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Rationale: Impaired cognitive abilities are a key characteristic of schizophrenia.
Although currently approved pharmacological treatments have demonstrated efficacy
for positive symptoms, to date no pharmacological treatments successfully reverse
cognitive dysfunction in these patients. Cognitively-based interventions such as cognitive
remediation (CR) and other psychosocial interventions however, may improve some
of the cognitive and functional deficits of schizophrenia. Given that these treatments
are time-consuming and labor-intensive, maximizing their effectiveness is a priority.
Augmenting psychosocial interventions with pharmacological treatments may be a viable
strategy for reducing the impact of cognitive deficits in patients with schizophrenia.

Objective: We propose a strategy to develop pharmacological treatments that can
enhance the reward-related learning processes underlying successful skill-learning in
psychosocial interventions. Specifically, we review clinical and preclinical evidence and
paradigms that can be utilized to develop these pharmacological augmentation strategies.
Prototypes for this approach include dopamine D1 receptor and α7 nicotinic acetylcholine
receptor agonists as attractive targets to specifically enhance reward-related learning
during CR.

Conclusion: The approach outlined here could be used broadly to develop pharmacological
augmentation strategies across a number of cognitive domains underlying successful
psychosocial treatment.
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INTRODUCTION
The primary treatments for schizophrenia are antipsychotic med-
ications, which target psychotic symptoms, but leave patients with
considerable disability due to negative and cognitive symptoms
(Harvey and Keefe, 2001; Carter, 2005; Keefe et al., 2007; Mintz
and Kopelowicz, 2007). To date, no drugs have been approved
for treating negative symptoms or cognitive dysfunction in
schizophrenia (Floresco et al., 2005; Geyer, 2010). Although there
has evidence for modest antipsychotic-induced improvement in
cognition (Bilder et al., 2002; Weiss et al., 2002; Weiner et al.,
2004; Keefe et al., 2007), several investigators and clinicians have
questioned the real-world clinical relevance of these effects. For
example, antipsychotic-induced improvement of patients’ abil-
ity to recall a 12-word list by a tenth of a word, while sta-
tistically significant (Keefe et al., 2007), may not be clinically
meaningful (Heinrichs, 2007). Some effect sizes may be greater,
but certainly no drug-induced normalization of cognition has
occurred for patients with schizophrenia. To address this great
unmet therapeutic need (Floresco et al., 2005), the United States
National Institute of Mental Health sponsored several initia-
tives. These initiatives include: (1) Measurement and Treatment
Research to Improve Cognition in Schizophrenia (MATRICS;

Marder and Fenton, 2004; Marder, 2006); (2) the Treatment
Units for Research on Neurocognition in Schizophrenia (TURNS;
Buchanan et al., 2007); and (3) Cognitive Neuroscience Treatment
to Improve Cognition in Schizophrenia (CNTRICS; Carter and
Barch, 2007). The MATRICS group developed a consensus clini-
cal test battery (MATRICS Consensus Cognitive Battery; MCCB)
for use in trials of cognitive enhancers considered for Food and
Drug Administration approval. TURNS was designed to select
and evaluate potential procognitive candidates and CNTRICS
is currently developing novel tasks from cognitive neuroscience
for use in clinical neuroscience with corresponding animal
paradigms. To date, however, there has been limited success in
clinical trials of treatments aiming to reverse cognitive deficits
in patients with schizophrenia (Javitt et al., 2012; Keefe et al.,
2013). A CNTRICS battery may take several years to develop.
If testing in rodents occurs first, it may be a decade before a
CNTRICS battery will even assess a putative therapeutic drug in
humans.

The lack of development of procognitive drugs has impacted
investment in the field to the extent that many major phar-
maceutical companies are no longer employing researchers in
this area, a trend seen in CNS drug-development in general
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(Nutt and Goodwin, 2011). The failure to develop procognitive
drugs for schizophrenia could lie in the fact that nearly all
attempts have sought a single treatment for a disease likely result-
ing from multiple neurodevelopmental insults and subsequent
compensatory changes (Bigos et al., 2010; Kleinman et al., 2011).
With volumetric and/or morphometric abnormalities in >20
brain regions (Levitt et al., 2010), developing a single treatment to
normalize such widespread disturbances seems unlikely. A prob-
lem with this level of complexity requires innovative solutions.
In this paper, we briefly review the literature on the cognitive
remediation (CR) approach to treatment and propose a roadmap
for developing pharmaceuticals acting in synergy with CR and
other psychosocial treatments aimed at improving cognition in
schizophrenia.

