004; Molnar-Szakacs et al., 2005b; Moran et al., 2006). Self-
schemata are cognitive representations of the self that are derived
from past social interactions and experiences and promote the
elaboration of memories that may be used to guide future behav-
ior (Markus, 1977). In one of the first neuroimaging studies on the
subject, Kelley and colleagues used a trait adjective judgment task
to compare processing of self-, other-, and case-referential adjec-
tives. Results showed that the MPFC was selectively engaged in
the self-related condition, while relevance judgments (i.e., “Does
this adjective describe you/U.S. President George Bush?”), when
compared to case judgments (i.e., “Is this adjective in lowercase
letters?”), were accompanied by activation of the left IFG and the
anterior cingulate cortex (ACC) (Kelley et al., 2002). This ini-
tial finding has since been replicated (Moran et al., 2009; Feyers
et al., 2010), underscoring the role of MPFC in self-processing
(Moran et al., 2013). Additionally, two recent meta-analyses have
parcellated MPFC into ventral and dorsal aspects (Denny et al.,
2012; Wagner et al., 2012), showing that ventral MPFC (VMPFC)
responds more to self, and dorsal MPFC (DMPFC) responds more
to others. Earlier work showed a similar dissociation along the lines
of mentalizing about similar others (engaging VMPFC) and met-
alizing about dissimilar others (engaging DMPFC) (Mitchell et al.,
2006).

Self-reference and self-relevance – whether by visual self-face
recognition or through the enhanced memory for trait adjectives –
invoke autobiographical memory processes (Molnar-Szakacs and
Arzy, 2009). Memory is vital to the survival of the self, as we use
our memory for past events to predict the future and update action
plans in a flexible, goal-oriented manner (for reviews, see Schac-
ter et al., 2007, 2008). Recently, neuroimaging studies have started
to investigate the neural networks subserving self-projection in
time (Addis et al., 2007; Buckner and Carroll, 2007; Szpunar et al.,
2007; Arzy et al., 2008). Arzy and colleagues used a paradigm
that involved participants making mental self-projections to both
past and future events, and found an effect of self, whereby par-
ticipants responded significantly faster to self-relevant (personal)
events than to non-self-relevant (world) events. Self-location in
time was shown to recruit a distributed neural network – includ-
ing anterior temporal, occipito-temporal, and temporo-parietal
regions – that partly overlaps the DMN (Arzy et al., 2008). These
brain regions were also recruited in studies of visuo-spatial per-
spective taking and spatial self-location (Vogeley and Fink, 2003;
Blanke et al., 2005; Arzy et al., 2006). In one of the first descrip-
tions of the DMN, Raichle et al. (2001) proposed a domain-general
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Molnar-Szakacs and Uddin Self and the default mode network

role for the PCC in providing complex visual representations to
consciousness.

Taking into consideration the many facets of self-relevant pro-
cessing such as self-face recognition, personality trait judgments,
and autobiographical memory, it is not surprising that these
processes recruit a vast network of brain regions. These include
the human MNS for physical aspects of self-relevant processing,
as well as the MPFC node of the DMN during SRP and the
PCC/precuneus node of the DMN for self-location in time and
space. In order to bridge the gaps between these neural and psy-
chological levels of analysis, we need to correlate cognitive and
affective experiences of self with the underlying neural processes
supporting them. Inspired by current and historical psychological
theories (Gordon, 1986; Gallotti and Frith, 2013) and extending
upon our previous work (Molnar-Szakacs et al., 2005b; Uddin
et al., 2005, 2006; Molnar-Szakacs and Uddin, 2012), we propose
that many of the same neural systems are engaged for self- and
other-understanding. Thus, having privileged access to our own
physical and mental states allows us to gain insight into others’
physical and mental states through the processes of embodiment
and mentalizing. These cognitive processes are supported at the
neural level by two large-scale, interacting networks – the MNS
and the DMN, respectively. A more in-depth understanding of the
functionally relevant nodes of each network, and the interactions
between them, will help us advance toward a more complete the-
ory of self-representation. By bringing together recent work on the
fractionation of these complex networks, we aim to contribute to
a more complete understanding of the self.

