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Age-related cognitive impairment has become one of the most common health threats
in many countries. The biological substrate of cognition is the interconnection of neurons
to form complex information processing networks. Experience-based alterations in the
activities of these information processing networks lead to neuroadaptation, which
is physically represented at the cellular level as synaptic plasticity. Although synaptic
plasticity is known to be affected by aging, the underlying molecular mechanisms
are not well described. Astrocytes, a glial cell type that is infrequently investigated
in cognitive science, have emerged as energy suppliers which are necessary for
meeting the abundant energy demand resulting from glutamatergic synaptic activity.
Moreover, the concerted action of an astrocyte-neuron metabolic shuttle is essential for
cognitive function; whereas, energetic incoordination between astrocytes and neurons
may contribute to cognitive impairment. Whether altered function of the astrocyte-
neuron metabolic shuttle links aging to reduced synaptic plasticity is unexplored.
However, accumulated evidence documents significant beneficial effects of long-term,
regular exercise on cognition and synaptic plasticity. Furthermore, exercise increases the
effectiveness of astrocyte-neuron metabolic shuttle by upregulation of astrocytic lactate
transporter levels. This review summarizes previous findings related to the neuronal
activity-dependent astrocyte-neuron metabolic shuttle. Moreover, we discuss how aging
and exercise may shape the astrocyte-neuron metabolic shuttle in cognition-associated
brain areas.

Keywords: lactate, monocarboxylate transporter, glutamate transporter, lactate dehydrogenase,
hydroxycarboxylic acid receptor

INTRODUCTION

Aging is an irreversible and inescapable process. Improving medical care and falling fertility
rates are resulting in population aging worldwide. According to a report by the World
Health Organization, the number of people aged 65 or older is expected to grow from
an estimated 524 million in 2010 to nearly 1.5 billion in 2050, representing 16 percent of
world’s population. Consequently, aging-related dementia has become one of the greatest
health threats in many countries, with a worldwide cost in 2010 exceeding US$ 600 billion,
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according to Alzheimer’s disease (AD) International. Memory
loss is one of the most daunting problems among the symptoms
of dementia. Learning and memory are the processes in which
external environmental information are encoded, stored and
retrieved. It is widely assumed that changing the strength of
connections between neurons is essential for encoding and
storing memory traces in the central nervous system (CNS)
(Martin et al., 2000). These alterations in properties of neuronal
transmission are termed synaptic plasticity. Activity-dependent
synaptic plasticity is induced at appropriate synapses during
learning andmemory processes, and is necessary for information
storage. Indeed, synaptic plasticity is known to be negatively
affected by aging, but the mechanisms underlying the association
between aging-relatedmemory deficits and synaptic plasticity are
relatively undescribed (Bishop et al., 2010).

Energy demand is dramatically increased during synaptic
transmission and activity-dependent synaptic plasticity.
Excitatory neurotransmitters are released from presynaptic
neurons into the synaptic cleft and stimulate postsynaptic
neurons by acting on postsynaptic receptors. Abundant
energy is needed in order to execute receptor-mediated signal
transduction, receptor trafficking, neurotransmitter synthesis,
vesicle filling, release, uptake and recycling (Khatri and
Man, 2013). Astrocytes, a glial cell type that is infrequently
investigated in cognitive science, have emerged as energy
suppliers which are necessary for meeting the ample energy
demand resulting from synaptic activity (Belanger et al.,
2011). Compared to neurons, astrocytes exhibit higher rates
of glycolysis, but lower rates of oxidative phosphorylation
(Itoh et al., 2003; Herrero-Mendez et al., 2009). Furthermore,
a large portion of glucose, the dominant and essential energy
source in the adult brain, which enters the glycolytic pathway
in astrocytes is released as lactate into the extracellular space
(Pellerin and Magistretti, 1994, 1997; Bouzier-Sore et al.,
2006). The astrocytic glucose-derived lactate is known to fill
the increased energy needs during synaptic transmission. The
transportation of lactate between astrocytes and neurons is
the so-called astrocyte-neuron lactate shuttle (ANLS). Correct
functioning of the ANLS is essential for the manifestation
of cognitive function; while poor energetic synchronization
between astrocytes and neurons may contribute to cognitive
impairment. However, the effect of aging on ANLS is largely
undescribed.

Long-term, regular physical exercise is widely known to
produce effects which combat various pathological conditions,
especially cardiovascular disease and metabolic abnormalities. In
past decades, numerous cohort studies have also documented
that exercise enhances cognitive function, and delays the onset
of aging-related dementia in humans (Fernández-Tomé et al.,
2004; Frizzo et al., 2004). Similarly, animal studies have provided
evidence for the protective role of exercise in memory deficits
during aging (Diamond, 2005; Tramontina et al., 2006; Zeng
et al., 2007). Moreover, exercise is known to affect functions
related to the ANLS, such as stimulation of lactate release and
oxidation in the brain (Overgaard et al., 2012) and elevation
of lactate and glucose transporter expression (Takimoto and
Hamada, 2014). These results suggest that sustained exercise