COGNITIVELY-BASED PSYCHOSOCIAL TREATMENTS
Partially in response to the limited efficacy of traditional phar-
macotherapy on cognitive deficits, multiple approaches to CR
have been developed (Wykes et al., 2011). CR is defined as “a
behavioral training based intervention that aims to improve cog-
nitive processes (attention, memory, executive function, social
cognition, or metacognition) with the goal of durability and gen-
eralization” (Wykes et al., 2011). Not meant to replace traditional
pharmacotherapy, these approaches attempt to utilize the func-
tional neurocircuitry remaining in patients in order to train them
to acquire the capacity, skills, and/or knowledge needed to address
a wide range of issues, e.g., cognitive performance, medication
adherence, job skills, and community functioning (Swerdlow,
2011; Wykes et al., 2011). Because a variety of techniques exist,
these treatments can be individually tailored to focus on deficits
specific to a given patient. Such treatments may be a cost-effective
adjunct to pharmacotherapy alone (Gutierrez-Recacha et al.,
2006).

CR treatments include “restorative” approaches that aim
to repair brain functioning and “compensatory” approaches
that aim to use strategies to bypass existing deficits (Twamley
et al., 2003; Patterson and Leeuwenkamp, 2008; Kern et al.,
2009). Restorative treatments typically involve repetitive prac-
tice on cognitive tasks in various domains, assuming that such
practice will strengthen cognitive performance and general-
ize to improved functioning in the community. Compensatory
approaches attempt to mitigate existing deficits by teaching new
skills and cognitive habits (e.g., Twamley et al., 2012). Both
approaches use a variety of tools, such as computer-aided tasks,
paper-and-pencil tasks, calendars, checklists, and mnemonics,
and both involve positive feedback or praise for successful per-
formance of tasks and strategy use. Thus, through positive
feedback, participants are encouraged to enhance their skill-
set, repeat such performances, and apply their skills in real-life
situations.

A growing literature demonstrates the efficacy of CR
for improving multiple cognitive and functional domains in
schizophrenia patients (Twamley et al., 2003; McGurk et al., 2007;
Wykes et al., 2011). A recent meta-analysis of 40 CR studies
(Wykes et al., 2011) found moderate effects of CR on cognitive
performance (d = 0.45) and functioning (d = 0.42). Integrated
Psychological Therapy, combining elements of CR and other

psychosocial therapies, has also been proven effective, with meta-
analytic support for effects on cognitive performance (d = 0.54),
negative symptoms (d = 0.41), and social functioning (d = 0.41)
(Roder et al., 2006).

Other psychosocial treatments for schizophrenia share com-
mon features with CR, such as skill learning and positive feed-
back. Cognitive behavioral therapy (Wykes et al., 2008) focuses
on challenging maladaptive thoughts and changing behaviors,
whereas social skills training (Kurtz and Mueser, 2008) and
social cognitive training (Kurtz and Richardson, 2012) focus on
improving social skills and functioning. Although we focus on
CR because it targets cognitive functioning most directly, the
roadmap for developing pharmacologic augmentations to psy-
chosocial treatments for schizophrenia would apply to other
skill-based psychosocial interventions such as these.

As with antipsychotic treatment alone, the success of CR
and other psychosocial interventions is limited, with room
for improvement remaining. Moreover, psychosocial treatments
require considerable clinical resources, as they are typically imple-
mented by highly trained clinicians over months to years, and
even so, are not always successful (Kurtz et al., 2007; Dickinson
et al., 2010), with mean effect sizes for improvements in the
small to medium range. Additionally, these effect sizes have
stayed relatively stable across time, despite improving knowledge
regarding the nature of cognitive impairment in schizophrenia
and treatment delivery technologies (e.g., computer-aided treat-
ments; McGurk et al., 2007). Recently, Swerdlow and colleagues
(Swerdlow, 2011; Chou et al., 2012) have called for a focus
on identifying pharmacotherapeutics targeting specific compo-
nents of neurocognition to synergistically augment psychosocial
and cognitive treatments such as CR. For instance, utilizing
knowledge regarding the neurobiological basis of reinforcement
learning or sensory discrimination, pharmacotherapies might
facilitate this process within the context of psychosocial ther-
apy. Importantly, using such pharmacotherapies episodically (i.e.,
treatment given only immediately prior to CR training sessions
and discontinued once the course of CR is completed) may
eliminate tolerance issues and enable tighter clinical control of
medication use. Indeed, a similar strategy is currently being devel-
oped in the treatment of anxiety-related disorders, as we discuss
below.