NEURAL PROCESSES GIVING RISE TO THE SELF
Preston and de Waal (2002) formalized a theory of emotional-
motor resonance in the Perception–Action Model, which holds
that perception of a behavior performed by another automat-
ically activates one’s own representations for the behavior, and
output from this shared representation automatically proceeds
to motor areas of the brain where responses are prepared and
executed. Emotional-motor resonance may also be called emo-
tional empathy or embodied simulation – processes related to the
same bottom-up, automatic, and evolutionarily early mechanism.
Embodied simulation implies transforming perceived actions and
emotions into our own inner representations of those actions
and emotions. This process, supported by interactions between
the MNS and the limbic system, is fast, automatic, and pre-
cognitive, and is thought to support our ability to empathize
emotionally (“I feel what you feel”) (Preston and de Waal, 2002).
Current evolutionary evidence suggests that embodied simulation
is a phylogenetically early system for empathy, and that there is
also a more advanced cognitive perspective-taking (or theory of
mind, ToM/mentalizing) system mediating empathic responses in
humans (de Waal, 2008).

Higher-level cognitive empathy requires that we actively think
about, or reflect on others’ actions and emotional states, including
perspective taking or ToM/mentalizing (de Waal, 2008). Mental-
izing refers to the process of understanding another person’s per-
spective, and appears to depend upon higher cognitive functions
such as cognitive flexibility (Decety and Jackson, 2004). Singer
(2006) has proposed that mentalizing allows us to understand

mental states such as intentions, goals, and beliefs, while embod-
ied simulation allows us to share the feelings of others. Low-level
embodied processes and higher-level mentalizing processes inte-
grate their signals such that stimuli are “mapped” onto internal
representations and combined with information from memory
to plan future behavior, select a response, and act. Neuroimag-
ing studies have implicated distinct neural networks subserving
embodiment and mentalizing processes (Shamay-Tsoory et al.,
2004; Singer, 2006; Vollm et al., 2006; Hooker et al., 2008). Men-
talizing processes appear to be centered on the MPFC node of the
DMN, while embodied simulation processes are implemented by
the MNS – limbic system network (Preston and de Waal, 2002;
Gallese, 2005; Iacoboni and Dapretto, 2006; Iacoboni, 2009).

As previously discussed, the human MNS supports a
simulation-based, motor resonance mechanism, whereby we
understand the actions and emotions of others by “embodying”
them ourselves. It has been suggested that mirror neurons are a
kind of “neural wi-fi” that monitors what is happening in oth-
ers. This system tracks others’ emotions, what movements they’re
making, and what they intend, and activates in our brains pre-
cisely the same areas that are active in theirs. This puts us on the
same wavelength and it does so “automatically, instantaneously
and unconsciously” (Goleman, 2006). Neuroimaging studies have
provided evidence in support of this notion, showing common
neural signatures while experiencing disgust (Wicker et al., 2003a),
touch (Keysers et al., 2004), or pain (Singer et al., 2004; Jackson
et al., 2006) in oneself, and when perceiving the same feelings in
others. Between-brain analyses have also provided evidence for
neural resonance between individuals during social interactions
(Schippers et al., 2010).

In thinking about the self and others, mentalizing represen-
tations (Barsalou, 1999, 2008) and embodied representations
(Goldman and de Vignemont, 2009) serve as the foundations for
making inferences about our own mind as well as others’ minds.
Recent work has suggested that higher-level inference-based men-
talizing processes are grounded in their interactions with lower-
level embodied simulation-based processes (Barsalou, 1999, 2008;
Goldman, 2006; Keysers and Gazzola, 2007; Goldman and de
Vignemont, 2009). This predicts that brain regions involved in
high-level inference-based mentalizing are integrating their signals
with lower-level simulation-based systems (Keysers and Gazzola,
2007; Uddin et al., 2007), implying DMN–MNS interactions dur-
ing self-relevant processing (Sandrone, 2013). In a recent study,
Schippers and Keysers have shown using Granger causal analyses
that rather than simply being a feed-forward system in which visual
representations are transformed into motor programs through a
temporal → parietal → premotor flow of information, the MNS
acts as a dynamic feedback control system, and that during ges-
tural communication there is information flow within the system
from premotor to parietal and temporal cortices (Schippers and
Keysers, 2011). Their findings lend strong support to the notion
of dynamic interactions between the MNS and the DMN.