may be a potential strategy to prevent dementia and that
the ANLS may be involved in producing exercise-improved
memory function during aging. To explore this concept, this
review summarizes the known mechanisms which comprise
the astrocyte-neuron metabolic shuttle during neuronal activity
and how aging and exercise may help to shape the astrocyte-
neuron metabolic shuttle in brain areas associated with learning
and memory. We begin with a description of the ANLS and
its role in memory formation. Then, we discuss aging-induced
alterations of brain metabolism that may underlie memory
deficits, with a focus on the potential role of the ANLS. To begin
to understand whether regular exercise benefits aging-related
memory impairments by improving the metabolic functions, we
discuss how regular exercise regulates the ANLS functions. We
hope that the growing understanding of the molecular basis of
the ANLS and the interactions between exercise and aging in
the astrocyte-neuron metabolic shuttle will allow us to develop
strategies for treating and preventing aging-related memory
decline.

ASTROCYTE-NEURON LACTATE SHUTTLE

The brain is the most energy-demanding organ in human
body. It consumes 20% of the oxygen, 25% of glucose and
approximately 20% of the total ATP supply, yet comprises
only 2% of the total body mass (Attwell and Laughlin, 2001).
Although glial cells outnumber neurons by about tenfold,
almost 85% of the brain’s energy is consumed by neurons
(Khatri and Man, 2013). Neural activity is comprised of two
critical events, propagation of action potentials and synaptic
transmission. For many years, researchers have debated which
functions represent primary energy consuming processes in
neurons (Alle et al., 2009; Howarth et al., 2012). Recent
studies have demonstrated that the generation and spread
of action potentials are relatively efficient (Alle et al., 2009;
Howarth et al., 2012), and a large amount of energy is used
to support synaptic transmission. Neurotransmitter synthesis,
vesicle filling, release, uptake, and recycling, as well as the
postsynaptic receptor trafficking and further signal transduction
are all ATP consuming processes (Jolivet et al., 2009; Howarth
et al., 2012). It has been estimated that, in the cerebral
cortex about 50% of energy is used in the regulation of
postsynaptic glutamate receptors, 21% in action potentials, 20%
in maintaining resting potentials, 5% in presynaptic transmitter
release, and 4% in transmitter recycling (Attwell and Laughlin,
2001). In the cerebellum, 54% of energy is used in the
maintenance of resting potentials, 22% in regulating postsynaptic
receptors, and 17% in action potentials (Attwell and Laughlin,
2001).

To meet the energy demands for neuronal activation,
energy substrates must be delivered with precise spatiotemporal
coordination. In other words, the demand and supply of energy
need to be tightly coupled for the proper execution of brain
function (Petzold and Murthy, 2011; Zlokovic, 2011). It is
conventionally thought that the increases of neuronal activity
are accompanied by an increase of local blood flow and an
elevation of neuronal glucose consumption, the dominant and
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essential energy source in the adult brain. However, a series of
positron emission tomography (PET) studies suggested that this
may be an oversimplification of the tissue metabolic response.
In the mid-1980s, Fox and colleagues found that the neuronal
firing-dependent increases of brain blood flow and glucose
consumption exceeded the elevation in oxygen consumption
in awake, adult humans (Fox and Raichle, 1986; Fox et al.,
1988). Their findings implied that non-oxidative glycolysis is
also involved in producing energy after neuronal activation. This
conjecture was later supported by a study using 1H-nuclear
magnetic resonance (NMR) spectroscopy in healthy adults
which indicated that level of lactate, an end product of non-
oxidative glycolysis, increases with corresponding elevations
in brain activity (Figley and Stroman, 2011). Lactate was
formerly believed to be harmful to the brain; thus, its clearance
by cerebrospinal fluid circulation or glial cells was thought
to be necessary following neuronal activation. However, this
concept was challenged with identification of the lactate
oxidation complex in neurons, which allows lactate to enter
into mitochondria and promotes oxidation (Hashimoto et al.,
2008). It is now widely accepted that the lactate generated by
glycolysis can be used as an energy source by neurons during
neurotransmission.