A SYNERGISTIC PHARMACO- AND
COGNITIVE-INTERVENTION APPROACH: LESSONS FROM
EXPOSURE-BASED PSYCHOTHERAPIES
Exposure-based treatments are effective in treating a wide range
of trauma and anxiety-related disorders, including obsessive-
compulsive disorder, panic disorder, social phobia, and post-
traumatic stress disorder (Deacon and Abramowitz, 2004). As
with psychosocial treatment for schizophrenia, however, room for
improvement exists. For example, only 50–70% of panic disorder
patients treated with exposure-based cognitive-behavioral ther-
apy achieve an adequate response following the acute phase of
therapy (Furukawa et al., 2006).

Recently, neuroscientists have begun identify the neurobi-
ological and molecular processes mediating the extinction of
conditioned fear, the mechanism through which exposure-based
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therapies are thought to work (Bentz et al., 2010). N-methyl-D-
aspartate (NMDA) receptor activity within the basolateral amyg-
dala is an important mediator of fear extinction memory (Davis,
2002). Preclinical animal studies suggested that D-cycloserine
(DCS), a partial agonist of the glycineB coagonist site of NMDA
receptors (Sheinin et al., 2001), enhanced fear extinction when
delivered in a phasic dosing pattern prior to extinction training
[see Norberg et al. (2008) for a meta-analytic review]. Clinical
research has now documented DCS-facilitation of response to
exposure therapy for a range of anxiety disorders (Norberg et al.,
2008; De Kleine et al., 2012). In clinical practice, DCS is intended
to be delivered approximately 1 h prior to the exposure therapy
sessions. DCS is not administered at any other time and is discon-
tinued following the course of exposure therapy. Despite research
on DCS enhancement of exposure therapy being in its infancy,
clinical research has begun documenting the efficacy of this strat-
egy for a range of anxiety disorders for which exposure is a
significant component of psychosocial treatment, including post-
traumatic stress disorder, panic disorder, social phobia, obsessive-
compulsive disorder, and specific phobia (Norberg et al., 2008;
Otto et al., 2010b; De Kleine et al., 2012). In a review of all
clinical studies conducted up to 2008, Norberg and colleagues
(2008) found an average Cohen’s d of 0.60 (moderate effect)
for DCS augmentation of exposure therapy relative to placebo.
Additional compounds with putative augmentative functions,
such as oxytocin, valproic acid, and 7,8-dihydroxyflavone, are
currently under investigation (Kuriyama et al., 2011; Andero and
Ressler, 2012; Acheson et al., 2013).

Focus on pharmacological-enhanced neuroplasticity in syn-
ergy with psychosocial therapies represents a paradigm shift in

the treatment of anxiety-related disorders (Krystal, 2007). Rather
than an either-or approach where advances in psychosocial ther-
apy and pharmacotherapy are made independent of one another,
this strategy provides a model where knowledge regarding the
neurobiological mechanisms underlying the effectiveness of psy-
chosocial therapies is used to identify potential drug targets. This
approach is distinct from the traditional model of pharmaco-
psychosocial combination treatment (i.e., SSRI and CBT), where
each treatment has been developed independently, with inde-
pendent efficacy, without targeted mechanistic interactive effects
(Otto et al., 2010a). The synergistic model has generated success
within anxiety disorders because (1) the type of learning thought
to mediate effective psychosocial treatment, fear extinction, had
been identified, and (2) the neurobiological underpinnings of
this type of learning had been fairly well elucidated, enabling
the identification of putative drug targets. The development of
pharmacological and psychosocial co-therapies for schizophrenia
is likely to require a similar breakdown of the type of learning
used in CR as well as the neurobiology underpinning that learn-
ing. We hypothesize that successful CR may be partially mediated
by reward-related learning (Figure 1), and that this type of learn-
ing may be ubiquitous amongst the various available iterations
of CR. If true, developing a better understanding of reward-
related learning in the context of CR would be important for
developing pharmacotherapies to augment CR. Below, we present
the logic of the importance for reinforcement learning in CR.
Moreover, we propose that two major pro-cognitive targets for
schizophrenia, the dopamine D1 receptor (DRD1) and the alpha 7
nicotinic acetylcholine receptor (nAChR), may be ideal for aug-
menting reward-based learning in CR. To reduce patient burden

