
www.frontiersin.org December 2010 | Volume 4 | Article 179 | 1

Methods Article
published: 02 December 2010
doi: 10.3389/fnins.2010.00179

Pyff – a Pythonic framework for feedback applications and
stimulus presentation in neuroscience

Bastian Venthur1*, Simon Scholler1,2, John Williamson3, Sven Dähne1,2, Matthias S. Treder1, Maria T. Kramarek1,2,
Klaus-Robert Müller1,2,4 and Benjamin Blankertz1,3,5

1 Machine Learning Laboratory, Berlin Institute of Technology, Berlin, Germany
2 Bernstein Center for Computational Neuroscience, Berlin, Germany
3 Department of Computing Science, University of Glasgow, Glasgow, Scotland
4 Bernstein Focus: Neurotechnology, Berlin, Germany
5 Fraunhofer FIRST (IDA), Berlin, Germany

This paper introduces Pyff, the Pythonic feedback framework for feedback applications and
stimulus presentation. Pyff provides a platform-independent framework that allows users to
develop and run neuroscientific experiments in the programming language Python. Existing
solutions have mostly been implemented in C++, which makes for a rather tedious programming
task for non-computer-scientists, or in Matlab, which is not well suited for more advanced visual
or auditory applications. Pyff was designed to make experimental paradigms (i.e., feedback and
stimulus applications) easily programmable. It includes base classes for various types of common
feedbacks and stimuli as well as useful libraries for external hardware such as eyetrackers. Pyff
is also equipped with a steadily growing set of ready-to-use feedbacks and stimuli. It can be
used as a standalone application, for instance providing stimulus presentation in psychophysics
experiments, or within a closed loop such as in biofeedback or brain–computer interfacing
experiments. Pyff communicates with other systems via a standardized communication protocol
and is therefore suitable to be used with any system that may be adapted to send its data in
the specified format. Having such a general, open-source framework will help foster a fruitful
exchange of experimental paradigms between research groups. In particular, it will decrease
the need of reprogramming standard paradigms, ease the reproducibility of published results,
and naturally entail some standardization of stimulus presentation.

Keywords: neuroscience, BCI, Python, framework, feedback, stimulus presentation

Edited by:
David N. Kennedy, University of
Massachusetts Medical School, USA

Reviewed by:
Jonathan Peirce, Notthingham
University, UK
K. Jarrod Millman, University of
California at Berkeley, USA
Satrajit S. Ghosh, Massachusetts
Institute of Technology, USA

*Correspondence:
Bastian Venthur, Machine Learning
Laboratory, Berlin Institute of
Technology, Franklinstraße 28/29 10587
Berlin, Germany.
e-mail: bastian.venthur@tu-berlin.de

library of ready-to-go experiments. Class experience shows that
non-expert programmers typically learn the use of our framework
within 2 days. Note that a C++ implementation can easily take one
order of magnitude more time to learn than the corresponding
Python implementation and even for an experienced programmer
a factor of two still remains (Prechelt, 2000). The primary aim of
Pyff was to provide a convenient basis for programming paradigms
in the context of brain–computer interfacing. To that end, Pyff can
also easily be linked to BCI systems like BCI2000 (Schalk et al.,
2004), and the Berlin BCI via a standard communication protocol,
see Section 3. Furthermore, Pyff can be used for general stimulus
presentation. This allows a seamless transition from experiments in
the fields of cognitive psychology, neuroscience, or psychophysics
to BCI studies.

Since Pyff is open source, it makes an ideal basis for a vivid
exchange of experimental paradigms between research groups and
it releases the user from needing to reprogram standard paradigms.
Furthermore, providing paradigm implementations as supplemen-
tary material within the Pyff framework will ease the reproducibility
of published results. The following sections of this paper introduce
the software concept, detail a number of typical paradigms and
conclude. Several appendices expand on the software engineering
side and the code of a sample paradigm is discussed in detail.

