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Maintenance of energy balance requires regulation of the amount and timing of food
intake. Decades of experiments utilizing pharmacological and later genetic manipulations
have demonstrated the importance of serotonin signaling in this regulation. Much
progress has been made in recent years in understanding how central nervous system
(CNS) serotonin systems acting through a diverse array of serotonin receptors impact
feeding behavior and metabolism. Particular attention has been paid to mechanisms
through which serotonin impacts energy balance pathways within the hypothalamus.
How upstream factors relevant to energy balance regulate the release of hypothalamic
serotonin is less clear, but work addressing this issue is underway. Generally, investigation
into the central serotonergic regulation of energy balance has had a predominantly
“hypothalamocentric” focus, yet non-hypothalamic structures that have been implicated
in energy balance regulation also receive serotonergic innervation and express multiple
subtypes of serotonin receptors. Moreover, there is a growing appreciation of the diverse
mechanisms through which peripheral serotonin impacts energy balance regulation.
Clearly, the serotonergic regulation of energy balance is a field characterized by both rapid
advances and by an extensive and diverse set of central and peripheral mechanisms yet
to be delineated.
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CENTRAL SEROTONIN AND ENERGY BALANCE
The monoamine signaling molecule 5-hydroxytryptamine
(5-HT, serotonin) is utilized by diverse invertebrate and ver-
tebrate species for the regulation of many of the behavioral
and physiological processes through which energy balance is
maintained (Horvitz et al., 1982; Orchard, 2006; Tecott, 2007).
With regard to feeding, the predominant global effect of central
nervous system (CNS) serotonin signaling is the suppression
of food intake. In mammals, CNS serotonin is synthesized
exclusively in discrete collections of brainstem neurons known
as the raphe nuclei. Serotonergic raphe neurons project widely
and extensively, delivering serotonin throughout the CNS. The
caudal raphe nuclei send predominantly descending projections
to the brainstem and spinal cord, including to areas important
for energy balance such as the nucleus of the solitary tract (NTS)
and the parabrachial nuclei (PBN; Lam and Heisler, 2007). The
rostral raphe nuclei, including the median and dorsal raphe, send
predominantly ascending projections throughout the forebrain,
including to the cortex, amygdala, striatum, hippocampus,
and the various nuclei of the hypothalamus. It has long been
established that most areas of the hypothalamus receive inputs
from both the median and dorsal raphe (Sawchenko et al., 1983;
Willoughby and Blessing, 1987; Petrov et al., 1992).

Either specific lesions of raphe nuclei or acute inhibition of
these neurons by raphe injection of the gamma-aminobutyric
acid receptor A (GABA-A) agonist muscimol resulted in
hyperphagia and obesity (Geyer et al., 1976; Klitenick and

Wirtshafter, 1988). Furthermore pharmacological perturbation
of serotonin synthesis by intracerebroventricular (ICV) injection
of either the serotonergic neurotoxin 5,7-dihydroxytriptamine
(5,7-DHT) or the tryptophan hydroxylase (TPH) inhibitor
p-chlorophenylalanine (PCPA) have also been found to produce
hyperphagia (Breisch et al., 1976; Saller and Stricker, 1976).

Conversely, central injections of serotonin or its precur-
sor 5-hydroxytryptophan (5HTP) caused hypophagia (Blundell
and Latham, 1979; Fletcher and Burton, 1986; Simansky, 1996;
Yamada et al., 2006) as well as increased metabolic rate (Rothwell
and Stock, 1987; Le Feuvre et al., 1991). Fenfluramine, a drug
that increases synaptic serotonin concentrations by inducing
vesicular release and inhibiting reuptake, also produced hypopha-
gia, reducing meal size, and increasing inter-meal intervals in
rats (Blundell et al., 1975; Grinker et al., 1980), effects which
are mediated by central serotonin (Fletcher and Burton, 1986).
Additionally, metabolic rate was also increased by fenfluramine
administration (Rothwell and Stock, 1987; Le Feuvre et al., 1991).
Moreover, the biologically active metabolite of fenfluramine, nor-
fenfluramine, acts directly as an agonist at several serotonin
receptor subtypes (Curzon et al., 1997). Fenfluramine suppressed
eating and facilitated body weight loss in humans (Rogers and
Blundell, 1979; McGuirk et al., 1991), and was combined with
phentermine, a catecholamine/serotonin releasing agent in “Fen-
Phen,” a widely prescribed weight loss treatment. “Fen-Phen” was
removed from the market in 1997 due to its promotion of car-
diac valvulopathies, now attributed to action at 5HT2B receptors
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expressed on cardiac valves (Fitzgerald et al., 2000; Rothman et al.,
2000).

While a preponderance of evidence points to the inhibition of
feeding by serotonin, there are a few recent results that are diffi-
cult to square with such a simple model. These include several
genetic perturbations of the serotonin system as well as phar-
macological manipulation of several different serotonin receptors
(5HTRs; discussed in a subsequent section). Interpretation of
adult phenotypes in the genetic models is complicated by the
fact that serotonin has significant roles in development (Alenina
et al., 2009). A recent study found that mice lacking expression of
the CNS serotonin synthetic enzyme TPH2 displayed decreased
food consumption and body weight (Yadav et al., 2009). However,
other studies of independently generated TPH2 knockout mice
reported mixed results. Some have also reported modest decreases
in body weight or body fat (Gutknecht et al., 2008; Savelieva
et al., 2008), while others have found no differences (Alenina
et al., 2009; Liu et al., 2011). Two additional studies utilizing
different genetic manipulations that result in depleted serotonin
also reported no changes in body weight (Hendricks et al., 2003;
Narboux-Neme et al., 2011).

A second line of evidence at odds with the notion that exper-
imentally enhancing serotonin inhibits feeding involves genetic
manipulation of the serotonin reuptake transporter (SERT or 5-
HTT). As expected, the absence of serotonin reuptake into presy-
naptic terminals enhanced synaptic concentrations of serotonin,
and SERT null mice exhibited elevated extracellular serotonin
levels (Mathews et al., 2004). Interestingly, though, mice lack-
ing SERT had an adult-onset obesity phenotype (Warden et al.,
2005; Murphy and Lesch, 2008). While these mice were not hyper-
phagic, they were hypoactive, with reduced home-cage locomotor
activity (Holmes et al., 2002). The phenotype was reversed for
transgenic mice that overexpress SERT at 2–3 fold normal lev-
els, with a consequent decrease in brain extracellular serotonin
(Jennings et al., 2006). These mice had reduced body weight and
also no alteration in feeding (Pringle et al., 2008).