FIGURE 1 | Schematic of the mechanism by which pharmacological

augmentation of psychosocial treatment is proposed to work. Psychosocial
treatment of cognitive deficits in schizophrenia via cognitive remediation (CR),
cognitive behavioral therapy (CBT), and social skills training (SST) rely on positive
reinforcement to encourage learning in patients. Through such reinforcement
learning, the cognitive performance and hence functional outcome of patients

with schizophrenia modestly improve over time (A). Patients with schizophrenia
exhibit impaired reward-related learning however, which likely negatively
impacts the benefit of these psychosocial interventions. By augmenting these
interventions with a pharmacological treatment that enhances reward-related
learning, it is theorized that patients will gain maximal benefit from the
intervention, resulting in greater improvement than with intervention alone (B).
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and unnecessary medication use and side-effects, phasic dosing
of cognitive-enhancing agents could be given only in conjunction
with CR, as these drugs are unlikely to produce cognitive benefit
when not paired with CR learning activities.

PRECLINICAL RESEARCH FOR PHARMACOLOGICAL
AUGMENTATION OF CR
REWARD-BASED LEARNING IN CR
Using animal research in developing pharmaceutical augmenta-
tions for CR is hampered by the fact that CR is not conducted in
animals. Such was also the case for augmenting exposure-based
therapies however, but by identifying the primary mechanism of
learning, i.e., fear extinction, it was possible to research this mech-
anism and identify putative treatments, e.g., DCS. Thus, to aid
research for augmenting CR, it is important to identify a suffi-
ciently narrow mechanism—thought to at least partially underlie
the effectiveness of psychosocial treatments—which can be phar-
macologically targeted. Unfortunately, little is currently known
about the mechanism of action underlying CR. Most current
research examines cognitive performance or community func-
tioning as primary dependent variables, rather than changes at
a molecular level necessary for drug discovery (Twamley et al.,
2003; Pfammatter et al., 2006; McGurk et al., 2007; Wykes et al.,
2011).

Positive feedback from facilitators, peers, or computers is used
in CR to increase desired behaviors as participants learn new
skills. Although these are features of almost all CR interventions,
two specific examples of the use of positive reinforcement in
CR are Silverstein and colleagues’ “attention shaping” program
(Silverstein et al., 2009) and Vinogradov and colleagues’ (Fisher
et al., 2010) computer-delivered neuroplasticity-based treatment
program to enhance auditory sensory discrimination and verbal
learning. In the attention-shaping program, individual attentive-
ness goals are set for each patient, and the patient is reinforced
both verbally and with a token when the goal is met. In the
neuroplasticity-based treatment program, correct responses on a
verbal memory task are consistently followed by rewarding stim-
uli to strengthen learning and thereby future verbal memory per-
formance. Both programs have shown promising results on their
target cognitive construct, attention and verbal memory respec-
tively (Silverstein et al., 2009; Fisher et al., 2010). Vinogradov and
colleagues (2009b) have shown that patients with a heavier anti-
cholinergic burden have a poorer response to CR, and that serum
brain derived neurotrophic factor increases after CR (Vinogradov
et al., 2009a).

Patients with schizophrenia exhibit deficits in reward-related
learning (Waltz et al., 2007, 2011; Weiler et al., 2009), per-
haps associated with reduced brain activation following reward-
predicting stimuli in unmedicated patients (Juckel et al., 2006).
This deficit probably reflects a fundamental change due to the
disease process and not a medication-induced change. Although
poor reward-related learning may also reflect lower motivational
levels in these patients (Keefe et al., 2011), it is not associated
with any negative symptoms and hence unlikely to simply reflect
a reduction in reward value (Waltz et al., 2007, 2011; Strauss et al.,
2011). Given the positive reinforcement used in CR and other psy-
chosocial treatments, impaired reinforcement learning in patients

with schizophrenia may slow treatment progress (Weiler et al.,
2009; Strauss et al., 2011).

