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Matrices satisfying Regular Minimality
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A matrix of discrimination measures (discrimination probabilities, numerical estimates of 
dissimilarity, etc.) satisfies Regular Minimality (RM) if every row and every column of the matrix 
contains a single minimal entry, and an entry minimal in its row is minimal in its column. We 
derive a formula for the proportion of RM-compliant matrices among all square matrices of a 
given size and with no tied entries. Under a certain “meta-probabilistic” model this proportion 
can be interpreted as the probability with which a randomly chosen matrix turns out to be 
RM-compliant.
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on the main diagonal) even though the values of the stimuli in 
the first observation area (rows) and in the second one (columns) 
are not the same:

y = 3.5 y = 5.5 y = 7.5 y = 11.5

x = 4.7 .25 .42 .64 .81

x = 6.7 .51 .35 .55 .78

x = 8.7 .63 .45 .14 .57

x = 12.7 .76 .57 .34 .15

The distinction between two observation areas should be kept in 
mind for a correct application of the symmetry requirement, [C]. If 
in the statement “y matches x” the stimuli x and y exchange places, 
their values do so together with their respective observation areas. 
Thus, if the two observation areas are designated as “presented first” 
and “presented second” (chronologically within a trial), then the 
requirement [C] should be read as

[C, special case] if y, presented second, matches x, 
presented first, then x, presented first, matches y, 
presented second,

and not as

[C-look-alike, garbled] if y, presented second, matches 
x, presented first, then x, presented second, matches 
y, presented first.

In the latter statement, the pair (x, y) in the antecedent is different 
from the pair (x, y) in the consequent, creating thereby a confusion. 
A corrected version of [C-look-alike, garbled] could be

[C-look-alike, corrected] if a stimulus with value v
2
 

when presented second matches a stimulus with value 
v

1
 presented first, then the stimulus with value v

1
 when 

presented second matches the stimulus with value v
2
 

presented first.

Unlike [C-look-alike, garbled] this statement makes sense, but it is 
generally empirically false due to what is known as time-order error 
(more generally, constant error, see Dzhafarov and Colonius, 2006). 

1. Preliminaries
Given a real-valued measure of discriminability m(x, y) between 
stimuli y  ∈ Y and stimuli x ∈ X, Regular Minimality (RM) means 
that

[A] for every x ∈ X one can uniquely find a match-
ing stimulus in Y, defined as the y ∈ Y which is least 
discriminable from x among all stimuli in Y;

[B] for every y ∈ Y one can uniquely find a matching 
stimulus in X, defined as the x ∈ X which is least dis-
criminable from y among all stimuli in X;

[C] if y matches (is the match for) x in the sense [A], 
then x matches (is the match for) y in the sense [B].

The properties [A] and [B] should be qualified as follows. 
Two stimuli x

1
, x

2
 ∈ X are considered equivalent if m(x

1
, y) =  

m(x
2
, y) for every y ∈ Y; analogously, y

1
, y

2
 ∈ Y are equivalent 

if m(x, y
1
) = m(x, y

2
) for every x ∈ X. The uniqueness require-

ment in [A] and [B] should be taken up to this equivalence 
relation: the set of matching stimuli for any given x ∈ X is non-
empty and consists of pairwise equivalent Y-stimuli, and the 
same holds for the set of X-stimuli matching a given y ∈ Y. 
Another way of stating this is to say that [A] and [B] should 
hold after any two equivalent stimuli, in both X and Y, have been  
identically labeled.

The RM principle was proposed in Dzhafarov (2002b) together 
with the related notion of an observation area. Note that x and 
y stimuli being compared belong to different sets, X and Y. This 
reflects the difference between two observation areas: even if x 
and y have the same value (say, they are line segments of the same 
length), they must occupy different spatial and/or temporal posi-
tions to be perceived as two distinct stimuli (see, e.g., Dzhafarov 
and Colonius, 2006). So x and y should be designated as, say, 
x = (5 cm, left) and y = (5 cm, right), and with this rigorous 
designation X and Y cannot even overlap. Moreover, even the 
values of the elements of X and Y (ignoring the difference in the 
observation areas) need not be the same. Thus, in the probability 
matrix below RM is satisfied in the simplest form (the minima 
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consider all n2! ways of placing these values in n2 cells of an n × n 
matrix and count the number of matrices which are RM-compliant. 
The result is, obviously, invariant with respect to the set V. With 
no loss of generality, therefore we can assume that the matrices are 
filled with integers {1,…,n2} representing the ordinal positions of 
the elements of any possible set V. We will refer to these integer-
valued matrices as rank order matrices (without ties), and their 
elements will be referred to as ranks.