Among the glial cells which support neuronal functions,
astrocytes have emerged as active players in brain energy
delivery, production, utilization, and storage (Belanger et al.,
2011). Astrocytes cooperate with neurons in energy metabolism
by preferentially utilizing complementary metabolic substrates.
To meet the high energy requirements imposed by cellular
function, neurons efficiently generate ATP primarily through
oxidative phosphorylation rather than relying on glycolysis (Itoh
et al., 2003). One major control point for glycolysis is activity
of phosphofructokinase-1 (PFK-1), which is strongly stimulated
by the metabolic product fructose-2,6-bisphosphate. It has been
reported that the enzyme 6-phosphofructose-2-kinase/fructose-
2,6- bisphosphatase-3 (Pfkfb3) which governs the generation of
fructose-2,6-bisphosphate is virtually absent in neurons due to
high turnover and efficient proteasomal degradation (Herrero-
Mendez et al., 2009). In contrast, astrocytes abundantly express
Pfkfb3 and exhibit relatively high levels of glycolysis due to the
allosteric activation of PFK-1 by fructose-2,6-bisphosphate (Itoh
et al., 2003; Herrero-Mendez et al., 2009). While a portion of
the pyruvate produced by astrocytic glycolysis is converted to
lactate and excreted, it is worth mentioning that the citric acid
cycle substantially contributes to ATP generation in astrocytes.
Recent NMR spectroscopy studies have reported that astrocytes
account for more than 20% of total oxidative metabolism in
the cerebrum of anesthetized rats (Patel et al., 2010; Duarte
et al., 2011; Duarte and Gruetter, 2013). Furthermore, by
virtue of their unique morphology and spatial distribution,
astrocytes govern the transport of energy substrates from the
capillary to neurons (Newington et al., 2013). The astrocytic
perivascular end-feet covering the cerebral vessels (Belanger and
Magistretti, 2009) structurally facilitate efficient glucose uptake
into the brain via the glucose transporter 1 (GLUT1), which is
expressed on both endothelial and astrocytic membrane surfaces.
The astrocytic perisynaptic end-feet (Morgello et al., 1995;

Haber et al., 2006) enable the astrocytes to sense neighboring
synaptic activity and respond by signaling for the appropriate
metabolic supply from the vascular system (Magistretti, 2011).
Moreover, astrocytes are the primary cells that store glucose
as glycogen, the major energy reserve in the brain (Vilchez
et al., 2007). Based on these distinguishing features, astrocytes
are able to closely communicate with surrounding neurons,
and provide energetic substrates to fill neuronal energy needs
with a precise spatiotemporal coordination. Furthermore, it
is known that the call for astrocytes to satisfy the high
energy requirements during neurotransmission is relayed by
neurotransmitters released from neighboring activated neurons
(Belanger et al., 2011).

The astrocyte-regulated reuptake of neurotransmitters plays
a critical role in balancing neuronal excitatory/inhibitory tones
and terminating neuronal activation (Muthukumar et al., 2014).
In most brain areas, synaptic activity is mediated by glutamate,
which is depleted from the synaptic cleft by uptake via the
astrocytic excitatory amino acid transporter 1 and 2 (EAAT
1 and 2) or the neuronal EAAT3 (Rothstein et al., 1996;
Bergles and Jahr, 1998). In astrocytes, the actions of EAATs
function as a sensor to monitor the activity of surrounding
glutamatergic neurons and as a switch to turn on the ANLS.
Glutamate transport via EAATs is powered by the sodium
gradient across the membrane. EAATs co-transport three Na+

ions and one H+ ion, but anti-transport one K+ ion, while
taking up one glutamate molecule in a complete cycle of
glutamate transport (Zerangue and Kavanaugh, 1996). In order
to counter this glutamate transport-induced perturbation of
ion homeostasis, the workload of Na+/K+ ATPase increases
and significant amounts of ATP are consumed (Khatri and
Man, 2013). The subsequent energy insufficiency triggers
glycolysis to produce ATP by converting glucose into pyruvate
and then to lactate by lactate dehydrogenase 5 (LDH5) in
astrocytes. Lactate is then pumped out from astrocytes into the
extracellular space via monocarboxylate transporters 1 and 4
(MCT1 and 4), and is taken up by neurons via monocarboxylate
transporters (MCT2). After neuronal uptake, the lactate is
further transported into the mitochondria via MCT1 and 2
located on the mitochondrial inner membrane and converted
into pyruvate by LDH1, after which it may enter the citric
acid cycle (Schousboe et al., 1997; Waagepetersen et al.,
2000; Chih and Roberts, 2003; Hashimoto et al., 2008; Kane,
2014).

The oxidation of lactate to pyruvate within the neuronal
mitochondria is coupled to NAD+ reduction. Therefore,
increased oxidation of lactate within the mitochondria may
enhance oxidative phosphorylation by providing additional
NADH for the electron transport chain. Moreover, lactate
produced in one astrocyte may diffuse to adjacent astrocytes
via gap junctions (i.e., connexin 30 and 43, which link
neighboring astrocytes) to build an astrocyte metabolic network
(Rouach et al., 2008; Escartin and Rouach, 2013). The astrocyte
metabolic network may enhance the spatial efficiency of
the energy substrate shuttle between astrocytes and neurons.
In summary, glutamate release from activated glutamatergic
neurons instructs the surrounding astrocytes to provide lactate as
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energy source to fulfil high energy requirements during synaptic
activity.