It seems likely that some of the discrepancies between pharma-
cological and genetic manipulations of serotonin systems reflect
differences between acute effects on one hand and chronic or
possibly developmental effects on the other. It is worth noting
that many of the transgenic mice with dramatic reductions in
serotonin synthesis exhibited relatively minor behavioral abnor-
malities during adulthood (Savelieva et al., 2008). This rather
surprising result raises the possibility that there may be some sig-
nificant compensatory mechanisms at work in serotonergic target
neurons or downstream feeding circuits.

THE 5HT2C RECEPTOR
Serotonin exerts its effects through actions involving at least 18
different 5HTRs, all but one of which are G-protein coupled
receptors (Marston et al., 2011). Within the hypothalamus, no
serotonin receptor is more highly expressed than the 5HT2CR
(Yadav et al., 2009). A role for 5HT2CR-mediated signaling in
energy balance was first indicated by studies showing that a non-
specific serotonin receptor agonist with high affinity at 5HT2CRs,
m-chlorophenylpiperazine (mCPP) decreased feeding and that
this effect was blocked by non-selective antagonists with high

affinities for the 5HT2CR (Kennett and Curzon, 1988, 1991;
Kitchener and Dourish, 1994). The anorectic action of 5HT2CR
was subsequently confirmed through studies of 5HT2CR knock-
out mice that lacked functional 5HT2CRs. These animals dis-
played chronic hyperphagia leading to late onset obesity (Tecott
et al., 1995; Nonogaki et al., 1998). Moreover, they exhibited
reduced sensitivity to the anorectic effects of dexfenfluramine
(Vickers et al., 1999).

The natural course of obesity development in 5HT2CR knock-
out mice is reminiscent of common forms of human obesity.
These animals display chronic hyperphagia (Tecott et al., 1995;
Nonogaki et al., 1998), however, they do not develop obe-
sity until 5–6 months of age (Nonogaki et al., 1998), possibly
because they also exhibit enhanced home cage locomotor activ-
ity. Although the hyperlocomotor phenotype persists in older
5HT2CR knockout mice, their development of late onset obe-
sity may be attributable to progressive increases in the energy
efficiency of locomotor activity with increasing age (Nonogaki
et al., 2003). These animals also display enhanced sensitivity to
the obesigenic effects of high-fat feeding, including the devel-
opment of type 2 diabetes mellitus (Nonogaki et al., 1998).
Moreover, detailed analysis of behavior patterns in 5HT2CR null
mice revealed that their hyperphagia occurred during a portion
of the light cycle during which mice typically exhibit inactiv-
ity (Goulding et al., 2008). During this period, mutants were
observed to exhibit multiple brief periods of activity character-
ized by visits to the feeder. This pattern of multiple brief feeding
episodes during the inactive portion of the circadian cycle is
reminiscent of the human night-eating syndrome, a condition
responsive to serotonin reuptake blockade (O’Reardon et al.,
2006). Altogether, a number of features of the obesity syndrome
in 5HT2CR knockout mice resemble common forms of human
obesity: (1) chronic hyperphagia, (2) lack of primary pertur-
bations of metabolic rate, (3) lack of primary perturbations of
the regulation of hormones implicated in energy balance, (4)
late-onset, (5) exacerbation by high levels of dietary fat, and
(6) a circadian pattern resembling the human night-eating syn-
drome. The multiple lines of evidence indicating a prominent
role of 5HT2CRs in the serotonergic suppression of feeding led
this receptor to be targeted for the development of agonists for
obesity treatment. Recently, the 5HT2CR-specific agonist lor-
caserin became the first FDA approved anti-obesity drug in 13
years (Lam et al., 2008; Thomsen et al., 2008; Hurren and Berlie,
2011).

Another intriguing feature of 5HT2CR biology relates to epi-
genetic modification of the Htr2c gene product; it is one of a
limited number of identified gene products known to be sub-
ject to RNA editing (Rula and Emeson, 2007). Editing occurs at
five adenosine bases (editing sites A–E) within a 13 base span
of exon V of the Htr2c gene, in a protein-coding region corre-
sponding to the second intracellular loop of the receptor (Burns
et al., 1997). This edited region is regarded as critical for signal
transduction through G-protein mediated intracellular pathways
(Werry et al., 2008). The edited region is also located close to a
splice donor site, and alternative splicing at this site produces a
truncated non-functional gene product lacking part of exon V
(Htr2c-tr) (Canton et al., 1996; Xie et al., 1996). There are 32

Frontiers in Neuroscience | Neuroendocrine Science March 2013 | Volume 7 | Article 36 | 2

http://www.frontiersin.org/Neuroendocrine_Science
http://www.frontiersin.org/Neuroendocrine_Science
http://www.frontiersin.org/Neuroendocrine_Science/archive


Donovan and Tecott Serotonin and the regulation of mammalian energy balance

possible editing combinations arising from these 5 sites, resulting
in 24 possible amino acid sequences, ranging from the non-edited
(INI) to the fully edited (VGV) form. 5HT2CR RNA editing has
functional consequences: generally, an inverse relationship exists
between the extent of editing and 5HT2CR constitutive activity
(Burns et al., 1997; Herrick-Davis et al., 1999; Niswender et al.,
1999).

Several lines of evidence implicate perturbations of 5HT2CR
RNA editing in the marked hyperphagia associated with Prader–
Willi Syndrome (PWS), a developmental disorder resulting from
loss of paternal gene expression on chromosome 15q11–13. The
disorder is characterized by cognitive impairment, short stature,
and hyperphagia often leading to morbid obesity (Nicholls and
Knepper, 2001; Goldstone, 2004). Intriguingly, the deleted region
of 15q11–13 encodes multiple copies of SNORD115 (also known
as H/MBII-52), a small nucleolar RNA (snoRNA) containing
an 18 nucleotide anti-sense box complementary to the edited
region of 5HT2CR pre-mRNA. Moreover, SNORD115 can mod-
ulate both 5HT2CR editing and alternative splicing (de los Santos
et al., 2000; Cavaille et al., 2001). Consistent with a potential role
for perturbation of 5HT2CR editing in the pathophysiology of
PWS, brain samples from PWS patients exhibited altered editing
patterns (Kishore and Stamm, 2006). Moreover, a line of mice
bearing a deletion of Snord115 exhibited altered 5HT2CR edit-
ing patterns, perturbations of feeding and additional behaviors
relevant to PWS (Doe et al., 2009). Another line of mice solely
expressing the fully edited isoform of 5HT2CR also exhibited
disorders of feeding and additional behaviors relevant to PWS
(Morabito et al., 2010). Finally, leptin deficient ob/ob mice have
been recently found to exhibit perturbations of 5HT2CR editing
within the hypothalamus, raising the possibility that the regu-
lation of 5HT2CR editing may be sensitive to energy balance
perturbations (Schellekens et al., 2012). It will be of great inter-
est to determine in future studies the extent to which 5HT2CR
RNA editing processes are sensitive to energy status.