Here we expand on recent theories linking embodiment and
mentalizing systems (Keysers and Gazzola, 2007; Uddin et al., 2007;
Molnar-Szakacs and Arzy, 2009; Paulus et al., 2013; Sandrone,
2013), and propose that the MNS and the DMN are function-
ally connected and dynamically interact during social-cognitive
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Molnar-Szakacs and Uddin Self and the default mode network

processing. Simulation-based representations serve to scaffold
conceptual representations that allow us to understand the self in
its social context. By virtue of their differential patterns of connec-
tivity, subdivisions of the DMN can interact with the appropriate
brain systems, including the MNS, in the service of self-related
and social-cognitive demands. In light of recent work fractionat-
ing the DMN (Uddin et al., 2009; Andrews-Hanna et al., 2010),
we will discuss some examples of how these low- and high-level
mechanisms critical for representing the self are subserved by dis-
sociable subdivisions of this network. In addition, we will highlight
brain regions that may serve as key hubs mediating interactions
between the DMN and MNS.

DIFFERENT ASPECTS OF SELF-RELATED PROCESSING
SELF-RELATED PROCESSING IN THE PHYSICAL DOMAIN
One of the most important ways to identify one’s own person is to
recognize one’s face and distinguish it from other persons’ faces.
Among the first to study the neural correlates of self-recognition
in neurotypical adults, Keenan and colleagues provided behavioral
(Keenan et al., 2000) and neural (Keenan et al., 2001) evidence for
a right hemisphere bias in self-face processing. Subsequent func-
tional Magnetic Resonance Imaging (fMRI) studies of self-face
recognition described activations in lateral prefrontal cortex and
parietal cortices during self-face recognition (Kircher et al., 2001;
Platek et al., 2004, 2006; Sugiura et al., 2005). A recent review
has highlighted the common finding of right frontal and pari-
etal activations accompanying self-face viewing, especially when
compared to other familiar faces (Devue and Bredart, 2011). Fur-
thermore, a meta-analysis of studies of self-face recognition found
that in addition to right fronto-parietal regions which overlap the
human MNS, the right precuneus is a region that is also associ-
ated with this task (Platek et al., 2008). In our own work (Uddin
et al., 2005), we provide clear evidence for a right hemisphere net-
work including the IFG, IPL, superior parietal lobule, and inferior
occipital gyrus activated by recognition of the self-face. The pat-
tern of signal increases we observed in these areas as the stimuli
contain more “self” suggest that these areas comprise a unique
system extending beyond mere recognition of faces and play a
particular role in self-face recognition. Perception of the self-face
appears to involve a simulation-like mechanism that recruits right
hemisphere MNS matching the face stimulus to an internal rep-
resentation of the self. We proposed earlier that mirror areas may
be more active for stimuli containing more “self” because their
role is to establish communication between individuals via a sim-
ulation mechanism that maps actions of others onto one’s own
motor repertoire, thereby making others “like me” (Meltzoff and
Brooks, 2001). Thus, when one sees one’s own image, these mirror
areas are more strongly activated because of the ease with which
one can map oneself onto one’s own motor system (Uddin et al.,
2005). Interestingly, we also observed similar brain activation pat-
terns distinguishing the self-voice from other voices, suggesting
that the right hemisphere MNS may contribute to multimodal
abstract self-representation (Kaplan et al., 2008).

Our results also demonstrated decreased activity within the
DMN (precuneus, MPFC, and posterior superior temporal gyrus)
only during processing of “self” stimuli (Uddin et al., 2005). This
pattern of results led us to propose that the“familiar other” stimuli

triggered social representations, and thus the task-related deactiva-
tion was compensated during viewing of the“other”by an increase
in activity due to social processing. Thus, the overall result is lack of
deactivation for“other,”not a true activation. It is possible that dur-
ing viewing of the “familiar other,” with whom the subjects have
a positive social relationship, the subjects automatically activate
social representations to a greater extent than when viewing the
“self.” In summary, the generalized signal decrease in these DMN
areas due to the task demands is offset in the “other” condition by
triggering social-cognitive processing, which previously has been
shown to engage these regions (Iacoboni et al., 2004). Thus, recog-
nition of familiar others seems to also recruit midline structures
that have previously been implicated in social processing (Saxe,
2006). Taken together, these results emphasize the importance of
dynamic interactions between the MNS and the DMN during the
processing of self-relevant information. The MNS appears to play
an important role in physical self-recognition, while the DMN par-
ticipates in situating the self in its social context relative to familiar
others.