The ANLS hypothesis does not exclude direct glucose
uptake and oxidation by neurons. However, it suggests that
astrocyte-produced lactate is an important energetic substrate
for neurons, especially in response to glutamatergic activity.
By measuring glucose uptake and phosphorylation using
glucose analog, 2-fluoro-2-deoxy-D-glucose, Patel et al. (2014)
found that enhancing neuronal activity by treating rats with
bicuculline, a competitive antagonist of GABAA receptors,
increased the level of glucose phosphorylation in isolated brain
nerve terminals. This study demonstrated that glucose-derived
pyruvate may provide a major oxidative energy source for
activated neurons. Their findings were later supported by
Lundgaard et al. (2015) who used two-photon imaging of
a near-infrared 2-deoxyglucose analog (2DG-IR) to monitor
glucose transport in brain and found that 2DG-IR was taken
up preferentially by neurons in awake mice, and that sensory
stimulation induced a sharp increase of 2DG-IR uptake in
neurons. Furthermore, hexokinase was highly enriched in
neurons compared with astrocytes in both mouse and human
cortices. The relative contribution of glucose and lactate as
neuronal energetic substrates was also evaluated. In order to
do so, Hyder et al. (2006) summarized a series of 13C NMR
reports, which simultaneously measured the in vivo rate of total
glutamate-glutamine cycling and neuronal glucose oxidation.
The authors concluded that when the neuronal metabolic
rate of glucose oxidation is 1.00 µmol/g/min, 0.31 glucose
equivalents are derived from glucose directly taken up by
neurons, while the other 0.69 glucose equivalents are provided
by astrocyte-derived lactate (for detailed review, see Hyder et al.,
2006).

Dissimilar to the interaction between astrocytes and
glutamatergic neurons, the ANLS is not reported to be
effectively activated by gamma-aminobutyric acid (GABA)
transmission, the primary inhibitory system in the brain. GABA
released into the synaptic cleft is removed by astrocytes via
Na+/Cl−-dependent GABA transporters (Gadea and López-
Colomé, 2001). In 2003, Pellerin and colleagues, who were
the first to demonstrate that glutamate uptake stimulates the
ANLS in mouse astrocytes, showed that GABA uptake into
astrocytes did not trigger enhancement of astrocytic glycolysis
and lactate release, possibly due to the insignificant metabolic
cost of GABA uptake into astrocytes (Chatton et al., 2003).
They found that GABA uptake in primary cortical astrocytes
was achieved by co-transporting Na+ into the cells, but the
increased intracellular Na+ level was not sufficient to trigger
enhanced glycolysis in astrocytes. These results suggested that
the Na+ influx induced by GABA uptake did not significantly
disturb the ion homeostasis in astrocytes. Hence, it was not
necessary for Na+/K+ ATPase to consume glycolysis-generated
ATP to restore the Na+ concentration gradient (Chatton et al.,
2003). In relation to learning and memory, glutamatergic
transmission is dominant in the memory-related regions, such
as the prefrontal cortex, amygdala and hippocampus. Therefore,
it can be expected that the ANLS may play a critical role in
memory processing.

ASTROCYTE-NEURON LACTATE SHUTTLE
AND MEMORY FORMATION

Because activity-dependent synaptic plasticity is involved in the
formation of memory, it is reasonable to assume that the ANLS
affects learning and memory by supporting synaptic plasticity
(Newington et al., 2013; Yang et al., 2014). Indeed, it has been
recently demonstrated that astrocyte-neuron lactate transport is
required for long-term memory formation (Suzuki et al., 2011).
As mentioned earlier, astrocytes are the principal cells that store
glucose as glycogen. Astrocytic glycogen represents a major
energy reserve in the brain during blood-glucose insufficiency
(Brown et al., 2004), and can be broken down into lactate by
glycogenolysis to fuel neuronal metabolism during neuronal
activation (Brown et al., 2004). Suzuki et al. (2011) took the
lead in demonstrating that lactate produced by glycogenolysis
in astrocytes is required for memory processing in rodents.
They found that learning led to a significant increase in
extracellular lactate levels. Inhibiting glycogenolysis by intra-
hippocampal injection of 1,4-dideoxy-1,4-imino-D-arabinitol
abolished the learning-induced lactate increase and impaired
long-term memory formation, but not the acquisition and short-
term memory associated with an inhibitory avoidance task
(Suzuki et al., 2011). They also showed that glycogen-derived
lactate was essential for the maintenance of hippocampal long-
term potentiation (LTP) elicited in vivo. Moreover, knockdown
of astrocytic MCT1 orMCT4 by antisense oligodeoxynucleotides
caused amnesia, which could be rescued by exogenous
administration of L-lactate, but not glucose. Likewise, disrupting
neuronal MCT2 also caused amnesia. However, the neuronal
MCT2 deficiency-induced amnesia was unaffected by either
L-lactate or glucose, suggesting that astrocyte-derived lactate
is necessary for the formation of long-term memory. These
findings were later supported by Newman et al. (2011) who
demonstrated that direct delivery of lactate into the ventral
hippocampus 5 min before testing improved scores on a 4-arm
delayed spontaneous alternation task in rats. These results
suggest that astrocyte-derived lactate is not only required for the
memory formation, but participates in the memory retrieval as
well.