SEROTONIN AND THE HYPOTHALAMUS
While many areas of the brain have demonstrated roles in trans-
mitting and integrating energy balance signals, the hypothalamus
is pivotal. This small region of the limbic system also has a central
role in mediating stress responses, regulating body temperature,
thirst and sleep, and establishing circadian rhythms. It is bordered
by the third ventricle and the highly vascularized median emi-
nence, an area with a porous blood-brain barrier. This makes it
ideally positioned to sense and respond to a myriad of circulating
hormones and nutrients (Rodriguez et al., 2010). The hypothala-
mus also receives major innervation from the NTS, a brainstem
structure that relays signals transmitted via the vagus nerve from
the gastrointestinal tract and other visceral organs (Sawchenko
et al., 1985; Cunningham and Sawchenko, 1988). Additionally,
various areas of the hypothalamus receive a wide range of pro-
jections from other areas of the brain involved in energy balance,
including other brainstem nuclei, olfactory cortex, and reward-
related areas such as the ventral striatum (Gao and Horvath,
2007).

Early experiments in rats examining the effects of dis-
crete lesions of hypothalamic subregions reported an interesting

functional division between the medial and lateral hypotha-
lamus: lesions of medial nuclei including the paraventricular
(PVH), dorsomedial (DMH), and ventromedial (VMH) nuclei
produced hyperphagia and obesity while lesions within the lateral
hypothalamic area (LHA) produced hypophagia (Hetherington
and Ranson, 1940; Brobeck et al., 1943; Anand and Brobeck,
1951). This led to the hypothesis that the hypothalamus consisted
of two centers with opposing influences on behavior: a satiety
center, located medially and a feeding center, located laterally.
Experiments utilizing the molecular and genetic tools of subse-
quent decades have demonstrated that hypothalamic physiology
is somewhat more complex, integrating diverse signals reflect-
ing short- and long-term energy stores, ingestion and digestion,
circadian patterns, and environmental cues to dictate when and
how much feeding occurs as well as to modulate activity and
metabolic rate.

One population of neurons that seems to have an especially
significant role in mediating energy balance signals is located in
the arcuate nucleus and expresses proopiomelanocortin (POMC).
The arcuate nucleus is located at the highly vascularized ventro-
medial aspect of the hypothalamus, immediately adjacent to the
median eminence, allowing access to a wide range of circulating
factors (Cone et al., 2001; Rodriguez et al., 2010). POMC neu-
rons within the arcuate play an important role in sensing and
integrating these peripheral factors (Williams et al., 2011). The
POMC protein is enzymatically cleaved into several secreted pep-
tides, including alpha melanocyte-stimulating hormone (αMSH)
(Cone, 2005). αMSH is released onto downstream neurons in
the DMH, VMH, PVH, and LHA, where it serves as an ago-
nist for melanocortin receptors (MCR), in particular MC3R and
MC4R (Adan et al., 1994). Genetic disruption of either POMC or
MC4R has been shown to produce a dramatic increases in feed-
ing and weight gain, indicating that a primary function of this
melanocortin system is anorectic (Huszar et al., 1997; Krude et al.,
1998).

POMC neurons of the arcuate nucleus express 5HT2CRs
(Heisler et al., 2003; Lam et al., 2008) and both 5HT2CR agonists
and d-fenfluramine stimulate POMC neuronal activity (Heisler
et al., 2002). Furthermore, the hypophagia and weight loss pro-
duced by these serotonergic agents are suppressed by either
genetic or pharmacological inactivation of melanocortin circuits
(Heisler et al., 2002, 2003; Nonogaki and Kaji, 2010). The require-
ment for both an intact melanocortin circuit and functional
5HT2C receptors (Vickers et al., 1999) for the anorectic effec-
tiveness of fenfluramine led to the hypothesis that 5HT2CR on
POMC neurons may play a particularly important role in medi-
ating the energy balance effects of serotonin. This hypothesis has
been largely confirmed in recent studies (Xu et al., 2008, 2010a).
These studies utilized a transgenic strategy whereby 5HT2CRs
were expressed specifically on POMC neurons in an otherwise
5HT2CR null background. 5HT2CR expression solely on POMC
neurons ameliorated energy balance phenotypes of 5HT2CR null
mice including: hyperphagia, sensitivity to diet-induced obe-
sity, locomotor hyperactivity, insulin resistance, and insensitivity
to the anorectic effects of serotonin agonists (Xu et al., 2008,
2010a,b). Given the presence of 5HT2CRs on other neuronal pop-
ulations involved in energy balance, it is somewhat surprising that
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receptors solely on POMC neurons were sufficient for restoration
of normal energy balance. While this strategy demonstrates that
POMC 5HT2CRs were sufficient to ameliorate phenotypes result-
ing from Htr2c gene inactivation, it will also be of interest to
determine whether they are necessary for intact energy balance
regulation in an otherwise normal brain. That is, whether inacti-
vation of 5HT2CRs specifically on POMC neurons will produce
energy balance phenotypes similar to those observed in the mice
globally lacking 5HT2CRs.

In addition to POMC cells, a second type of arcuate nucleus
neuron has been implicated in serotonergic control of energy bal-
ance. These neurons produce agouti-related peptide (AgRP), an
endogenous antagonist of MC3R and MC4R (Nijenhuis et al.,
2001; Chai et al., 2003), as well as gamma-aminobutyric acid
GABA and neuropeptide Y (NPY), both of which inhibit POMC
neurons and downstream melanocortin target neurons (Cowley
et al., 2001). The net result of both of these effects is orexigenic
behavior. Central administration of NPY or overexpression of
AgRP increased food consumption leading to obesity (Stanley
and Leibowitz, 1985; Ollmann et al., 1997). Interestingly genetic
AgRP and NPY nulls, as well as double nulls, did not produce the
expected hypophagia phenotype (Erickson et al., 1996; Qian et al.,
2002). However, experiments utilizing complex genetic tools to
inducibly ablate AgRP neurons, revealed that ablation during
adulthood, but not neonatally, produced extreme hypophagia,
rapidly leading to starvation (Gropp et al., 2005; Luquet et al.,
2005). These results indicated that significant compensation likely
occurred in the AgRP null mice, highlighting the redundancy in
these systems and therefore the importance of robust pro-feeding
circuits to an animal’s survival.