SELF-REFERENTIAL PROCESSING IN THE VERBAL DOMAIN
The self-reference effect (Symons and Johnson, 1997) is a unique
encoding phenomenon, whereby memory for previously pre-
sented trait adjectives (e.g., happy) is better if they had been
processed with reference to the self (e.g., “does happy describe
you?”) than if they had been processed only for their general mean-
ing (e.g., “does happy mean the same as optimistic?”). In other
words, as traits are incorporated into the self-schema, subsequent
memory for these trait words is increased (Rogers et al., 1977). Sev-
eral studies have used the self-reference effect to investigate SRP in
the verbal domain. Using statements delivered through the audi-
tory domain, Johnson and colleagues compared judgments about
one’s own abilities, traits, and attitudes (such as “I can be trusted”)
to a semantic judgment task. The self-referential condition was
associated with activation in the MPFC and the PCC relative
to the control condition (Johnson et al., 2002). Using a slightly
different paradigm, Kjaer and colleagues asked participants to
mentally induce thoughts reflecting on one’s own personality traits
and physical appearance. Once again, self-referential conditions
induced activation in midline DMN regions including the MPFC
and precuneus when compared to the non-self-referential condi-
tions (Kjaer et al., 2002). They also observed increased functional
connectivity between frontal and parietal midline regions dur-
ing self-referential conditions. As evidenced by these studies, SRP
in the verbal domain appears to recruit midline components of
the DMN.

To tease apart the role of different subdivisions of the DMN
in verbal SRP, Lou and colleagues used a combined PET-TMS
approach. In the PET study, they used visually presented per-
sonality trait adjectives that were either related to the self, to
the participants’ best friend, or to the Danish Queen (Lou et al.,
2004). Retrieval of self-related adjectives induced activation in the
DMPFC, the PCC/precuneus, the right and left IPL, the left ventro-
lateral prefrontal cortex, and the middle temporal cortex includ-
ing the hippocampus. As in previous studies, analysis of func-
tional connectivity revealed significant interaction between ante-
rior (DMPFC) and posterior (PCC, precuneus) midline regions
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of the DMN. Transcranial magnetic stimulation over the medial
parietal region caused a decrease in the efficiency of retrieval of
previous judgments of the mental self as compared to retrieval of
judgments of others, confirming that this region may be a nodal
structure in self-representation, mediating interactions between
the DMN and other lateral cortical regions (Lou et al., 2004).

SELF-REFERENTIAL PROCESSING IN THE MEMORY DOMAIN
Self-referential processing in memory depends on the individual’s
life history and involves the recollection of past experiences, as
the retrieved episodic information is unique to an individual and
is tied to a specific personal context (Ingvar, 1985; Craik et al.,
1999). Episodic memory retrieval (EMR), on the other hand, also
includes the retrieval of events that are characterized by low self-
relevance. Behaviorally, the link between SRP and EMR is reflected
in the so-called self-reference effect of memory, as discussed above
(Rogers et al., 1977; Symons and Johnson, 1997). Further support
for this link comes from neuroimaging investigations. EMR stud-
ies report activations in brain regions that are also identified by
SRP tasks, including the MPFC, as well as the medial and lateral
parietal cortex (Donaldson et al., 2001) (for reviews, see Cavanna
and Trimble, 2006; Legrand and Ruby, 2009). Because these brain
areas also show high neural activity during resting states, both SRP
and EMR have been considered possible functions of the DMN
(Buckner et al., 2008).

In a study designed to explore the similarity and disso-
ciability of SRP and EMR, Sajonz and colleagues found that
self-referential stimuli specifically activate the PCC/anterior pre-
cuneus, the MPFC, and an inferior division of the IPL. In contrast,
EMR success specifically involves the posterior precuneus, the
anterior prefrontal cortex, and a superior division of the IPL
extending into the intraparietal sulcus and the superior pari-
etal lobule. Overlapping activations can be found in intermediate
zones in the precuneus and the IPL but not in the prefrontal cor-
tex (Sajonz et al., 2010). These findings clearly demonstrate that
distinct subdivisions of the DMN are recruited during SRP as
compared with more general EMR. This is of particular interest in
light of earlier studies associating the MPFC with autobiographi-
cal memory retrieval (Gilboa, 2004; Svoboda et al., 2006), retrieval
of self-referential episodes (Zysset et al., 2002), retrieval of self-
generated versus externally presented words (Vinogradov et al.,
2008), and the self-reference effect of memory (Macrae et al.,
2004). These processes have in common that they involve self-
referential and memory components at the same time. The data
of Sajonz and colleagues seem to suggest that the self-referential
component particularly contributes to activations of the medial
prefrontal node of the DMN observed in these studies.