Moreover, in order to form long-term memory, a series of
signaling cascades must be activated to drive gene expression,
protein synthesis, and the formation of new synaptic connections
(Kandel, 2001; Alberini, 2009). The cAMP response element
binding protein (CREB) is a nuclear protein that is thought to
be activated by phosphorylation and regulate the transcription
of proteins needed to stabilize the synaptic changes triggered
during the formation of long-term memory (Silva et al., 1998;
Nguyen, 2001; Lee and Silva, 2009). In 2001, Josselyn et al.
(2001) provided the first direct evidence that overexpression
of CREB in the mammalian brain enhances the formation
of long-term memory. They compared rats given the same
amount of fear conditioning training but presented in either
a spaced manner (with intervening rest intervals) or massed
training (with no or short intervening rest intervals) in producing
LTM. Those animals given massed training showed no or
weak memory formation in a fear-potentiated startle task.
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However, increasing CREB levels specifically in the basolateral
amygdala significantly increased long-termmemory after massed
training. Their results suggest that CREB activity in the
amygdala serves as a molecular switch for the formation
of long-term memory in fear conditioning (Josselyn et al.,
2001). Interestingly, the learning-dependent induction of CREB
phosphorylation is completely blocked by inhibiting astrocytic
glycogenolysis and rescued by lactate administration (Suzuki
et al., 2011). This finding implies that lactate functions as a
positive regulator of learning-dependent CREB phosphorylation.
CREB phosphorylation is known to be regulated by three
key pathways, i.e., the Ca2+- calcium calmodulin kinase
kinase-calcium calmodulin kinase IV (Ca2+-CaMKK-CaMKIV)
pathway, cyclic adenosine monophosphate-protein kinase A
(cAMP-PKA) pathway, and the mitogen-activated protein
kinase-ribosomal S6 kinase (MAPK-RSK) pathway (Lee and
Silva, 2009). Recently, it was reported that lactate could
promote neuronal expression of CREB-driven plasticity genes
via ionotropic glutamate receptor-mediated Ca2+ influx and
MAPK activity (Yang et al., 2014). Yang et al. (2014) showed
that L-lactate applied to the mouse primary cortical neurons
stimulated the expression of immediately early genes (IEGs),
including Arc, c-Fos and Zif268. However, the effect of L-lactate
on IEG expression was fully prevented in the presence of
an MCT inhibitor, suggesting that L-lactate induced IEG
expression after transport into neurons rather than by binding
to the cell surface receptors. Moreover, L-lactate increased
phosphorylation of the extracellular signal-regulated kinase
1/2 (Erk 1/2), a specific subset of the mammalian MAPK
family that is implicated in N-methyl-D-aspartate receptor
(NMDAR)-dependent neuronal plasticity (Giovannini, 2006;
Zhou et al., 2009). Importantly, in the presence of either
the NMDAR antagonists or Erk1/2 kinase inhibitors, the
L-lactate-increased IEG expression was significantly diminished.
This set of results clearly demonstrated that activation of the
NMDAR and downstream Erk1/2 signaling is required for
the observed L-lactate effects. They further demonstrated that
L-lactate potentiated NMDAR-dependent inward currents and
subsequently intracellular Ca2+ concentrations. It is known
that intracellular calcium activates Erk signaling (Schmitt et al.,
2004; Li et al., 2005) and IEG expression (Greenberg et al.,
1992). Thus, L-lactate potentially promoted IEG expression and
Erk1/2 phosphorylation by increasing NMDAR-mediated Ca2+

influx. As mentioned above, lactate oxidation to pyruvate in
neuronal mitochondria is accompanied by NAD+ reduction
to NADH. Consistent with this, the authors also found that
exposure of neurons to L-lactate increased the intracellular
NADH/NAD ratio. Furthermore, direct application of NADH
to primary neuronal cultures enhanced IEG expression, Erk1/2
phosphorylation and intracellular Ca2+ level, similar to the
effects of L-lactate. As expected, the NADH effects were
abolished by treating with the NMDAR antagonists. Taken
together, these results suggested that the increase of NADH
coincident with lactate oxidation in neuronal mitochondria
potentiated NMDA-mediated Ca2+ influx and enhanced IEG
expression. Intriguingly, the effects of L-lactate on IEG
expression was specific, in that equicaloric concentrations

of D-lactate, L-pyruvate and D-glucose did not affect IEG
expression levels (Yang et al., 2014). Besides participating
in the regulation of IEGs, L-lactate was also reported to
modulate the expression of the CREB-regulated neurotrophin,
brain-derived neurotrophic factor (BDNF; Coco et al., 2013).
BDNF belongs to a family of neurotrophic factors involved
in regulating the survival and differentiation of developing
neurons, as well as activity-dependent synaptic plasticity
(Huang and Reichardt, 2001; Bramham and Messaoudi, 2005).
According to the notion that activity-dependent synaptic
plasticity is essential for the memory formation, a great body
of evidence has suggested that BDNF plays a critical role
in the processes of learning and memory (Lu et al., 2008;
Kuczewski et al., 2010; Bekinschtein et al., 2014). Coco et al.
(2013) demonstrated that high level of lactate (5–25 mM
L-lactate) increased the expression and secretion of BDNF
in both a human neuroblastoma cell line, SH-SY5Y, and
primary human astrocytes. Overall, the accumulating findings
establish that lactate not only functions as a supplemental
energy source for neurons, but also as a signal transducing
molecule to alter the neuronal redox status and induce the
expression of plasticity-related genes. However, the specific role
for lactate in memory formation remains unclear. In future
investigations, it will be very interesting to elucidate the relative
importance of and relationship between lactate-derived energy
and lactate-induced gene expression in the processes of memory
formation.