5HT1BRs are expressed in arcuate nucleus AgRP neurons and
have been implicated in their regulation. When expressed on
serotonergic neurons, the Gi-coupled 5HT1BR acts as an autore-
ceptor, inhibiting adenylyl cyclase, hyperpolarizing the neuron,
and decreasing serotonin release (Kroeze et al., 2002). 5HT1BRs
expressed on non-serotonin neurons can act by similar mecha-
nisms to inhibits release of other neurotransmitters (Heisler et al.,
2006). Treatment with a 5HT1BR agonist produced hypopha-
gia and satiety (Halford and Blundell, 1996; Lee and Simansky,
1997). 5HT1BR null mice did not exhibit enhanced adipos-
ity (Bouwknecht et al., 2001). Interestingly, though, genetic or
pharmacological inactivation of 5HT1BR blunted responses to
d-fenfluramine, suggesting that 5HT1BR and 5HT2CR may act
cooperatively to mediate the effects of serotonin on feeding
(Lucas et al., 1998; Simansky and Nicklous, 2002; Lee et al.,
2004). Studies of feeding patterns indicated that the two receptors
may inhibit feeding in somewhat different ways, with 5HT2CR
primarily affecting the frequency with which meals are taken
and 5HT1BR primarily affecting meal duration (Simansky and
Vaidya, 1990; Grignaschi and Samanin, 1992). Heisler and col-
leagues have established a model of a cooperative relationship
between 5HT2CR and 5HT1BR in the arcuate nucleus (Heisler
et al., 2006). They found that 5HT1BRs are expressed on AgRP
neurons, and that a 5HT1BR agonist produced opposite effects on
AgRP and POMC neurons, inhibiting AgRP neurons while excit-
ing POMC neurons. Furthermore, they found that the anorectic
effects of 5HT1BR agonists required MC4R. From these data,

the authors proposed a model, in which serotonin stimulates
the melanocortin system by way of two parallel processes, acting
through 5HT2C receptors to directly excite POMC neurons and
through 5HT1B receptors to suppress GABA inhibition of POMC
neurons by AgRP neurons (Heisler et al., 2006).

While both 5HT2CR and 5HT1BR have anorexigenic effects,
other serotonin receptors may promote feeding. Two of these,
5HT1AR and 5HT2BR have recently been reported to exert such
effects via mechanisms involving POMC neurons. Early indica-
tions of orexigenic function came from studies using 5HT1AR
agonists and antagonists. Agonists of 5HT1AR produced hyper-
phagia while antagonists produced hypophagia (Gilbert et al.,
1988; Neill and Cooper, 1988; Moreau et al., 1992). Because
5HT1AR is known to play a prominent role as an inhibitory
autoreceptor on serotonergic neurons, these orexigenic effects
had been widely attributed to the inhibition of serotonin release.
This interpretation has been complicated by a recent study uti-
lizing a POMC-specific knockout of 5HT1AR. This study pre-
sented evidence that genetic mutation of 5HT1AR specifically
in POMC neurons reduced food intake leading to reduced body
weight at 6 months of age (Yadav et al., 2011). This group also
reported that a POMC-specific knockout 5HT2BR produced mild
hypophagia and a reduction in fat pad mass (Yadav et al., 2009).
These effects were attributed to receptors on POMC neurons in
the arcuate nucleus. However, POMC is also expressed periph-
erally, including in cardiomyocytes (Millington et al., 1999).
Constitutive mutation of the 5HT2BR resulted in decreased
survival and differentiation of cardiomyocytes and was associ-
ated with global developmental perturbations (Nebigil et al.,
2000). This raises the possibility that the absence of 5HT2BR
in peripheral POMC-expressing cells in the heart or elsewhere
could contribute to the reduction in body weight reported by
Yadav et al.

Like all 5HT2Rs, 5HT2BR is thought to be Gq-coupled and
therefore excitatory, while POMC neurons have a well-established
anorexigenic function (Kroeze et al., 2002). The mechanisms
through which 5HT2BRs on POMC neurons may produce orex-
igenic effects have not been established. Reports that 5HT1AR
and 5HT2BR on POMC neurons mediate orexigenic effects are
especially puzzling since a series of studies recently reported that
expression of 5HT2CR on POMC neurons has a critical anorexi-
genic function (Xu et al., 2008, 2010a). Whether and how multiple
types of serotonin receptors might be working at cross-purposes
in the same or different population of POMC neurons are open
questions which requires additional attention.

EXTRAHYPOTHALAMIC CENTRAL SEROTONIN
While substantial advances have been made in understanding
how serotonin modulates hypothalamic energy balance pathways,
there are additional central sites of serotonin action that also
warrant consideration. Early indications that serotonin recep-
tors in brainstem nuclei are important for energy balance arose
from studies demonstrating that mCPP and d-fenfluramine pro-
duced hypophagic effects when injected into the fourth ventricle
and that a 5HT2CR antagonist injected into the fourth ventricle
blocked hypophagia produced by systemic mCPP injection (Grill
et al., 1997; Kaplan et al., 1998). Furthermore, the effects of mCPP
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and d-fenfluramine were observed even in decerebrate rats, where
the direct control of feeding by hypothalamic or other forebrain
structures was not possible (Grill et al., 1997; Kaplan et al., 1998).

Within the brainstem, the PBN has particular relevance to
energy balance regulation. The PBN receives taste and visceral
inputs relayed through the NTS. Interestingly, it also has been
shown to receive serotonergic innervation from the dorsal raphe
(Petrov et al., 1992). This is unusual, since the vast major-
ity of projections from the dorsal raphe are to the forebrain.
Moreover, a substantial number of dorsal raphe neurons were
reported to send collateral projections to both the PBN and
the PVH in the hypothalamus (Petrov et al., 1992). Neurons of
the PBN express both 5HT2CR and 5HT1BR (Bruinvels et al.,
1993; Wright et al., 1995). 5HT1BR agonists infused directly
into the PBN were found to produce hypophagia, while antag-
onists attenuated systemic d-fenfluramine-induced hypophagia
(Simansky and Nicklous, 2002). Findings such as these indicate
that a complete understanding of the serotonergic regulation of
energy balance must take into account the functions of brainstem
serotonergic circuits.

Another extra-hypothalamic effect of serotonin occurs
through the 5HT6 receptor, which is expressed most abundantly
in the striatum (Ruat et al., 1993; Ward et al., 1995). Systemic
administration 5HT6R antagonists produced hypophagia
(Woolley et al., 2001; Perez-Garcia and Meneses, 2005; Heal et al.,
2008). Hypophagia also occurred as a result of inactivation of
5HT6R by anti-sense oligonucleotides (Woolley et al., 2001).
While genetic nulls of 5HT6R did not exhibit abnormal food
consumption on standard chow (Bonasera et al., 2006), they
seemed to be resistant to diet-induced obesity when fed a high-fat
diet (Frassetto et al., 2008). Taken together, these results indicate
that like 5HT1AR and 5HT2BR, 5HT6R signaling produces
orexigenic behavior. This again highlights the complexity of
serotonergic regulation of energy balance.