1 IntroductIon
During the past years, the neuroscience community has been
moving toward increasingly complex stimulation paradigms
(Pfurtscheller et al., 2006; Brouwer and van Erp, 2010; Schreuder
et al., 2010) that aim to investigate human function in a more
natural setting. A technical bottleneck in this process is program-
ming these complex stimulations. In particular, the rapidly growing
field of brain–computer interfacing (BCI, Dornhege et al., 2007)
requires stimulus presentation programs that can be used within a
closed loop, i.e., feedback applications that are driven by a control
signal that is derived from ongoing brain activity.

The present paper suggests a Python-based framework for
experimental paradigms that combines the ease in programming
and the inclusion of all necessary functionality for flawless stimulus
presentation. This is well in line with the growing interest toward
using Python in the neuroscience community (Spacek et al., 2008;
Brüderle et al., 2009; Drewes et al., 2009; Jurica and VanLeeuwen,
2009; Ince et al., 2009; Pecevski et al., 2009; Strangman et al., 2009).
Pyff provides a powerful yet simple and highly accessible framework
for the development of complex experimental paradigms contain-
ing multi-media. To this end, it accommodates a standardized inter-
face for implementing experimental paradigms, support for special
hardware such as eye trackers and EEG equipment as well as large

Frontiers in Neuroscience | Neuroscience Methods December 2010 | Volume 4 | Article 179 | 2

Venthur et al. Pyff

Pyff provides a VisionEggFeedback base class which allows
for easily writing paradigms using Vision Egg for stimulus pres-
entation. The other two modules have up-to-date not been
used within Pyff.
The Psychophysics Toolbox (Brainard, 1997) is a free set of
Matlab and GNU/Octave functions for vision research. Being
available since the 1990s, it is now a mature research tool and
particularly popular among psychologists and neuroscien-
tists. Currently, there is no principle framework to couple the
Psychophysics Toolbox to a BCI system.
In addition to this, there are also commercial solutions such
as E-Prime (Psychology Software Tools, Inc) and Presentation
(Neurobehavioral Systems) which are software for experiment
design, data collection, and analysis.

(3) BCI2000 (Schalk et al., 2004) is a general-purpose system for BCI
research that is free for academic and educational purposes. It is
written in C + + and runs under Microsoft Windows. BCPy2000
(Schreiner, 2008) is an extension that allows developers to imple-
ment BCI2000 modules in Python, which is less complex and less
error prone than C++. BCPy200 is firmly coupled to BCI2000
resulting in a more constraint usage compared to Pyff.

3 overvIew of Pyff
This section gives an overview of our framework. A more complete
and technical description is available in the Appendix.

The Pythonic feedback framework (Pyff) is a framework to
develop experimental paradigms. The foremost design goal was
to make the development of such applications fast and easy, even
for users with little programming experience. For this reason we
decided to the Python programming language as it is easier to
learn than low level languages like C++. The code is shorter and
clearer and thus leads to faster and less error prone results. Python
is slower than a low level language like C++, but usually fast enough
for multi media applications. In rare cases where Python is too slow
for complex calculations, it is easy to port the computationally
intensive parts to C and then call them within Python.

The framework consists of four parts: the Feedback Controller,
a graphical user interface (GUI), a set of Feedbacks and a collection
of Feedback base classes (see Figure 1).

The Feedback Controller controls the execution of the stimulus
and feedback applications and forward incoming signals from an
arbitrary data source such as a BCI system to the applications. To
enable as many existing systems as possible to communicate with
Pyff, we developed a simple communications protocol based on
the user datagram protocol (UDP). The protocol allows for trans-
portation of data over a network using extensible markup language
(XML) to encode the signal. This protocol enables virtually any
software that is able to output it’s data in some form to send it to
Pyff with only minor modifications.