A functional connectivity analysis performed on the data sug-
gests a functional segregation within the PCC/precuneus for SRP
and EMR, respectively. Activity in the SRP-related seed in the
PCC/anterior precuneus correlated with the MPFC, dorsal ACC,
fusiform gyrus, and superior parietal lobule during SRP. In con-
trast, activity in the EMR-related seed in the posterior precuneus
was associated with the responsiveness in a distinct region in the
dorsal anterior paracingulate cortex during EMR (Sajonz et al.,
2010). Taken together, these findings shed light on the parcellation
of nodes within the DMN, and suggest that there is a functional

segregation within the precuneus during SRP and EMR. Activity
in anterior precuneus appears to be associated with SRP, a more
self-directed process, whereas activity in posterior precuneus is
associated with EMR, a more social and outward-directed process.
This anterior/posterior functional parcellation within the pre-
cuneus mirrors the dorsal/ventral subdivision of the MPFC, as
discussed above.

NEURAL NETWORKS, FUNCTIONAL CONNECTIVITY, AND THE
SELF
FINDINGS FROM RESTING-STATE fMRI
The past several years have witnessed a resurgence in the
use of fMRI to study not only regional activation patterns in
response to specific stimuli, but also functional connectivity
between-brain regions both during task performance and dur-
ing resting states. This focus on brain connectivity has emerged
as a natural consequence of recent advances in methods for
acquiring and analyzing resting-state fMRI data, as well as
efforts such as the Human Connectome project (http://www.
humanconnectomeproject.org/). Functional connectivity mea-
sured from fMRI data is defined as“temporal correlations between
remote neurophysiological events” (Friston, 1994), and is typically
quantified by conducting correlation analyses between regional
timeseries (Cole et al., 2010). Since the initial demonstration
that coherent low-frequency fluctuations in blood-oxygen-level-
dependent (BOLD) signal index functionally significant brain
systems (Biswal et al., 1995), the use of resting-state fMRI to
characterize brain functional organization has sky-rocketed. This
approach has been used to understand how the DMN might be
further divided into functional subsystems.

It is often difficult to ascertain the functional roles of brain
regions from their selective activation during processing of specific
stimuli or associated with specific cognitive demands. Resting-
state connectivity approaches, unconfounded by ceiling and floor
effects in task performance, can provide complementary informa-
tion regarding the functional roles of brain regions. It has been
known since the initial study by Greicius et al. (2003) that brain
areas comprising the DMN (PCC, MPFC, lateral parietal cortices),
show coherent low-frequency fluctuations. Several recent studies
examining the resting-state or intrinsic functional connectivity of
the DMN have provided evidence for considerable heterogeneity
between distinct nodes of the network. For example, the PCC has
been shown to have stronger negative correlations with anterior
cingulate and insular cortices, whereas the MPFC shows stronger
negative correlations with posterior parietal cortices (Uddin et al.,
2009). Several previous studies have demonstrated default mode
suppression during goal-oriented task performance, with failure
to suppress default mode activity being linked to decreased activ-
ity in task-relevant regions and attentional lapses, or decrements
in performance (Weissman et al., 2006). Heterogeneity of DMN
nodes in terms of their functional connectivity suggests that differ-
ent avenues may exist for communicating with other brain systems
critical for self-related processing.

While the MPFC and PCC are considered core “hubs” of the
DMN, some have suggested that the network can be fractionated
into subcomponents. Recently, Salomon et al. (2013) have pro-
posed that the inferior and posterior parietal aspects of the DMN
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can be further subdivided such that some show greater involve-
ment in self-referential judgments than others. Andrews-Hannah
and colleagues found that one subsystem including DMPFC,
temporo-parietal junction (TPJ), lateral temporal cortex, and tem-
poral pole, is more engaged when individuals make self-referential
judgments about their present situation or mental states, whereas a
different subsystem comprised of VMPFC, medial temporal lobes,
IPL, and retrosplenial cortex is more active during episodic judg-
ments about the personal future (Andrews-Hanna et al., 2010).
Others have subdivided the PCC into ventral and dorsal subdivi-
sions. Leech et al. (2011) found that as difficulty increases during
an N-back task, ventral PCC shows reduced integration within the
DMN, whereas dorsal PCC shows increased integration with the
DMN as well as attention networks. Taken together, these studies
suggest that the concept of the DMN as a homogenous network
should be refined and updated to account for heterogeneous pat-
terns of activation and connectivity observed within the regions
comprising it. This reconceptualization of the DMN as consisting
of multiple interacting subsystems has clear implications for theo-
ries of the network’s role in self-related cognition. In particular, the
identification of possible“nodes of association”creating functional
links enabling communication between the DMN and MNS are
now beginning to be revealed. It has recently been demonstrated
that certain brain regions constitute a “rich club” of organization
in that they are highly connected hubs that are connected to other
highly connected hubs (van den Heuvel and Sporns, 2011). We
propose that such highly connected brain regions, including the
PCC/precuneus and AI, may play a role in orchestrating dynamic
interactions between the DMN and MNS.