Definition 2.3. A rank order matrix M is said to represent a matrix 
M′ (of the same size) if m

ij
 < m

i′j′ in M implies ′ < ′′ ′m mij i j  in M′, for 
any two cells (i, j) and (i′, j′).

Remark 2.4. Due to the bijective correspondence between the entries 
of M and M′, the “if” in this definition can be replaced or comple-
mented with “and only if.”

Intuitively, the proportion of RM-compliant matrices among 
all rank order matrices of a given size seems to be the answer to the 
question: how likely is it to obtain a matrix M (not necessarily a rank 
order one) satisfying RM “by chance”? To explicate this intuition, 
we can adopt the following “meta-probabilistic” view. Consider 
the entries of M not as data but as theoretical (population-level) 
values of a discriminability measure. Assuming that the possible 
values for m

ij
 (i, j ∈{1,…,n}) form a set of reals S of a positive 

Lebesgue measure (e.g., the interval [0, 1], as in the case when 
the m

ij
’s are probabilities) we can impose on S in each cell of the 

matrix some probability measure. Then we can pose the question 
of what the product measure is of the volume occupied by the 
RM-compliant matrices in Sn2

. If one and the same measure m is 
imposed on all entries, then all permutations of any given set of 
entries are equiprobable. The absence of ties among the entries in 
this approach is ensured by additionally assuming that the prob-
ability measure imposed is absolutely continuous with respect to 
the Lebesgue measure.1 It is intuitively clear (and shown formally in 
the lemma below) that the product measure in question equals the 
proportion of the RM-compliant matrices among all possible rank 
order matrices. We will denote the product measure m × … × m (n2 
times) by mn2

.

Lemma 2.5. Let m be a probability measure imposed on the set  S of 
a positive Lebesgue measure in each cell of an n × n matrix. Let m 
be absolutely continuous with respect to the Lebesgue measure. Then 
the set of RM-compliant matrices in Sn2

 is mn2

-measurable and its 
mn2

-measure equals the proportion of RM-compliant matrices among 
all n × n rank order matrices (without ties).

Proof. Since S is measurable, so is S ∩]x, ∞[ for any real x, and so is

π π π
= ∈ < <{ }( , , ) : ( ) ( )

x x x x
n

n

n1 12

2

2 

for any permutation π of (1,…,n2). The mn2

-measure of Aπ is invari-
ant with respect to π, which is obvious from symmetry considera-
tions, or from the computation

By contrast, there seems to be no empirical evidence against [C, 
special case] or any other form of [C], which makes it possible to 
propose RM as a fundamental principle of pairwise comparisons 
(Dzhafarov, 2002b).

The notion of RM has been elaborated in Dzhafarov (2003), 
Dzhafarov and Colonius (2006), and Kujala and Dzhafarov (2008, 
2009). It turns out to have nontrivial consequences for a variety 
of issues of traditional importance, ranging from Thurstonian-
type modeling (see, e.g., Dzhafarov, 2006, in response to Ennis, 
2006) to the “probability-distance” hypothesis (Dzhafarov, 2002a) 
to Fechnerian Scaling (see, e.g., Dzhafarov and Colonius, 2007) 
to matching-by-adjustment procedures (Dzhafarov and Perry, 
2010) to the comparative version of the ancient “sorites” paradox 
(Dzhafarov and Dzhafarov, 2010a,b). In the latter two references 
the notion of RM (under the more general designation of “regular 
well-matched stimulus space”) was extended to an arbitrary set of 
observations areas. In the present work, however, we do not need 
to go beyond two fixed observation areas.

2.  regular minimality for rank order matrices 
without ties

In this paper we deal with the case when the stimulus sets are finite,

X = {x
1
,…,x

n
}, Y = {y

1
,…,y

n
},

and the discrimination function m(x, y) can be viewed as a matrix 
M = {m

ij
}, i, j ∈ {1,…,n}. Clearly, a matrix which is not square cannot 

comply with RM (because each x has a unique y-match for which 
x is a unique match, and vice versa).

Convention 2.1. Henceforth we will assume that every matrix, 
unless otherwise specified, has pairwise distinct entries (contains 
no tied entries).

With this convention, the properties [A] and [B] are satisfied trivi-
ally (every row and every column has a unique minimal entry), and 
RM is reduced to the property [C] which now acquires the form

[RM = C] an entry is minimal in its column if it is 
minimal in its row.

The “column” and “row” in this statement can be exchanged and 
the statement above strengthened.