The GUI controls the Feedback Controller remotely. Within the
GUI the experimenter can select and start Feedbacks as well as inspect
and manipulate their variables (e.g., number of trials, position, and
color of visual objects). The ability to inspect the Feedback applica-
tion’s internal variables in real time while the application is running
makes the GUI an invaluable debugging tool. Being able to modify
these variables on the fly also provides a great way to explore different
settings in a pilot experiment. The GUI also uses the aforementioned

Throughout this paper, we use the term stimulus and feedback
applications synonymous with experimental paradigm. The former
term is common in the BCI field, whereas the latter is better known
in neuroscience. The difference between a feedback application and
a stimulus application is defined by the setup of the experiment. If
the experimental setup forms a closed loop, such as in a neurofeed-
back paradigm, we call the application a feedback application. If the
loop is not closed, we call it stimulus presentation. When referring
to the actual software implementation of a paradigm, we use the
term Feedback (with a capital f), synonymous for stimulus and
feedback applications.

2 related work
Pyff is a general, high-level framework for the development of
experimental paradigms within the programming language Python.
In particular, Pyff can receive control signals of a BCI system to
drive a feedback application within a closed-loop mode. Other
software related to Pyff can be grouped in the following three
categories:

(1) General Python module for visual or auditory presentation
(2) Packages for stimulus presentation and experimental control
(3) Feedback applications for the use with BCI systems

Software of categories (1) and (2) can be used within Pyff, while
(3) is an alternative to Pyff. In the following, we will shortly discuss
prominent examples of the three groups.

(1) These modules are usually used to write games and other sof-
tware applications and can be used within Pyff to control sti-
mulus presentation. Pygame1 is a generic platform for gaming
applications. It can be readily used to implement visual and
auditory stimulus presentation. Similar to Pygame, pyglet2 is
a framework for developing games and visually rich appli-
cations and therefore suited for visual stimulus applications.
PyOpenGL3 provides bindings to OpenGL and related APIs,
but requires the programmer to be familiar with OpenGL.
In Pyff, a Pygame base class (see Section 13) exists, that facili-
tates the development of experimental paradigms based on
this module.

(2) There are some comprehensive Python libraries that provide
means for creating und running experimental paradigms.
Their advanced functionality for stimulus presentation can
be used within Pyff. Vision Egg (Straw, 2008) is a high-level
interface to OpenGL. It was specifically designed to produce
stimuli for vision research experiments. PsychoPy (Peirce,
2007) is a platform-independent experimental control system
written in Python. It provides means for stimulus presenta-
tion and response collection as well as simple data analysis.
PyEPL (Geller et al., 2007) is a another Python library for
object-oriented coding of psychology experiments which
supports the presentation of visual and auditory stimuli as
well as manual and sound input as responses.

1Pygame homepage. http://pygame.org/
2pyglet homepage. URL http://pyglet.org/
3Pyopengl homepage. URL http://pyopengl.sourceforge.net/

www.frontiersin.org December 2010 | Volume 4 | Article 179 | 3

Venthur et al. Pyff

communication protocol and thus does not need to run on the
same machine as the Feedback Controller. This can be convenient
for experiments where the subject is in a different room than the
experimenter. Note, that the use of the GUI is optional as everything
can also be controlled remotely via UDP/XML, see Section 11.

Pyff not only provides a platform to develop Feedback applica-
tions and stimuli easily, but it is also equipped with a variety of
paradigms (see Section 4 for examples). The BBCI group will con-
tinue to publish feedback and stimulus applications under a Free
Software License, making them available to other research groups
and we hope that others will also join our effort.

The collection of Feedback base classes provides a convenient set
of standard methods for paradigms which can be used in derived
Feedback classes to speed up the development of new Feedback
applications. This standard functionality reduces the overheads of
developing a new Feedback as well as minimizing code duplication.
To give an example, Pygame is frequently used to provide the graphical
output of the Feedback. Since some things need to be done in every
Feedback using Pygame (i.e., initializing the graphics or regularly poll-
ing Pygame’s event queue), we created the PygameFeedback base class.
It contains methods required by all Pygame-based Feedbacks and some
convenient helper methods we find useful. Using this base class for in
a Pygame-based Feedback can drastically reduce the amount of new
code required. It helps to concentrate on the code needed for the actual
paradigm instead of dealing with the quirks of the library used. Pyff
already provides some useful base classes like VisionEggFeedback,
EventDrivenFeedback, and VisualP300. Our long term goal is to
provide a rich set of base classes for standard experimental paradigms
to ease the effort of programming new Feedbacks even more.