FUNCTIONS AND FUNCTIONAL CONNECTIVITY OF DMN NODES
Although the precise functional properties of the DMN are not yet
established, a growing number of studies implicate this network in
various aspects of self-related processing. For example, the DMN
is implicated during self-related evaluations (Northoff et al., 2006;
Buckner and Carroll, 2007) voluntary actions (Goldberg et al.,
2008), episodic memory (Spreng et al., 2009; Sestieri et al., 2011),
and planning. Previous studies have revealed functional subdivi-
sions within the DMN (Uddin et al., 2009; Andrews-Hanna et al.,
2010; Sestieri et al., 2011) using either data driven parcellation
methods (e.g., ICA, graph-analysis), or using specific tasks such
as EMR. Within-region functional subdivisions in the DMN are
also starting to be described as related to various neural processes
including SRP and EMR (Andrews-Hanna et al., 2010; Sajonz et al.,
2010; Kim, 2012) and cognitive control (Leech et al., 2011). In the
following sections, we will describe some relevant studies that used
a connectivity approach to explore DMN function and connectiv-
ity with the MNS and other brain regions during self-relevant
processing.

Due to the overlap between brain regions involved in self-
processing and regions that constitute the DMN (D’Argembeau
et al., 2005; Schneider et al., 2008), some speak of a so-called
“default self,” arguing that the self may be more or less identical
with the resting-state activity observed in DMN regions (Gusnard
et al., 2001; Wicker et al., 2003b; Beer, 2007). A recent meta-analysis
of 87 self-related studies has lent further support to this idea (Qin
and Northoff, 2011). In their meta-analysis, Qin and Northoff

asked a two-part question – is neural activity in the DMN self-
specific, and is self-specific activity related to resting-state activity?
The specificity of the self (e.g., hearing one’s own name, seeing
one’s own face) in the DMN was tested and compared across
familiar (using stimuli from personally known people) and other
(strangers and widely known figures) conditions. A large MPFC
regions was recruited for the self condition when compared to
the familiarity and other conditions. Concerning other midline
regions, there was either regional overlap of activations between
the self and familiarity conditions in the MPFC, or between the
familiarity and other condition in the PCC (Qin and Northoff,
2011). This finding is in accordance with previous studies finding
both self-specific and non-specific regions within the DMN dur-
ing self-relevant processing (Gusnard et al., 2001; D’Argembeau
et al., 2005; Schneider et al., 2008).

An interesting finding to emerge from the meta-analysis by Qin
and Northoff (2011) was the recruitment of the right IFG, as well
as the left AI during self-specific conditions. The role of the IFG
as one of the anchors of the MNS and its role in self-relevant pro-
cessing are well established (Molnar-Szakacs et al., 2005a; Uddin
et al., 2005). As we have previously discussed, the right IFG seems
to be responsive to self-face stimuli as well as one’s own voice
(Uddin et al., 2005; Kaplan et al., 2008). The insula has also been
associated with self-specific stimuli in recent studies (Enzi et al.,
2009; Modinos et al., 2009), and forms an integral part of the
neural network important for emotional empathy, embodiment,
and simulation (Carr et al., 2003; Singer et al., 2004). As the insula
is heavily involved in interoceptive stimulus processing (Craig,
2003), one may suggest that the co-activation between insula and
the DMN may be crucial in constituting the self and assigning
self-specificity to stimuli. It has recently been demonstrated that
the right AI plays a causal role in switching between the DMN
and executive control networks (Sridharan et al., 2008). It has
been suggested that the AI serves to detect events that are salient
to the individual and mobilize neural resources in the service of
appropriate behavioral responses (Menon and Uddin, 2010). That
self-related stimuli should invoke activation of the insula is not
surprising in light of these findings. Pre-reflective representations
of visceral states of the self, for instance, seem linked to activa-
tions in the posterior and/or middle insula. By contrast, midline
structures become active when subjects are asked to introspect,
reflect, and report these states (e.g., heartbeat) (Critchley and Har-
rison, 2013). The AI seems crucial in linking the more posterior
insula with these midline structures. Thus, interactions between
the DMN and the MNS through the functional connectivity of
midline structures and the AI could mediate the ability to rep-
resent one’s bodily states to enable conscious reflection on those
states (Keysers and Gazzola, 2007).