Pharmacological augmentation of reward-based learning has
the potential to improve psychosocial treatments for schizophre-
nia. In the clinic, pharmaceutical compounds that have been
shown to influence the strength and rate of reward learning
could be delivered prior to sessions of controlled CR training.
Influencing the strength of initial learning might allow for more
comprehensive skill acquisition, as well as increased durability of
treatment effects over time. Increasing the speed of learning could
help to make these treatments more cost-effective and appeal-
ing to both providers and service users. For instance, Vinogradov
and colleagues (Fisher et al., 2010) reported the most gain from
their neuroplasticity-based verbal memory treatment in patients
who underwent at least 100 h of training. Pharmacological aug-
mentation might reduce the training hours required for clinically
significant gains, such as has been accomplished with exposure-
based psychotherapies for anxiety (Norberg et al., 2008). In order
to achieve this goal, there is a clear need for basic preclinical
research demonstrating the potential to influence reward-based
learning. Preclinical research can also be used to reveal mecha-
nisms underlying reward-based learning as well as testing putative
pharmacotherapeutics.

PRECLINICAL STRATEGIES FOR DEVELOPING TREATMENT
OPTIONS TO AUGMENT CR
Just as developing augmentations to exposure-based therapies
required an understanding of fear extinction, the use of positive
reinforcement in CR supports the need to understand reward-
related learning mechanisms. It is clear that learning via positive
feedback has a different underlying mechanism from learning via
punishment or negative reinforcement. To identify mechanisms
underlying this learning, tasks with cross-species translational
relevance across species should be utilized. Although there are
numerous reward-related tasks that require training the animal
to perform them, not all have a suitable throughput or cross-
species relevance. For example, training rodents to perform the
5-choice serial reaction-time task can take more than 2 months
(Lustig et al., 2012), during which time repeated treatment effects
would be impractical. Moreover, most laboratory tests of learn-
ing in healthy humans occur within a single test session. By using
tasks with cross-species translational validity for these aspects of
learning (Ragland et al., 2009; Young et al., 2009, 2012b), posi-
tive treatment findings in normal animals could be confirmed in
healthy humans (Ragland et al., 2009) prior to testing in patients.

Thus, the use of positive reinforcement in CR supports the
need to focus animal research on reward-related learning mech-
anisms. Theoretically, pharmacologically-enhanced learning of
this type that can be observed both in healthy controls and
patients with schizophrenia would be useful because this would
suggest a similarly intact neural mechanism that can be engaged
in patients (Swerdlow, 2011). Two primary targets identified from
MATRICS for the development of procognitive compounds, the
DRD1s and α7 nAChRs (Tamminga, 2006; www.matrics.ucla.
edu), have been implicated in reward-related learning. These
targets represent logical starting points to exemplify developing
reward learning-enhancing pharmaceuticals.
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DRD1 AND REWARD-RELATED LEARNING
Evidence supports dopamine-mediated reward-related learning
whereby environmental stimuli and action sequences are encoded
via spikes in dopamine levels (Schultz, 2002; Montague et al.,
2004; Tobler et al., 2005). Dopamine firing rates may also underlie
aversive-related learning, but at lower and shorter durations com-
pared with rewarding stimuli (Joshua et al., 2008; Matsumoto and
Hikosaka, 2009; Morris et al., 2010; Glimcher, 2011), supporting
the role of dopamine in the reward-prediction-error hypothesis
(Glimcher, 2011).

The reward-prediction-error hypothesis provides a putative
mechanism underlying Thorndike’s Law of Effect. Dopamine
fires in response to an unpredicted reward, but once pre-
dictable, dopamine firing ceases (Enomoto et al., 2011; Glimcher,
2011). Thus, dopamine strengthens the synaptic connection
between reward and action. Importantly, schizophrenia patients
exhibit reduced prediction-error signals compared with controls
(Gradin et al., 2011). Moreover, striatal dopaminergic neurons
are involved in long-term potentiation (LTP), thought to under-
lie learning (Surmeier et al., 2009), which is also altered in
schizophrenia patients (Hasan et al., 2011).

Striatal DRD1s are linked to the direct pathway that stimu-
lates the thalamus and cortex (Gerfen and Engber, 1992; Morris
et al., 2010). DRD1 stimulation likely strengthens synaptic con-
nections, promoting LTP (Wolf et al., 2004). Similarly, DRD1
knockout mice exhibit altered LTP and impaired associative learn-
ing (Matthies et al., 1997; Granado et al., 2008; Ortiz et al.,
2010).