FACTORS AFFECTING CENTRAL SEROTONIN SYNTHESIS
AND RELEASE
A full understanding of the serotonergic regulation of energy bal-
ance requires not only an appreciation of mechanisms through
which serotonin-responsive central circuits influence physiologi-
cal and behavioral determinants of energy balance; it also requires
elucidation of the manner in which central serotonergic pathways
respond to the organism’s nutritional status, circulating nutrients,
energy balance hormones, and environmental stimuli.

Serotonin is synthesized from the amino acid tryptophan,
which is acquired from the diet, in a two-step process. The rate-
limiting step is catalyzed by one of two TPH enzymes, TPH1,
which acts exclusively in the periphery, and TPH2, which is
expressed primarily in the brain (Fitzpatrick, 1999; Walther et al.,
2003; Sakowski et al., 2006). In the CNS, excess serotonin is
cleared from the synapse by reuptake into presynaptic terminals
via SERT. As serotonin does not cross the blood-brain barrier,
central and peripheral serotonin form two distinct pools (Woolley
and Shaw, 1954; Merritt et al., 1978). In the brain, serotonin syn-
thesis has been demonstrated to depend on the availability of
circulating tryptophan, which is transported across the blood-
brain barrier by the L-type amino acid transporter (Fernstrom

and Wurtman, 1971; Fernstrom, 2012). Administration of a
tryptophan-free diet resulted in a rapid decrease in brain sero-
tonin (Reilly et al., 1997). Conversely, systemic administration
of tryptophan increased levels of serotonin and its metabolite
5-HIAA in the brain (Fernstrom and Wurtman, 1971; Schwartz
et al., 1990b; Esteban et al., 2004) and also decreased food intake
(Morris et al., 1987).

Hypothalamic serotonin is reportedly increased by feeding
and decreased by food-restriction (Schwartz et al., 1989, 1990a;
Haider and Haleem, 2000). Interestingly though, one study found
that when fasted rats were exposed to the sight and smell of food,
hypothalamic serotonin concentrations rose to near-maximal lev-
els even before consumption began (Schwartz et al., 1990a) That
serotonin levels increased in anticipation of feeding as well as in
response to food, indicated that serotonin release in the hypotha-
lamus is not simply a reflection of tryptophan intake during
a meal.

A more complex model to explain the relationship between
circulating tryptophan and central serotonin has also been pro-
posed. In this scheme, brain serotonin synthesis is dependent
not only on levels of circulating tryptophan, but also on levels
of other long neutral amino acids (LNAA) that compete with
tryptophan for transport into the brain. High tryptophan:LNAA
ratios promote central serotonin synthesis, while low trypto-
phan:LNAA ratios have the opposite effect. Protein-rich meals
have been shown to decrease this ratio, while carbohydrate-rich
meals increased it, presumably by stimulating insulin release,
which in turn promoted absorption of LNAAs by peripheral tis-
sues (Lyons and Truswell, 1988). This mechanism may account
for differences in brain serotonin levels measured after consump-
tion of either a high-protein or high-carbohydrate diet (Schweiger
et al., 1989). While the utility of such a regulatory mechanism is
not clear, one model suggests that hypothalamic serotonin may
serve as a feedback sensor to maintain a consistent balance of
macronutrients in the diet (Leibowitz and Alexander, 1998).

LEPTIN AND SEROTONIN
Leptin is an adipocyte hormone known to play a key role in
the regulation of energy balance. Circulating leptin levels are
well-correlated with levels of adiposity and are believed to pro-
vide the CNS with an important indication of body fat stores
(Frederich et al., 1995; Considine et al., 1996). Null mutation
of the leptin gene (Ob) produced significant hyperphagia and
severe obesity (Pelleymounter et al., 1995; Chua et al., 1996).
Leptin signals through several different receptor isoforms, and in
the CNS, the long-form LEPRb predominates (Chua et al., 1996;
Elmquist et al., 1998). While leptin does act in the periphery,
its actions within the brain are believed to be particularly crit-
ical in regulating energy balance (de Luca et al., 2005). LEPRb
is expressed in many regions of the brain, and particularly high
levels of expression are found in the arcuate, DMH, and VMH
(Elmquist et al., 1998), including several populations of neurons
that also express serotonin receptors. In the arcuate, LEPRb is
expressed in both POMC and AgRP neurons, where they produce
the opposite effects, stimulating POMC neurons and inhibiting
AgRP neurons (Elias et al., 1999; Cowley et al., 2001). Like sero-
tonin acting through 5HT2CR and 5HT1BR, therefore, leptin is
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able to stimulate melanocortin signaling by two parallel pathways.
Selective elimination of LEPRb on either POMC or AgRP neurons
produced a mild obesity phenotype (Balthasar et al., 2004; van
de Wall et al., 2008). Interestingly, selective elimination of LEPRb
in the steroid factor 1 (SF1)-expressing neurons of the VMH
also produced an obesity phenotype, with a cumulative effect in
mice lacking LEPRb in both SF1 and POMC neurons, indicating
that these may represent distinct parallel pathways (Dhillon et al.,
2006; Kim et al., 2011b).

Given their presumably disparate roles in reflecting short-term
satiety (serotonin) vs. long-term energy stores (leptin), it has been
proposed that serotonin and leptin might represent indepen-
dent energy-balance systems that integrate in the hypothalamus
(Halford and Blundell, 2000). In support of separate but coor-
dinated action of serotonin and leptin, the obesity phenotype
of leptin-overexpressing mice on a high-fat diet was exacerbated
in the absence of 5HT2CR (Wang and Chehab, 2006). Since
5HT2CR is expressed on both POMC and SF1 neurons (Heisler
et al., 2003; Yadav et al., 2009), these represent two potential
sites where serotonin and leptin signaling might be integrated.
Interestingly, though, a recent study of POMC neurons in the
arcuate found that 5HT2CR and LEPRb were expressed on sep-
arate populations of POMC neurons, indicating that integration
may occur elsewhere (Sohn et al., 2011).