4 Selected feedbackS
Pyff allows for the rapid implementation of one’s own paradigms,
but it also comes equipped with a variety of ready-to-use para-
digms. In the following sections, we will present a few examples.

4.1 Hex-o-SPell for contInuouS InPut SIgnalS
The Hex-o-Spell is a text-entry device that is operated via
 timing-based changes of a continuous control signal (Müller and
Blankertz, 2006; Williamson et al., 2009). These properties render
it a suitable paradigm for BCI experiments in which brain-state
discriminating strategies are employed that also have a fine tem-
poral resolution.

The structure of the Hex-o-Spell Feedback with all its visual
components is shown in Figure 2A. The main visual elements are
an arrow that is surrounded by an array of six hexagons in the
center of the screen, a large text board that displays the spelled
text, and a bar of varying height that indicates the current value
of the control signal. The hexagons surrounding the central arrow
contain the symbols that are used for spelling.

The actual selection of a symbol is a two stage process and
involves the subject controlling the orientation and length of the
arrow. How exactly the parameters of the arrow are manipulated by
the subject is explained in the next paragraph, while the remainder
of this paragraph outlines the symbol selection process. In the first
stage each hexagon contains five symbols. The subject has to select
the hexagon that contains the desired symbol by making the arrow
point to it and then confirming the choice by making the arrow

FIgure 1 | Overview of the Pyff framework. The framework consists of the
Feedback Controller, the GUI, a collection of Feedbacks and Feedback base
classes.

A

B C

FIgure 2 | The Hex-o-Spell Feedback. (A) All components of the Hex-o-Spell
are visible. The Feedback is in selection stage one and the currently spelled
text consists of the letter “B” only. (B) The symbol layout after spelling of
“BERL.” (C) The second hexagon (clockwise, from the top) has been selected
in stage one and the Feedback is now in stage two.

grow until it reaches the hexagon. After this confirmation, the sym-
bol content of the selected hexagon is distributed over the entire
hexagon array, such that each hexagon now contains maximally one
symbol only. There is always one hexagon that contains no symbol,
which, in conjunction with the delete symbol “<,” represents a prac-
tically unlimited undo option. The location of individual symbols
in stage two reflects the positions they had in the single hexagon
in stage one (compare Figures 2B,C). Now the subject has to posi-
tion the arrow such that it points to the hexagon that contains the
desired symbol and, again, confirm the selection by making the
arrow grow until the respective hexagon is reached. After the sym-
bol has been selected, the spelled text in the text board is updated
accordingly. The Hex-o-Spell Feedback now returns to stage one,

Frontiers in Neuroscience | Neuroscience Methods December 2010 | Volume 4 | Article 179 | 4

Venthur et al. Pyff

process as described in Section 4.1, but in the ERP-based variant the
symbols are not selected by a rotating arrow, but by the ERPs caused
by intensification of elements on the screen: Discs containing the
symbols are intensified in random order and if the attended disc
is intensified (Figure 3), a characteristic ERP is elicited. After 10
rounds of intensifications the BCI system has enough confidence to
decide which of the presented discs the subject wanted to select.

Intensification is realized by up-sizing the disc including the
symbol(s) by 62.5%. Each intensification is accompanied by a trig-
ger which is sent to the EEG using the send_parallel() method
of the Feedback base class. The triggers mark the exact points in
time of the intensifications and are essential for the BCI system to
do ERP-based BCI.