Evidence for DRD1 agonist-induced enhancement of reward-
related learning is limited, however, in part because few full
agonists are available—most studies utilize partial agonists (e.g.,
SKF38393; Zhang et al., 2008). Testing whether full DRD1 ago-
nists (e.g., doxanthrine; Przybyla et al., 2009; McCorvy et al.,
2012) can improve reward-related learning in animals will be an
important next step (Young et al., 2010). Other compounds, such
as amphetamine or modafinil, may exert their reward-related
effects on behavior in part via a dopamine D1 receptor mecha-
nism (Qu et al., 2008; Young, 2009; Young and Geyer, 2010; Liu
et al., 2011; Scoriels et al., 2013). Although there are other diverse
mechanisms of actions (Minzenberg and Carter, 2008; Scoriels
et al., 2013) of these treatments, it would be useful to determine
whether these treatments may be useful to augment CR, and if
their pro-learning effects are indeed mediated by the dopamine
D1 receptor. Determining treatments with greater dopamine D1
selectivity of effects may be important given the possible role
dopamine D2 receptors play in the blockade of learning. Because
all antipsychotics are dopamine D2 antagonists, determining the
interactive effects of a D1 receptor agonist with D2 receptor
blockade will also be important (Young et al., 2012a). The effects
of dopamine D2 blockade on rodent cognition alone and in mod-
els of schizophrenia have been discussed elsewhere (Hagan and
Jones, 2005; Young et al., 2009, 2012c). Moreover, the positive
and negative effects of dopamine D2 receptor blockade on cog-
nition in schizophrenia have also been discussed (Harvey and
Keefe, 2001; Buchanan et al., 2005; Keefe et al., 2007, 2011). In
terms of augmenting CR with a DRD1 agonist or any other treat-
ment, it will be important to identify that any positive treatment

will remain so in the presence of chronic antipsychotic treatment
(Floresco et al., 2005).

After MATRICS identified the dopamine D1 receptor as a
primary target for cognition enhancement in schizophrenia, the
NIMH-funded TURNS initiative have assessed the efficacy of the
full dopamine D1 agonist dihydrexidine (Mu et al., 2007). Very
low doses have had to be used to date however, given orthostatic
hypertension, hypotension, and tachycardia that have occurred
with intravenous administration (Blanchet et al., 1998), and while
it has been tolerated with a subcutaneous dose in patients with
schizophrenia it is unclear whether such complications arose
(George et al., 2007). Phasic dosing during CR may be an ideal
format for administering a treatment with such side-effects (see
below).

α7 nAChRs AND REWARD-RELATED LEARNING
Nicotine (the prototypical ligand of nAChRs) enhances learning
in healthy humans, schizophrenia patients, and animals (Levin
et al., 1998; Newhouse et al., 2004; Poltavski and Petros, 2006;
Barr et al., 2008; Myers et al., 2008; D’Souza and Markou, 2012).
Acute mecamylamine (a nAChR antagonist) impairs learning
(Newhouse et al., 1992), while ABT-418 (an α4β2 nA ChR ago-
nist) improved learning in Alzheimer’s disease patients (Potter
et al., 1999). Schizophrenia patients exhibit higher smoking rates,
which may be a form of self-medication (Kumari and Postma,
2005). Pathological abnormalities of α7 nAChRs in schizophrenia
patients (e.g., 15q13-15) have been linked to poor sensory gat-
ing (Freedman et al., 1997). Lower α7 nAChR protein levels are
observed in the post-mortem brains of patients with schizophre-
nia and are associated with cognitive dysfunction (Martin-Ruiz
et al., 2003). Moreover, α7 nAChR mRNA expression may be reg-
ulated by neuregulin-1 genetic variation (Mathew et al., 2007), a
genetic risk factor for schizophrenia (Stefansson et al., 2002, 2003;
Harrison and Law, 2006; Law et al., 2006). The α7 nAChR mod-
ulates numerous mechanisms throughout the brain that are rele-
vant to schizophrenia and its pathophysiology (Bencherif et al.,
2012) and may also modulate aspects of cognition (Thomsen
et al., 2010). In line with such proposals, α7 nAChR knockout
mice exhibit impaired reward-related learning across numerous
paradigms (Young et al., 2004, 2007a, 2011; Keller et al., 2005;
Levin et al., 2009) and impaired LTP (Dziewczapolski et al., 2009),
whereas α7 nAChR agonists enhance LTP (Lagostena et al., 2008;
Kroker et al., 2011). Finally, aversive-motivated learning is intact
in α7 nAChR knockout mice (Paylor et al., 1998), suggesting that
this receptor specifically contributes to reward-related learning.
Thus, α7 nAChR abnormalities may impact reward-learning in
schizophrenia patients, representing a potential pharmacothera-
peutic target, especially as an agonist for this receptor would be
less likely than nicotine to be addictive (Martin et al., 2004; Levin
and Rezvani, 2006).