ASTROCYTE-NEURON LACTATE SHUTTLE
AND AGING-RELATED MEMORY
IMPAIRMENT

Cognitive decline is emerging as one of the most difficult health
problems in the elderly population. Age alone increases the
risk of stroke, AD, and dementia (Bishop et al., 2010). Even
in the absence of overt disease symptom, increasing age is
associated with decreasing cognitive function of varying severity
in human beings. Fortunately, technical advances over the
past two decades, such as improved gene expression analysis
and functional brain imaging, have provided great insight into
the basic molecular mechanisms and the large-scale cognitive
networks of the aging human brain. Currently, it is well-
accepted that impairments in neuroplasticity (Burke and Barnes,
2006) and brain energy metabolism (Bishop et al., 2010),
two aspects in which lactate is highly involved, contribute to
aging-related cognitive decline. Regarding neuroplasticity, aging
is known to alter neuronal morphology, electrophysiological
properties and IEG expression (Bishop et al., 2010; Hartzell
et al., 2013). Compared to young subjects, reductions in
dendritic arborization were observed in the prefrontal cortex
of rats (Markham and Juraska, 2002) and human beings
(de Brabander et al., 1998; Uylings and de Brabander,
2002), and a decrease in spine density was found in the
hippocampal subiculum of monkeys (Uemura, 1985). Using
electrophysiological measurements, enhanced L-type Ca2+

channel conductance was reported in aged hippocampal CA1
pyramidal cells (Thibault and Landfield, 1996). This augmented
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Ca2+ conductance may potentially disturb Ca2+ homeostasis
in neurons and lead to plasticity deficits during aging
(Toescu et al., 2004). Moreover, the field excitatory postsynaptic
potential (fEPSP) recorded in the hippocampal CA1 (Landfield
et al., 1986; Barnes et al., 1992; Deupree et al., 1993)
and dentate gyrus (DG) is attenuated in the aged rats
(Barnes, 1979). With peri-threshold stimulation protocols,
impaired LTP inductions in the CA1 and DG (Moore
et al., 1993; Rosenzweig et al., 1997; Barnes et al., 2000;
Tombaugh et al., 2002) were detected in aged animals. It
is interesting to note that if LTP was induced by high-
frequency and high-current, the impaired LTP inductions in
performant path-granule cell synapses (Barnes, 1979; Diana
et al., 1994a,b) and CA3-CA1 Schaffer collateral synapses
(Landfield and Lynch, 1977; Landfield et al., 1978) of aged
rats became undetectable. Because expression and protein
synthesis from plasticity genes are required for the maintenance
of LTP, it is highly possible that aging may affect LTP
via these processes (Pfeiffer and Huber, 2006; Bishop et al.,
2010).

It has been reported that the phosphorylation of CREB,
one of the most important plasticity gene transcription factors,
is attenuated in the hippocampus but not in the prefrontal
cortex of aged animals (Xu et al., 2010; Paramanik and
Thakur, 2013). Thus, the aging effects on CREB function
may be region-specific. Additionally, dysregulation of CREB
phosphorylation after learning was also found in memory-
impaired aged rats (Kudo et al., 2005; Monti et al., 2005;
Countryman and Gold, 2007). This aging-related dysregulation
of CREB phosphorylation in the hippocampus has been linked
to an increase of L-type Ca2+ channel-mediated Ca2+ influx
(Foster and Kumar, 2002) and decreased levels of CaMKII,
CaMKIV and MAPK (Chung et al., 2002; Xu et al., 2010).
Moreover, the number of CREB-binding protein positive cells
was decreased in the hippocampus of the aged rats (Xu
et al., 2010). These findings suggest the possibility that the
CREB-dependent transcription is impaired in aged animals. In
accordance with this hypothesis, the mRNA levels of CREB-
induced IEGs were lower in memory-impaired aged rats than
in healthy young animals after LTP-induction (Lanahan et al.,
1997).

Aging is also known to affect brain metabolic status,
largely through the development of mitochondrial dysfunction
that is consistently observed in aged animals (Blalock et al.,
2003; Lu et al., 2004; Zahn et al., 2007; Yankner et al.,
2008). In addition to the progressive decline of mitochondrial
gene expression, three major components of mitochondrial
oxidative phosphorylation are dysregulated in the aged brain,
i.e., electron transfer capacity, the inner membrane H+ gradient
and H+-driven ATP synthesis (Ferrándiz et al., 1994; Navarro
and Boveris, 2004, 2007; Boveris and Navarro, 2008). These
mitochondrial impairments directly lead to an insufficient ATP
supply and increased oxidative stress in brain cells (Beckman
and Ames, 1998; Navarro and Boveris, 2007; Navarro et al.,
2008). Moreover, dysfunctional mitochondria also affect lactate
metabolism in the aged brain. In 2010, Ross et al. (2010)
demonstrated that a high level of brain lactate is a hallmark