Lemma 2.2. In an RM-compliant matrix, an entry is minimal in its 
column if and only if it is minimal in its row.

Proof. To prove the “only if” part, let h be the mapping 
{1,…,n} → {1,…,n} defined by m

i,h(i)
 being the minimum entry in 

row i ∈ {1,…,n}. This mapping is injective, because if there were 
some rows i ≠ i′ with h(i) = h(i′), then m

ij
 would be the minimum 

entry in row i, m
i′j the minimum entry in row i′, whence the column 

h(i) would have to have two minimum entries. Since an injec-
tion {1,…,n} → {1,…,n} is also surjective, it follows that for every 
column j, m

h j j− ( )1 ,
 is the minimum entry in both the row h−1(j) and 

the column j, and the statement of the lemma follows from the 
uniqueness of this minimum value. ¨

In this paper we derive the formula for the proportion of 
RM-compliant matrices among all matrices with a given set of 
(pairwise distinct) entries. In other words, given any set V of n2 
distinct values of a discriminability measure (real numbers), we 

1Recall that a measure m is absolutely continuous with respect to the Lebesgue me-
asure if it is defined on the same sigma algebra, and if the m-measure of a set is zero 
whenever its Lebesgue measure is zero.
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Lemma 3.2. Let Mαβ be a matrix obtained from a matrix M by permu-
tations α and β of its rows and columns, respectively. Then Mαβ = Mα′β′ 
implies (α, β) = (α′, β′).

Proof. Denoting Mαβ = Mα′β′ = M′, the entries m
ij
 and ′mij of M and 

M′, respectively, are related to each other as

m mij i j= ′ ( ) ( )α β,

and

m mij i j= ′ ′ ′α β( ), ( ).

If (α, β) ≠ (α′, β′) then, for some (i, j), ′ ( ) ( )m i jα β,  and ′ ′( ) ′( )m i jα β,  would 
have to be two identical entries in different cells, which is excluded 
by Convention 2.1. ¨

Lemma 3.3. If a matrix M satisfies RM, then so will any matrix 
M′ obtained from M by an arbitrary permutation of its rows and 
columns.

Proof. By arbitrary permutations α and β of the rows and columns, 
respectively, we transform M into a matrix M′. Its entries ′mij are 
related to the entries m

ij
 of M as

′ =( ) ( )m mi j ijα β, .

If m
ij
 in M is the minimum entry in the row i, then ′ ( ) ( )m i jα β,  in M′ 

is the minimum entry in the row α(i), as the latter is merely the 
β-permutation of the row i of M; and if m

ij
 in M is the minimum 

entry in the column j, then ′ ( ) ( )m i jα β,  in M’ is the minimum entry in 
the column β(j), as the latter is merely the α-permutation of the 
column j of M. Since permutations are bijective, it follows that the 
minimum entry in every row (column) in M′ is also the minimum 
entry in its column (respectively, row). ¨

Lemma 3.4. By appropriately chosen permutations of rows and columns one 
can bring any RM-compliant matrix M to a special form M′, in which the 
row and column minima are located on the main diagonal in the increasing 
order, ′ < < ′m mnn11  . This special form is unique for every M.

Proof. Let i
1
,…,i

n
 be the rows of M arranged in the increasing order 

of their minima. Let these minima be located in the columns j
1
,…,j

n
, 

respectively. Then the permutations

i i i

k n

k n1

1

… …
↓ … ↓ … ↓

… …
α :

and

j j j

k n

k n1

1

… …
↓ … ↓ … ↓

… …
β :

are easily seen to yield M′ with the desired properties. The unique-
ness statement follows from the uniqueness of the sequences i

1
,…,i

n
 

and j
1
,…,j

n
. ¨

The procedure is illustrated on the 4 × 4 RM-compliant 
matrix below, using the permutation of rows α = {1 → 3, 
2 → 2,3 → 1,4 → 4} and the permutation of columns β = {1 → 1, 
2 → 4,3 → 2,4 → 3}:

mn

x k x n kx x

x

2

21 1 1Aπ π π

π

π π

χ χ

χ

( ) = ( ) ( )
×

−∞

∞

−

∞

−( )
∞

∫ ∫ ∫  



( ) ( ) ( ) 

 nn n kx x2 2 1( ) ( )

=
−∞

( ) ( ) ( ) ( )d d dm m mx
π π π 



( ) ( )

renaming variables ∞∞ ∞ ∞

∫ ∫ ∫
− −

( ) ( )

× ( ) ( ) ( )

 