Early clinical tests of a partial α7 nAChR agonist (DMXBA)
were promising with regard to improving cognition in patients
with schizophrenia (Olincy et al., 2006), but these effects were not
replicated in larger studies (Freedman et al., 2008). When given
to rats, daily DMXBA- or nicotine-injections improved learn-
ing in aged rats (Levin et al., 1990; Arendash et al., 1995a,b;
Taylor et al., 2005). Few studies have characterized the effects of
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such agonists specifically on reward-related learning, however. In
a recent review, Hahn and colleagues (2013) discuss the merits
of targeting nAChRs as putative add-ons to CR. Primarily, the
authors emphasized the ability of nAChR agonists to modestly
improve several aspects of cognition, such as attention (Grottick
et al., 2003; Young et al., 2004, 2013; Rezvani et al., 2009; Hahn
et al., 2011) and working memory (Levin, 2002; Levin et al.,
2002; Young et al., 2007b; Rushforth et al., 2010). Thus, they
propose that assessing the efficacy of targeted nAChR treatment
with CR may provide the best opportunity to enhance cognition
and hence functioning in patients with schizophrenia. Recently,
Lieberman et al. (2013) demonstrated that the full α7 nAChR ago-
nist TC-5619 can modestly improve cognition in patients with
schizophrenia. Importantly, this improvement was not blocked
by current smoking, an important aspect if such a treatment were
used in combination with CR.

α7 nAChR agonists should be assessed in combination with
CR. Treatment with a cognition-enhancer without structured CR
could enhance aspects of learning and habits not conducive to
recovery (e.g., paranoid associations). Further, the extant stud-
ies on α7 nAChR agonists have used a chronic dosing strategy,
rather than applying phasic dosing in conjunction with targeted
CR. Such phasic dosing may also be more useful in patients
that smoke or are ex-smokers, given the high rate of smoking in
schizophrenia (Dolan et al., 2004; Dwoskin et al., 2009; D’Souza
and Markou, 2012).

METHODS FOR ASSESSING REWARD-RELATED LEARNING
AND ITS COMPONENTS IN RODENTS
There are myriad methods for assessing reward-related learning
in rodents. In order to specifically identify treatments that cross
the species gap, however, focus should be placed on tasks that can
be assessed in rodents and humans (Floresco et al., 2005; Young
et al., 2009). Given that exposure-based therapy is essentially sim-
ilar to what is described as fear extinction in rodents—leading to
the development of DCS to augment this mechanism (Norberg
et al., 2008)—a reasonable starting point would be to use similar
learning paradigms across species.

The CNTRICS initiative identified tasks that can assess rein-
forcement learning in humans, with putative tasks for testing
across species (Ragland et al., 2009). These tasks include the tran-
sitive inference paradigm (TIP) and the probabilistic selective
task. Given that the task exists in both species, the TIP has evi-
dence for cross-species translational validity (Young et al., 2012b).
For example, bilateral hippocampal-lesioned mice exhibit a sim-
ilar pattern of deficits as do humans with hippocampal lesions
(Dusek and Eichenbaum, 1997) and share some similarities to
patients with schizophrenia (Titone et al., 2004). The TIP deficits
of patients with schizophrenia are also similar to mice with bilat-
eral lesions of the prefrontal cortex, however, where inference
deficits are observed but no improvement of extreme value stim-
uli are observed (Devito et al., 2010). Importantly, TIP deficits
are also observed in human subjects with frontal lobe damage,
although they can make first order associations readily (Waltz
et al., 1999). The probabilistic selective task is also available in
both humans and rodents. Although only two studies have been
conducted in rats and mice (Bari et al., 2010; Amodeo et al.,

2012), there has been pharmacological consistency between the
two rodent species as well as tests in humans (Chamberlain
et al., 2006). Importantly, this probabilistic reward task can
also differentiate between model-based (learning best strategy)
from model-free (repeat responding of rewarded actions) learn-
ing (Daw et al., 2011). Such model-based learning is important
because there are numerous aspects during CR that must be
assimilated into an overall model.