of aging. They found that, in the brains of both normal
aging mice and premature aging mitochondrial DNA mutated
mice, dysfunctional mitochondria led to a metabolic shift
from erobic respiration to glycolysis related to an increased
ratio of LDH-A/LDH-B expression. This shift resulted in
robustly increased brain lactate levels. Although it remains
unclear that what kinds of cells generate the high level lactate
and abnormally express LDH subtypes, their results implied
that dysregulated LDH may perturb the conversion of lactate
to pyruvate in the neuronal mitochondria and thus cause
lactate accumulation in the aged brain. If the conversion
process is suppressed within neuronal mitochondria, lactate
loses the ability to supplement energy supply and induce the
expression of plasticity genes. Future investigations may test this
hypothesis and evaluate its relevance in aging-related memory
impairments.

Several components of the ANLS are known to be altered
in the memory-impaired aged brain. A decrease of GLUT1,
which is mainly expressed in endothelium and astrocytes,
was found in AD patients (Kalaria and Harik, 1989; Simpson
et al., 1994). This observation is consistent with the previous
18F-fluorodeoxyglucose-PET studies which have demonstrated
that AD patients have a symptom severity-correlated progressive
reduction of cerebral glucose metabolism (Mosconi et al.,
2004, 2005, 2008). Moreover, a decrease in brain LDH level
and activity was observed in elderly subjects with AD (Liguri
et al., 1990) or mild cognitive impairment (Reed et al., 2008).
These findings suggested that the ANLS may be impaired
in AD and mild cognitive impairment due to insufficient
lactate source (i.e., glucose) and dysfunctional catalyzing
enzymes (i.e., LDH). This opinion was later supported by
Merlini et al. (2011) in AD animals. They selected the ArcAβ

mice carrying mutant human amyloid precursor protein
(APP) as their AD model, and found that the AD mice
had decreased endothelial and astrocytic GLUT1expression
accompanied with a reduced baseline brain glucose level.
In primary astrocytes cultured from the ArcAβ mice, both
the expression of MCT1 and lactate release upon neuronal
stimulation were reduced. Moreover, it has been reported that
the expression of brain astrocytic EAATs, which initiate the
ANLS, are altered in both AD patients and animals. Among
the varied subtypes of EAATs, the EAAT2 is concentrated
in perisynaptic astrocytes which are responsible for 90% of
glutamate uptake in the adult mammalian CNS. In human
postmortem AD brain tissue, the expression of intact
EAAT2 is decreased in the brain regions susceptible to AD
pathology, but the level of a pathology-specific alternative
splice variant of EAAT2 is increased (Scott et al., 2011).
Reduced expression of the astrocytic EAAT1 and 2 was also
detected in the hippocampus and cortex of 8-month-old
APP23 mice (Schallier et al., 2011), another frequently used
AD transgenic model. Interestingly, these two major astrocytic
glutamate transporters were reported to be dysregulated
in tangle-bearing neurons in the AD patients (Scott et al.,
2002; Thai, 2002). The neurons with aberrant expression of
EAAT1 were concentrated in the cortical pyramidal layer
(Scott et al., 2002); however, the EAAT2-expressing neurons

Frontiers in Aging Neuroscience | www.frontiersin.org 6 March 2016 | Volume 8 | Article 57

http://www.frontiersin.org/Aging_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Aging_Neuroscience/archive


Tsai et al. Aging, Exercise and ANLS

were identified in multiple regions, including the cortical
pyramidal layer, basal nucleus of Meynert, substantia nigra,
paraventricular nucleus of the hypothalamus and locus coeruleus
(Thai, 2002). Although there is no direct evidence to suggest
that the abnormal expression of EAATs impairs the ANLS
and furthers the progression of AD pathology, this damaged
glutamate reuptake system has been suggested to contribute to
glutamate-mediated excitotoxicity in AD (Scott et al., 2002; Thai,
2002).

EXERCISE, ASTROCYTE-NEURON
LACTATE SHUTTLE AND AGING-RELATED
MEMORY IMPAIRMENT

It is widely-accepted that increased physical activity exerts
multiple benefits on the brain function (Cotman et al., 2007;
Lange-Asschenfeldt and Kojda, 2008; Lustig et al., 2009; Brown
et al., 2013; Voss et al., 2013), including the improvement
of memory (Lustig et al., 2009). For example, long-term
exercise can ameliorate the aging-induced impairment of
hippocampal neurogenesis which is known to be involved in
memory processing (Deng et al., 2010; Yang et al., 2015).
Yang et al. (2015) recently demonstrated that hippocampal
neurogenesis dramatically decreased by the time mice reached
nine months of age. They also found that 5-week treadmill
running was able to attenuate the decline of the number
of neural stem/progenitor cells (NSC) during aging, and to
enhance the maturation of new-born neurons. Furthermore,
it was recently reported that in APP/PS1 double transgenic
AD mice, 10 weeks of treadmill exercise prevented the AD-
induced memory deficits in both contextual and cued fear
conditioning tasks, and increased the dendritic complexity of the
hippocampal and amygdalar neurons which respectively govern
these two learning tasks (Lin et al., 2015). Additionally, this
long-term training also led to reduced concentrations of Aβ40
and Aβ42 in the hippocampus and amygdala of the double
transgenic mice, partially via an exercise-induced increase of
the expression of LRP1, a key molecule responsible for Aβ