Some recent studies provide evidence that a complex interplay
may occur between these two systems. One study examining the
impact of combined Htr2c null and ob/ob leptin null mutations
revealed a synergistic effect on glucose regulation, indicated by a
marked exacerbation of the diabetes phenotype characteristic of
the ob/ob genotype (Wade et al., 2008). Early indications that lep-
tin might have a direct effect on serotonin function arose from
several histological studies demonstrating that long-form leptin
receptor (LEPRb) is expressed in neurons of the raphe nuclei
(Elmquist et al., 1998; Mercer et al., 1998; Shioda et al., 1998)
where it co-localizes with SERT, a marker of serotonin-producing
neurons in the raphe (Collin et al., 2000; Finn et al., 2001).
Furthermore, serotonergic neurons of the dorsal raphe have been
shown to take up a labeled leptin analog infused into the lateral
ventricle, a phenomenon indicative of LEPRb binding and inter-
nalization (Fernandez-Galaz et al., 2002). However, a compre-
hensive analysis of leptin receptor co-localization with serotonin
using multiple histochemical techniques including independently
generated LepRb reporter mice failed to detect any co-localization
with serotonin (Lam et al., 2011).

Evidence for a functional interaction between serotonin and
leptin arose from studies demonstrating that central or peripheral
leptin administration altered serotonin levels in the brainstem
and hypothalamus (Harris et al., 1998; Calapai et al., 1999)
Studies by Yamada et al. provided interesting evidence for reg-
ulation in the reciprocal direction; treatment with the serotonin
precursor 5HTP increased circulating leptin levels (Yamada et al.,
1999, 2006). It is unclear whether this effect is mediated by cen-
tral or peripheral serotonin, as peripheral 5HTP administration
affects both. In support of serotonin enhancing leptin levels,
SERT null mice, which exhibit globally increased extracellular
serotonin levels, have increased serum leptin levels (Chen et al.,
2012). Treatment with the TPH2 inhibitor PCPA, which reduces

serotonin synthesis and release, increased uptake of leptin in
both the hypothalamus and brainstem, providing evidence that
serotonin not only regulates leptin release, but also its uptake
into the brain (Fernandez-Galaz et al., 2010). Another study
by Yamada et al. demonstrated that serotonin may be required
for some leptin-mediated influences on energy-balance; PCPA
treatment abolished a decrease in refeeding caused by an i.p.
leptin injection in fasted mice (Yamada et al., 2003), although
this was not replicated in another study which demonstrated
that significant serotonin depletion with PCPA had no effect on
leptin-induced hypophagia (Lam et al., 2011). This effect was
recapitulated by treatment with a 5HT2B/2C receptor antago-
nist, although not by either 5HT2AR or 5HT1BR antagonists,
indicating that either 5HT2BR or 5HT2CR are required for
leptin-induced anorexia.

A model in which leptin actions are mediated through sero-
tonergic circuits has recently been proposed by Yadav et al. (2009,
2011). They propose that leptin-mediated suppression of feeding
occurs via inhibition of raphe serotonergic neurons. The central
experiment of this study utilized a transgenic strategy to elim-
inate LEPRb specifically in SERT-expressing cells. This manip-
ulation increased food intake, body weight, and body fat and
decreased energy expenditure and bone mass (Yadav et al., 2009).
Additionally, these mice exhibited reduced hypothalamic expres-
sion of anorexigenic melanocortin genes MC4R and POMC and
increased expression or orexigenic NPY and AgRP, indicating
downregulation of the melanocortin system (Yadav et al., 2009).
The degree of perturbation of feeding, body weight, adiposity,
metabolism, and gene expression in SERT-specific LEPRb null
mice was virtually indistinguishable from ob/ob leptin null mice,
and POMC- or SF1-specific LEPRb null mice did not display sig-
nificant alterations in any of these parameters (Yadav et al., 2009).
Furthermore, the authors demonstrated that a homozygous (or
even a heterozygous) TPH2 null mutation rescued the perturbed
feeding and metabolism of leptin null mice (Yadav et al., 2009).

These results conflict with the prevailing notion that leptin
exerts its effects on energy balance predominantly through other
neuronal populations including POMC neurons of the arcu-
ate (Balthasar et al., 2004; Coppari et al., 2005; van de Wall
et al., 2008) and SF1 neurons of the VMH (Dhillon et al., 2006).
Consistent with the prevailing notion, a subsequent paper by Lam
et al. found that serotonergic neurons in the dorsal raphe neither
expressed LEPRb nor were sensitive to leptin, and that depletion
of central serotonin with PCPA did not interfere with leptin-
induced hypophagia. Furthermore, they reported that, in their
hands, SERT-specific LEPRb null mice had no changes in body
weight or adiposity (Lam et al., 2011).

In response to concern that the SERT-driver mouse might
have produced inactivation of LEPRb outside the serotonergic
neurons of the brainstem, a follow-up study by Yadav et al. uti-
lized a tamoxifen-inducible TPH2-driver (Yadav et al., 2011). This
allowed inducible inactivation of LEPRb is adult mice, obviat-
ing concerns regarding developmental effects in non-serotonergic
neurons. A similar phenotype was observed: inducible TPH2-
specific LEPRb null mice displayed increased body weight, fat
pad weight, food intake, and decreased metabolic rate, dark-
cycle locomotor activity, and hypothalamic expression of MC4R
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and POMC (Yadav et al., 2011). However, in the absence of
independent confirmation, these results remain controversial.

GHRELIN AND SEROTONIN
Ghrelin is a gastric hormone that is secreted during periods of
fasting, and its levels fall after food intake (Kojima et al., 1999;
Date et al., 2000; Tschop et al., 2000). Ghrelin treatment has
been shown to increase food intake and chronic administra-
tion to result in obesity (Tschop et al., 2000; Wren et al., 2000).
Interestingly, there is also evidence that ghrelin is synthesized
in a small population of neurons in the arcuate nucleus (Lu
et al., 2002; Cowley et al., 2003). The function of hypothala-
mic ghrelin synthesis is not clear. Peripheral ghrelin crosses the
blood-brain barrier, and the arcuate nucleus appears to be an
important site for its action. Ghrelin receptors (growth hormone
secretagogue receptor, GHSR) are expressed on AgRP neurons,
where they mediate excitatory effects (Willesen et al., 1999; Wang
et al., 2002). Accordingly, central ghrelin administration activated
AgRP neurons and inhibited POMC neurons (Cowley et al., 2003;
Riediger et al., 2003). Furthermore, knockout of either MC3R
and MC4R or NPY and AgRP produced significant attenuation
of the orexigenic effects of peripheral ghrelin (Chen et al., 2004),
while ablation of AgRP neurons completely eliminates the effects
of ghrelin (Bewick et al., 2005). Ghrelin and serotonin signals
appear to produce opposing effects in arcuate nucleus neuronal
populations.