  

x x k

n n k

k n

x x

x x x x

1 2 1

2 2

1χ χ

χ

S S

S d d d 1m m m(( ) = ( )mn2

A ι ,

where χS(x) is the indicator function of S on reals and ι the identity 
permutation. The Lebesgue measure of

A S0

 for some distinct 1, ,

= ( ) ∈{
= ∈{ }}

x x

x x n

n

i j

1

2

2, , :



n2

i, j

is zero as this set lies within a finite union of (n2 − 1) -dimensional 
hyperplanes. By absolute continuity of m, mn2

A0 0( ) = . Since

S A An2

= 





∪π
π
 0 ,

we have

1
2 2 2 22= ( ) = ( ) = ( )∑m m mn n nnS A An

π
π ! ,ι

whence m mn n n
2 2

1 2( ) ( ) /( !)A Aπ = =ι  for any π. Now, let Π
RM

 be the 
set of all permutations represented by RM-compliant rank order 
n × n matrices, and let the number of these matrices be S

n
. Then

m mn n n

RM

RM

S

n

2 2

2
 π π

π
π∈∏

∈∏
( ) = =∑A A( )

!
,

which proves the lemma. ¨

Obviously, the theoretical values of a discriminability measure 
(such as probabilities of the response “different”) are not random 
variables. The measure m imposed on S therefore cannot be inter-
preted in frequency-related terms. Rather it can be thought of as a 
distribution of “subjective beliefs.” The assignment of one and the 
same measure m to all cells then can be interpreted as a lack of subjec-
tive expectations with respect to possible associations between rows 
and columns. One cannot simply replace theoretical entries in this 
“meta-probabilistic” interpretation with data and treat m as repre-
senting a hypothetical random variable. For one thing, if the possible 
set of data points is finite, as it is usually the case, this reinterpretation 
would necessitate finding a way of dealing with ties, as their prob-
ability would then no longer be zero. Most importantly, however, the 
null hypothesis that all cells of a matrix are generated according to 
one and the same distribution seems neither justified nor interesting. 
In another paper (Dzhafarov et al., 2010 under review), we propose 
both a simple way of dealing with tied entries and a data-analytic 
interpretation of the proportions of matrices with different degrees 
of RM-compliance, appropriately defined.

3. ProPortion of rm-comPliant matrices
Convention 3.1. Unless otherwise specified, henceforth every 
matrix mentioned will be assumed to be a rank order matrix (with 
no ties, in accordance with Convention 2.1).
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1 2 3 4

1 •

2

3

4

1 2 3 4

1 f

2 f •

3

4

1 2 3 4

1 f

2 f

3 f f •

4

1 2 3 4

1 f

2 f

3 f

4 f f f •

Theorem 4.1. The number S
n
 of n × n RM-compliant matrices is

S n k d kn
d d d

k
k

n

n

= ( ) − −( )( )
< <…< =
∑ ∏! , ,

2 2

11 2

2 1cmb

where

cmb

otherwise

x y

x

x y
x y

,

!

!
,

.

( ) = −( ) ≥ ≥







if 0

0
`

Remark 4.2. The combinatorial meaning of cmb(x,y) is the 
number of permutations of x objects taken y at a time (equiva-
lently, the number of ways y distinct objects can be placed in x 
placeholders).

Proof. Let the diagonal entries (ranks) in the matrix M have been 
chosen and arranged as m

11
 = d

1
 < … < m

nn
 = d

n
. We compute the 

number of ways in which we can fill the off-diagonal entries of M 
so that RM is satisfied in the special form (m

ij
 > d

i
 and m

ij
 > d

j
 if 

i ≠ j).
The nth frame should be filled by 2(n − 1) ranks chosen from the 

set of n2 − d
n
 ranks exceeding d

n
. The number of such choices is

cmb n d nn
2 2 1− −( )( ), .

None of these choices can violate the special form of RM, because 
any rank exceeding d

n
 will also exceed any d

k
 for k < n.

For k = 2,…,n − 1, let now all the frames above the kth have been 
filled without violating the special form of RM. The kth frame then 
should be filled by 2(k − 1) numbers chosen from the set of n2 − d

k
 

numbers exceeding d
k
, from which however we should remove all 

the n2 − k2 numbers used up to fill in the previous n − k frames 
and diagonal elements. That is, the kth frame can be filled in by 
(n2 − d

k
) − (n2 − k2) = k2 − d

k
 numbers taken 2(k − 1) at a time. The 

number of such choices is

cmb k d kk
2 2 1− −( )( ), .