clearance (Lin et al., 2015). In humans, a longitudinal study
followed 716 elderly individuals for 4 years and concluded that
a higher level of physical activity correlates with reduced risk for
AD (Buchman et al., 2012). Exercise is also known to activate
neurons in various brain regions, especially the hippocampus
(Lee et al., 2003; Clark et al., 2011). This exercise-induced
hippocampal activation has been linked to the exercise-exerted
benefits on hippocampal-related memory functions. Moreover,
an increase of hippocampal CREB phosphorylation and plasticity
gene expression accompanies hippocampal activation during
exercise (Lee et al., 2003; Chen and Russo-Neustadt, 2009;
Clark et al., 2011). Among the plasticity genes up-regulated
by exercise, enhanced BDNF signaling plays a very important
role in exercise-improved memory function (Hillman et al.,
2008). In the past two decades, several studies have uncovered
the mechanism by which exercise elevates BDNF expression
in the brain. In addition to activity-dependent transcriptional
regulation (Shieh and Ghosh, 1999), it is known that exercise
is able to regulate the BDNF level by increasing circulating

factors, such as insulin-like growth factor 1 (Carro et al.,
2000; Nishijima et al., 2010) and irisin (Wrann et al., 2013),
which can promote BDNF expression in the hippocampus.
Furthermore, it is possible that exercise up-regulates brain
BDNF expression through the increased production of either
central or peripheral lactate. The level of lactate derived from
the astrocytes in regions rich in glutamatergic neurons, such
as the hippocampus, may increase due to local neuronal
activation induced by exercise (Dalsgaard, 2006). Moreover,
cerebral uptake of lactate is known to increase in response
to the excessive systemic lactate generated form contracting
muscles during exercise (Ide et al., 2000; Quistorff et al.,
2008; van Hall et al., 2009; Rasmussen et al., 2011; Overgaard
et al., 2012). However, the increase of brain lactate during
or after exercise is region specific and may be governed by
specific regulation of exercise-enhanced lactate transport. In
2014, Takimoto and Hamada (2014) demonstrated that acute
exercise increases brain region-specific expression of MCTs.
After exposure to a single bout of treadmill training for 2 h
at a moderate intensity (20 m/min, 8% grade), compared to
sedentary controls, the exercising rats had a higher levels of
lactate in the cortex, hippocampus, and hypothalamus, but not
the brainstem. The authors also found that the MCT1 level
increased in the cortex and hippocampus, and MCT2 expression
increased in the cortex, hypothalamus and hippocampus after
exercise. The regional up-regulation of MCT2 after exercise
was related to the exercise-induced expression of BDNF and its
receptor, TrkB. Moreover, the expression of MCT4 increased
only in the hypothalamus. However, none of the MCT isoforms
were altered in the brainstem after exercise. This finding was
consistent with the unchanged brainstem lactate level after
the acute exercise. In addition to MCTs, exercise has been
reported to affect the expression of EAATs. Two weeks of
treadmill exercise was found to up-regulate EAAT2 and prevent
reperfusion-induced excitotoxicity by removing excess glutamate
from the synaptic cleft in a rat model of ischemic brain
injury (Yang et al., 2012). Although an accumulating body of
evidence suggests that exercise can increase the brain lactate
level and the expression of ANLS components, it still remains
unclear whether the increased level results from an enhanced
ANLS system or increased uptake from circulation during
exercise. Further, it is not known whether lactate is essential
for exercise-enhanced plasticity gene expression and cognitive
functions.

CONCLUSION

Brain metabolic dysfunction is highly related to aging-associated
dementia. Here, we have reviewed the complex mechanisms
of brain energy supply and demand with an emphasis on
summarizing current knowledge of the ANLS and the effects
of aging and exercise on the ANLS system. A central feature
of the ANLS hypothesis, that neurons consume lactate as the
primary energy source during neuronal activation, remains
controversial (Chih and Roberts, 2003; Lundgaard et al., 2015).
However, current understanding implicates lactate as at least
a supplementary metabolite, and as an important molecule
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involved in plasticity-related gene expression. Although brain
lactate metabolism is altered by both aging and exercise, it
is necessary to address whether lactate directly participates
in the effects of aging and exercise on memory function.
This will be important to extend our understanding of how
to target lactate metabolism to prevent or reverse aging-
related memory decline. Moreover, existing evidence suggests
that lactate functions as an intracellular signal transducer.
The surface receptor for lactate, HCA1, has been reported
to be expressed in the brain (Tang et al., 2014; Mosienko
et al., 2015). HCA1, previously known as GPR81, is a
Gi protein-coupled receptor (Liu et al., 2009; Kuei et al.,
2011) which inhibits adenylate cyclase and decreases cAMP
level. However, the role of lactate-HCA1 signaling in the

memory processes remains unclear and deserves further
investigation.
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