Evidence also exists indicating that serotonergic signaling may
impact ghrelin release. Both fenfluramine and mCPP decreased
plasma active ghrelin levels without altering hypothalamic ghre-
lin gene expression (Nonogaki et al., 2006). Subsequent work
has demonstrated that fenfluramine alters gut motility through a
ghrelin-dependent mechanism, inducing motility patterns char-
acteristic of a fed state in fasted rats (Fujitsuka et al., 2009).
Furthermore, these effects were shown to be dependent on
5HT2CR but not on MC4R. The authors proposed a model
in which 5HT2CR activation decreases gut motility by inhibit-
ing ghrelin release, presumably through descending sympathetic
input to the stomach (Fujitsuka et al., 2009). Since serotonin
acting in the hypothalamus has been demonstrated to stimu-
late growth hormone (GH) release from the pituitary (Vijayan
et al., 1978; Willoughby et al., 1987), and GH is known to down-
regulate production of stomach ghrelin (Nonogaki, 2008), it is
also possible that serotonin decreases circulating ghrelin by stim-
ulating GH release. However, another study utilizing hypothala-
mus explants found that mCPP decreased ghrelin secretion from
the hypothalamus itself (Yakabi et al., 2010). There is also evi-
dence that ghrelin can influence serotonin release in both the
hypothalamus and hippocampus (Brunetti et al., 2002; Ghersi
et al., 2011).

INSULIN AND SEROTONIN
Insulin is secreted by the β-cells of the pancreas in response to
rising blood glucose levels and it promotes glucose uptake and
utilization by peripheral tissues. However insulin also acts in the
brain, where it has effects on glucoregulation and energy bal-
ance (Woods et al., 1979; Konner et al., 2007; Hill et al., 2010).
In the brain, insulin has been shown to act as an anorexigenic

hormone: ICV infusion produced hypophagia and weight loss,
while a CNS-specific insulin receptor knockout mouse line exhib-
ited obesity (Woods et al., 1979; Bruning et al., 2000). Insulin
and serotonin receptors co-localize in several key nuclei of the
hypothalamus. Of particular interest, insulin has been demon-
strated to act directly on both POMC and AgRP neurons of
the arcuate (Konner et al., 2007; Hill et al., 2010). Interestingly,
leptin- and insulin-responsive POMC neurons reportedly repre-
sent two distinct populations (Williams et al., 2010), and the same
has been reported for leptin- and serotonin-responsive neurons
(Sohn et al., 2011). It is not yet clear whether 5HT2CR cells are
also insulin-responsive. Insulin receptor activation may inhibit
the function of 5HT2CR intracellularly in cells expressing both
receptors. This has been demonstrated in choroid plexus cells to
occur via MAP kinase inactivation of 5HT2CR (Hurley et al.,
2003). It is possible that a similar mechanism exists within POMC
neurons.

Several lines of evidence now indicate that serotonin and
insulin are not merely parallel activators of melanocortin circuits,
but that there is an interaction between the two systems. For
example, systemic administration of 5HT2CR agonists decreased
serum insulin at doses that did not impact food intake or body
weight (Zhou et al., 2007). This effect was demonstrated to
occur via an MC4R dependent-mechanism. Additionally, Orosco
et al. reported that an infusion of fenfluramine directly into the
hypothalamus increased hypothalamic extracellular insulin lev-
els (Orosco et al., 2000). In support of a more general effect,
systemic dexfenfluramine treatment increased serum insulin lev-
els (Papazoglou et al., 2012). SERT-deficient mice have increased
serum insulin as well as increased pancreatic islet cell density
and other morphological changes indicative of increased insulin
production (Chen et al., 2012).

OREXIN AND SEROTONIN
Orexin neurons are located in the lateral hypothalamus and
project widely throughout the brain. Serotonergic neurons of
the dorsal raphe nucleus express orexin receptors (Marcus et al.,
2001; Wang et al., 2005). Serotonergic raphe neurons receive
a particularly dense innervation from orexin neurons (Peyron
et al., 1998; Nambu et al., 1999; Brown et al., 2002). Moreover,
serotonergic neurons were found to be stimulated by orexin
administration in a raphe slice preparation (Brown et al., 2002;
Liu et al., 2002). However, this effect may not have occurred
solely through direct activation of orexin receptors on serotonin
neurons. Another study has shown that orexin inhibited excita-
tory glutamatergic input to dorsal raphe serotonin neurons via
a retrograde endocannabinoid signal (Haj-Dahmane and Shen,
2005). Behavioral effects produced by orexin administration were
blocked by 5HT2AR and 5HT2CR antagonists (Duxon et al.,
2001; Matsuzaki et al., 2002), raising the possibility that seroton-
ergic systems contribute to the behavioral actions of orexin.

There is also evidence that serotonin systems can directly
impact the function of orexin neurons. Orexin neurons in the
lateral hypothalamus express 5HT1A receptors and serotoner-
gic nerve terminals are in close apposition to orexin neurons
(Muraki et al., 2004). Additionally, administration of serotonin
and 5HT1AR agonists inhibited orexin neurons (Muraki et al.,
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2004). Functionally, mice lacking orexin neurons did not exhibit
5HT1AR antagonist-induced hyperlocomotion (Muraki et al.,
2004). Another study found that impaired expression of both
orexin and POMC by RNA interference abolished the hypopha-
gia produced by mCPP treatment, while reduced expression of
either gene alone had no effect (Nonogaki and Kaji, 2010). Taken
together, these results indicate that orexin neurons may play a
role in mediating the anorexigenic effects of 5HT2CR or 5HT1BR
stimulation, as well as the hyperlocomotor effects of 5HT1AR
activation.

PERIPHERAL SEROTONIN
In mammals, the vast majority of serotonin resides not in the
brain, but in the periphery (Erspamer, 1966). In contrast to the
CNS, where serotonin is synthesized only by a small number of
neurons in a few discrete nuclei, peripheral serotonin is produced
by both neurons and non-neuronal cells in a wide variety of tis-
sues. However, by far the largest quantity of serotonin resides
within the gut, in specialized endocrine cells, called enterocro-
maffin cells that synthesize and store large quantities of serotonin
(Erspamer, 1966). Serotonin release by these cells is stimulated
by the presence of food and in turn, serotonin stimulates gut
motility (Racke et al., 1996; Fujimiya et al., 1997; Kidd et al.,
2008). This circuit is therefore critical for proper absorption of
nutrients.

Enterochromaffin cells are found in the enteric epithelium
throughout the length of the digestive track (Erspamer, 1966).
These cells release moderate levels of serotonin constitutively and
large quantities in response to various relevant factors includ-
ing decreased pH and mechanical pressure (Racke et al., 1996;
Fujimiya et al., 1997). Serotonin is released primarily into the
underlying connective tissue layer of the mucosa, which is inner-
vated by nerve terminals of the primary sensory neurons of the
enteric nervous system. From there, high concentrations of sero-
tonin spill over into both the circulatory system and the intestinal
lumen (Gronstad et al., 1985; Nilsson et al., 1987; Fujimiya et al.,
1997; Bearcroft et al., 1998). Furthermore, it has been demon-
strated that SERT is widely expressed on enteric epithelial cells,
allowing them to clear excess serotonin, preventing 5HTR desen-
sitization (Wade et al., 1996; Chen et al., 1998). Mice lacking
functional SERT have excessive gut motility and gastrointestinal
dysfunction (Chen et al., 2001).