INTERACTIONS BETWEEN THE DMN AND MNS
The integration of function between the DMN and the MNS have
been the focus of several recent proposals on the neural bases
of self-related cognition (Keysers and Gazzola, 2007; Uddin et al.,
2007; Molnar-Szakacs and Arzy, 2009; Molnar-Szakacs and Uddin,
2012; Paulus et al., 2013; Sandrone, 2013). The results of Qin
and Northoff (2011) also lend support to the notion that the self
emerges from the interaction of these two neural networks. Their
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meta-analysis showed recruitment of DMN regions, including the
MPFC and PCC, as well as MNS regions, including the IFG and
AI, both during self-relevant processing.

Lombardo et al. (2010) used a functional connectivity approach
to investigate the nature of the interaction between high-level
mentalizing systems and embodied simulation-based representa-
tions during mentalizing and physical judgments about the self
and others. The areas of overlap of activation between self and
other consisted of the MPFC, PCC, and bilateral TPJ as well as
the left anterior temporal lobe along the middle temporal gyrus,
left primary sensorimotor cortex, and cerebellum. With a factor-
ial design, they were able to test the interaction effect of whether
mentalizing or physical representations recruit distinct functional
circuits for the self or other. Similar patterns of functional con-
nectivity between self and other conditions suggested that mental-
izing representations are distributed across similar neural systems
with respect to self and other. Conjunction analyses revealed a
self–other distinction within the neural circuitry for mentaliz-
ing whereby the MPFC was biased for SRP, and the PCC and
the TPJ were biased for other-referential processing, as has pre-
viously been shown (Ruby and Decety, 2001; Saxe et al., 2006;
Pfeifer et al., 2007). As opposed to the previous within-region
functional subdivisions we have discussed for the dorsal/ventral
MPFC or the anterior/posterior precuneus, self–other distinc-
tion in this study mapped onto fronto-parietal DMN regions.
Taken together, the results of these studies show that in addition
to broad cross-regional functional specializations, region-specific
functional specializations exist within nodes of the DMN.

A particularly interesting result of the study was that several
MNS regions, including IFG/PMC, primary somatosensory cor-
tex, and the AI were sensitive to processing of both self and other.
The role of somatosensory cortex in low-level shared represen-
tations of touch (Keysers et al., 2004; Blakemore et al., 2005),
self-experienced pain (Singer et al., 2004), and action–perception
mirroring (Gazzola et al., 2006; Nanetti et al., 2009) is well estab-
lished. Thus, the observation that primary somatosensory cortex
is also recruited for mentalizing about self and other suggests
that low-level embodied simulative representations computed
by this region are also important for the processes underlying
higher-level inference-based mentalizing when compared with
reflecting on physical characteristics (Lombardo et al., 2010). In
fact, connectivity analyses revealed that these two systems were
specifically linked during mentalizing more than during physi-
cal judgments, and this pattern of connectivity was apparent for
both self and other conditions. Taken together, these results pro-
vide strong evidence of the integration of function between the
DMN and the MNS. The authors conclude that “the tight link
between high-level inference-based mentalizing systems and low-
level embodied/simulation-based systems suggests that these two
neural systems for social cognition are integrated in a task-specific
manner for mentalizing about both self and other” (Lombardo
et al., 2010).

The studies reviewed here suggest that interactions between
the DMN and MNS during self-relevant processing may occur
through several associated brain regions. Figure 1 depicts some
of the possible neuroanatomical loci and functional connections
underlying such interactions.