None of these choices can violate the special form of RM, because 
any rank exceeding d

k
 will also exceed any d

k′ for k′ < k, and if k′ > k 
then the choice above is irrelevant. The formula also applies to 
k = 1, since d

1
 = 1 (any other placement of 1, the smallest rank in 

M, would violate RM), and cmb(1 − 1, 2 (1 − 1)) = 1, which is the 
number of ways to fill the empty first frame.

Since, for any given n-tuple d
1
 < d

2
 < … < d

n
 and any k = 1,…,n − 1, 

the value of cmb(k2 − d
k
, 2(k − 1)) does not depend on the fillings 

of the previous n − k frames, the number of ways of filling all n 
frames of M is

M 1 2 3 4

1 12 14 4 3

2 8 10 2 9

3 1 11 13 15

4 16 5 6 7

α
=⇒

1 2 3 4

1 1 11 13 15

2 8 10 2 9

3 12 14 4 3

4 16 5 6 7

β
=⇒

M � 1 2 3 4

1 1 13 15 11

2 8 2 9 10

3 12 4 3 14

4 16 6 7 5

Definition 3.5. Let us refer to RM-compliant matrices in this 
 special form (minima on the diagonal in increasing order) as  special 
matrices.

Lemma 3.6. Denoting by s
n
 the number of n × n special matrices and 

by S
n
 the total number of n × n matrices satisfying RM,

S n sn n= ( )! .
2

Proof. Any matrix M that can be transformed (in the sense of 
Lemma 3.4) to a given special matrix M′ can be obtained from 
this M′ by means of permutations

1
1

1

… …
↓ … ↓ … ↓

… …

−

k n

i i ik n

α :

and

1
1

1

… …
↓ … ↓ … ↓

… …

−

k n

j j jk n

β : .

The number of permutations α−1 is n! and so is the number of 
permutations β−1. Since every combination of α−1 and β−1 yields a 
unique matrix M (by Lemma 3.2), the number of such matrices 
for a given M′ is (n!)2. The statement of the lemma follows. ¨

As an immediate consequence we obtain

Corollary 3.7. The proportion p
n
 of RM-compliant matrices among 

all n × n matrices is

       
p

S

n

n

n
sn

n
n= = ( )

2

2

2!

!

!
.
 ¨

4. main theorem
We turn now to computing the number of RM-compliant matrices, 
S

n
 (n ≥ 1).
We will make use of the following notion. For k = 1,…,n, we 

will call the set of cells

i k i k k j j k, : , :( ) <{ }∪ ( ) <{ }
in an n × n matrix M the kth frame (this set is empty for k = 1). 
Clearly, M is the union of its diagonal entries and its frames. The 
letters f in the 4 × 4 matrix below indicate its frame cells and the 
dots fill the corresponding diagonal cells:
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Algorithm 5.1. The following is a Mathematica™ program for 
 computing precise values of p

n
:

In[1]:=
cmb[a_, b_] := a!/(a - b)!;
up[c_] := c^2 - 2*c + 2; 
F[n_, d_, k_] := F[n, d, k] = If[k < n, 
   cmb[k^2 - d, 2*k - 2]* Sum[F[n, d1, k +
    1], {d1, d + 1, up[k + 1]}]]; 
F[n_, d_, n_] := cmb[n^2 - d, 2*n - 2]
In[2]:=
n = ???; (* ??? to be replaced with the 
    desired value of n *) 
Print[F[n, 1, 1]*(n!)^2/(n^2)!]

We present the values of p
n
 for n = 2,…,13, rounded to the sixth 

decimal place:

n pn

2 0.333333

3 0.1

4 0.028571

5 0.007937

6 0.002165

7 0.000583

8 0.000155

9 0.000041

10 0.000011

11 3. × 10−6

12 1. × 10−6

13 0.

Under our “meta-probabilistic” interpretation, the table shows 
that the compliance with RM even for matrices as small as 
4 × 4 or 5 × 5 can be considered “unlikely to occur by chance 
alone.”
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and the statement of the theorem follows by Lemma 3.6. ¨

5. comPutational algorithm
Here we present the formula of Theorem 4.1 in a form which is less 
compact but more economic for computational purposes.
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 we have d
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 + 1 if k > 1 (and 
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 ≥ 1); and in order for the multiplicands cmb(k2 − d
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nonzero we should also require that d
k
 ≤ k2 − 2(k − 1) for k = 1,…,n. 

It is easy to see, in particular, that the only values for the ranks d
2
 

and d
1
 which satisfy these inequalities are 2 and 1, respectively. The 

formula for the number of special matrices acquires the form
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The number of the arithmetic operations can be further reduced 
if we rewrite this as
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