The primary sensory neurons of the enteric submucosa are
cholinergic and their function is required for the proper peri-
staltic and secretory responses to food (Cooke et al., 1997; Pan
and Gershon, 2000). Their dendritic terminals extend into the
mucosa and respond to serotonin via an as yet unidentified recep-
tor, known as 5HT1P (Branchek et al., 1988; Wade et al., 1991).
These neurons synapse onto cholinergic interneurons within the
myenteric plexus, which in turn synapse onto excitatory and
inhibitory motor neurons, causing rhythmic peristalsis (Grider
et al., 1996). Presynaptic 5HT4R receptors at both of these
synapses enhance neurotransmitter release (Pan and Galligan,
1994; Galligan et al., 2003). Stimulation of 5HT1P seems to be
important in initiating peristalsis in response to a food bolus,
while 5HT4R is involved in maintaining peristalsis once it has
begun (Grider et al., 1996; Gershon, 2004, 2005). There is also

evidence for serotonin causing smooth muscle contraction in the
stomach fundus via 5HT2BR located directly on smooth muscle
cells (Kursar et al., 1994; Depoortere et al., 2006).

5HT3 receptors are expressed on nerve terminals of vagal affer-
ents located in the gastrointestinal track, where they respond to
serotonin released by enterochromaffin cells (Glatzle et al., 2002;
Raybould et al., 2003). These afferents mediate sensations of gas-
tric discomfort and nausea, and 5HT3R antagonists are effective
anti-emetic drugs (Gershon, 2004, 2005). Some of these vagal
afferents make connections with regions of the brain important to
energy balance. Serotonin release resulting from gastric distension
led to increased neuronal activity in regions including the NTS
and PVH (Mazda et al., 2004). This effect was blocked by either
truncal vagotomy or peripheral (but not central) administration
of a 5HT3R antagonist (Mazda et al., 2004).

Some serotonin released by enterochromaffin cells is absorbed
into the circulation by capillaries in the enteric submucosa, where
it enters the blood stream (Tamir et al., 1985; Bearcroft et al.,
1998). This serves as the primary source of circulating serotonin
(Bertaccini, 1960) and levels of plasma serotonin increase after
a meal (Bearcroft et al., 1998; Houghton et al., 2003). In the
blood, serotonin is taken up by platelets, which express SERT
(Tamir et al., 1985; Ni and Watts, 2006). Serotonin stored in
platelets serves as an important reservoir for peripheral sero-
tonin. The inability of serotonin to cross the blood-brain barrier
limits the ability of circulating serotonin fluctuation to impact
energy balance circuits in the CNS (Woolley and Shaw, 1954;
Merritt et al., 1978). However, circulating serotonin acting in the
periphery has many important functions, some of which relate
to energy balance. Like central infusion of serotonin, periph-
eral administration of serotonin decreased food consumption
and accelerated satiety (Fletcher and Burton, 1986; Edwards and
Stevens, 1991).

Circulating serotonin has also been shown to have complex
effects on peripheral glucose regulation. Peripheral serotonin
seems to impact glucoregulation via at least two discrete appar-
ently opposing mechanisms. Peripheral serotonin administration
has been found in some studies to increase, and in others to
decrease circulating blood glucose levels, with the discrepancy
possibly depending on dose, route, or other conditions (Yamada
et al., 1989, 1995; Sugimoto et al., 1990). Serotonin-induced
hyperglycemia is likely due to inhibition of glucose uptake by
the liver and muscle tissue (Hajduch et al., 1999; Moore et al.,
2005). Conversely, peripheral serotonin also produced hyperin-
sulinemia, an action promoting reduction of glucose levels. This
effect presumably occurs via stimulation of pancreatic β-cells by
serotonin. β-cells actually synthesize and store serotonin (Ekholm
et al., 1971) and recent evidence indicated that an interesting
mechanism may at least partially underlie regulation of insulin
release by serotonin. Serotonin in β-cells has been reported to
act intracellularly via a 5HTR-independent mechanism, whereby
serotonin directly binds to and activates small GTPase molecules
to stimulate insulin secretion (Paulmann et al., 2009).

In addition, circulating serotonin influences lipid metabolism.
Peripheral administration of serotonin accelerated lipid
metabolism, decreasing circulating levels of triglycerides,
fatty acids, and cholesterol (Watanabe et al., 2010). This has been
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attributed to increased release and turnover of bile acid (Bogach
and Liashchenko, 1976; Watanabe et al., 2010). Functional rele-
vance is lent to this finding by another recent study showing that
blood serotonin was substantially elevated in diet-induced obese
mice (Kim et al., 2011a).

CONCLUSION
In conclusion, the extent to which central and peripheral sero-
tonin signaling pervasively impact the regulation of energy bal-
ance is quite remarkable. It is challenging to identify central
or peripheral neural mechanisms of energy balance regulation
that are NOT sensitive to serotonergic modulation. The use of
mouse genetic models with cell-type-specific patterns of gene
inactivation is contributing substantially to rapid progress in
this field. The most extensively characterized of the serotonergic
influences on energy balance pathways relates to the modulation
of arcuate nucleus POMC and NPY/AgRP neuronal popula-
tions. Clearly, this has significant functional relevance. However,
the serotonergic innervation of additional hypothalamic regions
and the expression of multiple 5HTR subtypes in these regions

suggest that much remains to be learned regarding serotonergic
regulation of hypothalamic energy balance pathways other than
those originating the arcuate nucleus. Also important, but less
understood, are mechanisms through which serotonin systems
regulate energy balance pathways in caudal brainstem regions
such as the NTS and PBN. In addition to advances in understand-
ing how serotonergic inputs influence energy balance pathways,
new light is being shed on mechanisms through which energy
balance hormones influence the activity of serotonin systems. It
is also becoming clear that serotonergic influences on hypotha-
lamic energy balance pathways interact with those mediated by
leptin, ghrelin, and insulin. Evidence that serotonin systems can
influence circulating levels of these hormones indicates an addi-
tional level of complexity with regard to the interplay of these
signaling molecules in energy balance regulation. Finally, newly
uncovered roles for central and peripheral serotonin in the reg-
ulation of glucose homeostasis and lipid metabolism underscore
the pervasive involvement of serotonin signaling in the interplay
between central and peripheral mechanisms of energy balance
regulation.
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