FIGURE 1 | Functional connections underlying interactions between
the DMN and MNS. The DMN, a system for psychological self-relevant
processing and mentalizing, and the MNS, a system for physical
self-recognition and embodied simulation, may interact through densely
connected “hubs” such as the AI and PCC/Prec. Green, DMN nodes; red,
MNS nodes; blue, interaction nodes; MPFC, medial prefrontal cortex, pIPL,
posterior inferior parietal lobule; PCC/Prec, posterior cingulate
cortex/precuneus; IFG/PMC, inferior frontal gyrus/premotor cortex; aIPL,
anterior inferior parietal lobule; STS, superior temporal sulcus; AI, anterior
insula; Gray lines indicate possible functional connections based on
(Iacoboni et al., 2001; Lou et al., 2004; Iacoboni and Dapretto, 2006;
Sridharan et al., 2008; Schippers and Keysers, 2011). Figure was created
using BrainNet Viewer (http://www.nitrc.org/projects/bnv/).

CONCLUSION
Historically, scholars have pitted high-level inference-based men-
talizing accounts and low-level embodied simulation-based
accounts as opposites of each other (Gopnik and Wellman, 1992;
Gordon, 1992). However, recent theories related to different
aspects of self-representation have been focused on the possible
integration of function between the DMN and the MNS (Key-
sers and Gazzola, 2007; Uddin et al., 2007; Molnar-Szakacs and
Arzy, 2009; Molnar-Szakacs and Uddin, 2012; Paulus et al., 2013;
Sandrone, 2013). Furthermore, interpretations of disturbances in
self-relevant processing often invoke explanations that are based
either in deficits of the DMN, the human MNS, or both. For exam-
ple, theories of how we understand other minds have implicated
both the DMN (Spreng and Grady, 2009) and the MNS (Gallese
and Goldman, 1998); theories about moral cognition have been
linked to both the DMN (Harrison et al., 2008) and the MNS
(Molnar-Szakacs, 2011); and both the DMN and the MNS have
been implicated in theories of physical self-representation (Uddin
et al., 2007; Molnar-Szakacs and Arzy, 2009; Molnar-Szakacs and
Uddin, 2012). In the realm of psychiatric or neurological disor-
ders, both the DMN (Cherkassky et al., 2006; Uddin, 2011) and the
MNS (Iacoboni and Dapretto, 2006; Molnar-Szakacs et al., 2009;
Enticott et al., 2012) have been implicated in autism spectrum
disorders and aberrant DMN connectivity and MNS dysfunc-
tion have been observed in schizophrenia (Garrity et al., 2007;
Mehta et al., 2012). Taken together, this evidence from both the
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healthy and the atypical brain suggests that the human MNS and
the DMN are functionally connected and are together profoundly
implicated in social cognition that forms the basis of understand-
ing the self. In the context of situations requiring understanding
of others’ mental and physical states, such interactions facilitate
the self–other mappings at the core of both embodiment and
mentalizing processes.

Findings of functional specialization within the DMN are
beginning to shed light on the ability of the network to support
self-related processes as seemingly unrelated as autobiographical
memory and verbal SRP. The findings reviewed here argue against
viewing the DMN as a unitary system, and are compatible with
the notion that the network consists of distinct, functionally spe-
cialized subsystems. It is becoming increasingly clear that great
attention to anatomy can reveal subtle differences in circuitry of
neighboring cortical regions of the DMN (Margulies et al., 2009).
For example, we have seen that broad cross-regional functional
specializations exist across regions of the DMN, such that the
frontal MPFC node is more involved in self-related processing and
the posterior PCC node is more involved in other-related process-
ing. Additionally, region-specific functional specializations exist
within nodes of the DMN, such that the VMPFC responds more

to self and the DMPFC responds more to others. Furthermore,
emerging findings from the functional connectivity literature can
greatly inform theories of DMN involvement in self-related cogni-
tion. In particular, they highlight possible avenues for interactions
between the DMN and MNS, and indicate how brain networks
for mentalizing and embodiment might communicate. Indeed,
the studies discussed above suggest that the DMN and MNS may
interact at certain “rich-club” nodes, including the AI and the
PCC. Through this interaction, embodied simulation-based rep-
resentations serve to scaffold mentalizing-based representations.
These representations allow the brain to construct a dynamic
self, continuous through time, and able to plan for the future.
A more in-depth understanding of the functionally relevant nodes
of each network, and the interactions between them, will help us
advance toward a more complete theory of self-representation in
the brain.
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