There may of course be other aspects of cognition that con-
tribute to learning from CR, e.g., attention and working memory.
As with reinforcement learning, there are tasks that are avail-
able to measure these cognitive domains across species. These
tasks have been reviewed in detail elsewhere (Young et al., 2009;
Dudchenko et al., 2012; Lustig et al., 2012). Importantly, any
pharmacological enhancement of any of these tasks in normal
rodents could be validated in healthy humans. If the treatment
proved modestly efficacious across species, the same treatment
could be tested in people with schizophrenia to ensure similar
efficacy prior to being tested during CR.

CONCLUSIONS AND FUTURE DIRECTIONS
As described above, pharmaceutical companies have reduced
their investment in pro-cognitive drugs due in part to a lack
of positive pro-cognitive effects of treatments for schizophrenia
(Nutt and Goodwin, 2011). The approach proposed here provides
an avenue by which the pharmaceutical industry can reiniti-
ate their role in developing such treatments. Given that there is
another avenue by which treatments—that may have had limited
efficacy in the MCCB—could enhance cognition in schizophre-
nia, clinical trials could be redesigned as described here and
elsewhere (Swerdlow, 2011; Chou et al., 2012). Such clinical trials
would require phasic treatment only just prior to CR training, as
is conducted in DCS treatment combined with behavioral treat-
ment for anxiety disorders. There are several benefits to phasic
administration of treatments during CR; (1) Dosing can be con-
trolled by the clinician; (2) Treatments with short half-lives can
be used; (3) Side-effects resulting from treatment can be better
controlled for (e.g., dihydrexidine); and (4) The treatment is only
required for as long as the CR occurs.

This paradigm-shift of combining psychosocial treatment with
pharmacotherapies that enhance the underlying neural mecha-
nisms of psychosocial treatments could be essential in enhancing
cognition in schizophrenia (Swerdlow, 2011). Designing treat-
ments that work synergistically with CR is essential. Reward-
related learning appears a reasonable starting point for this
strategy. This strategy requires: (1) Confirming the contribu-
tion of reward-related learning toward positive CR effects, (2)
Elucidating the underlying reward-related learning mechanisms
supporting CR; and (3) Identifying treatments that can aug-
ment the neurobiological processes supporting these mechanisms
(Figure 2). Biomarkers of treatment effects on reward learn-
ing, such as LTP (Hasan et al., 2011), or reward-prediction
signals (Gradin et al., 2011), can improve the chance of drug-
development translating across species (Luck et al., 2011). This
strategy may have broad utility across a number of differ-
ent cognitive domains in addition to reward learning. Further,
other disorders characterized by cognitive dysfunction outside of
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FIGURE 2 | Schematic of the process by which pharmacological

augmentations to psychosocial treatments may be developed. Both
clinical and preclinical phases are represented, with overlapping and
multidirectional processes. Clinical. (1) A therapeutic technique of interest
is identified such as cognitive remediation (CR), (2) An underlying
cognitive construct to be targeted for augmentation is defined, (3) Animal
paradigms with the ability to assay this construct are identified or
created. Preclinical. (4) Neural mechanisms underlying the construct of

interest are identified, (5) Pharmacological compounds interacting with
those neural mechanisms are assessed in animal paradigms for their
ability to augment performance, (6) Putative pharmacological
augmentations are tested for effectiveness using human clinical
analogues in the laboratory before randomized clinical testing.
Importantly, this process highlights the bi-directional application of
research at each stage, with theoretical constructs leading to testing of
hypotheses in animals, which can further refine these constructs.

schizophrenia (e.g., bipolar disorder and autism) may also benefit
from this approach.

Putative treatments such as DRD1 and α7 nAChR agonists
may be more effective when used phasically to augment CR as
compared to a chronic dosing strategy alone. More general treat-
ments already available, such as modafinil or available nAChR
agonists, could be used initially for proof-of-concept. Other tar-
gets could be gained from understanding mechanisms underlying
neuroplasticity [e.g., LTP, see review by Nicoll and Roche (2013)].
Alternatively, identifying the molecular, structural, and func-
tional correlates of environmental enrichment-dependent plas-
ticity (McOmish and Hannan, 2007) may provide other targets
for developing augmentation treatments. Ultimately, combining

psychosocial and pharmacological treatments for schizophrenia
may be the best opportunity to improve functional outcomes for
these patients. We hope that this discussion stimulates research in
the field toward that end.
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