The ERP Hex-o-Spell Feedback class is derived from the
VisualP300 base class, provided by Pyff. This base class provides
many useful methods to quickly write Visual ERP-based feedbacks
or stimuli. For the actual drawing on the screen, Pygame1 is used.

4.3 SSveP-baSed Hex-o-SPell
The brain responds to flickering visual stimuli by generating steady
state visual evoked potentials (SSVEP, Herrmann, 2001) of correspond-
ing frequency and its harmonics. Various studies have used this phe-
nomena to characterize the spatial attention of a subject within a set
of stimuli with differing frequencies. Cheng et al. (2002) showed a
multi-class SSVEP-based BCI, where the subject had to select 1 of 10
numbers and two control buttons with mean information transfer rate
of 27.15 bits/min. Müller-Putz and Pfurtscheller (2008) demonstrated
that subjects where able to control a hand prosthesis using SSVEP.

In our SSVEP-based variant of the Hex-o-Spell, the selection of
symbols is again a two stage process as described in Section 4.1. In
the SSVEP-based variant there is no rotating arrow but the hexagons
are all blinking. The blinking frequencies are pairwise different
and fixed for each hexagon. Two different approaches can be used
to select the hexagon containing the given letter: overt- and covert
attention. In the overt attention case the subject is required to look at
the hexagon with the letter, whereas in the case of covert attention,
the subject must look at the dot in the middle and only concentrate
on the desired hexagon. In both cases it is tested if the subject looks
at the required spot by means of an eye tracker. If the subject aims
the gaze somewhere else, the trial is stopped and, after showing an
error message accompanied by a sound, it is restarted.

i.e., the hexagons again show their original symbol content and the
symbol selection process can begin anew. All major events, includ-
ing for example on- and offsets of transition animations between
stages, symbol selection, and GUI interaction (play, pause, stop)
are accompanied by sending an event-specific integer code to the
parallel port of the machine that runs the Hex-o-Spell Feedback.
These codes can be incorporated in the marker structure of the
EEG recording software and used for later analysis.

In order to operate the Hex-o-Spell symbol selection mecha-
nism, the subject has to control the behavior of the arrow. The
arrow is always in one of three distinct states: (1) clockwise rota-
tion, (2) no rotation, and (3) no rotation and growth, i.e., increase
in length until a certain maximum length. Upon returning from
state (3) to state (2), the arrow shrinks back to default length. The
states of the arrow are directly linked to the control signal from the
Feedback Controller, which is required to be in the range between
−1 and 1. Two thresholds, t

1
 and t

2
 with −1 < t

1
 < t

2
 < 1, partition

the control signal range in three disjunct regions and thereby allow
switching of arrow states by altering the control signal strength.
The two thresholds are visualized as part of the control signal bar
and therefore provide the subject with feedback as to how much
more they have to in-/decrease signal strength in order to achieve
a certain arrow state. The thresholds, time constants that deter-
mine rotation and scaling speed as well as other parameters of
the Feedback can be adjusted during the experiment to allow for
further accommodation to the subject.

So far all ingredients that are essential for operating the Hex-o-
Spell Feedback have been explained. Additionally, our implementation
includes mechanisms that speed up the spelling of words consider-
ably by exploiting certain statistical properties of natural language. We
achieve this by making those symbols easier accessible that are more
likely to be selected next. In stage one the arrow starts always pointing
to the hexagon containing the most probable next symbol. Additionally
the positions of letters within each hexagon in stage one are arranged
so that the arrow always starts pointing to the most probable symbol
in stage two, followed by the second most probable, etc. The selection
probability distribution model is updated after each new symbol. With
these text-entry aids, the Hex-o-Spell Feedback allows for faster spell-
ing rates of up to 7.6 symbols/min (Blankertz et al., 2007).

This Feedback requires the following packages to be installed:
NumPy4 and Panda3D5. Numpy is essential for the underlying geo-
metrical computations (angles, position, etc.) and the handling of
the language model data. Panda3D provides the necessary subrou-
tines for rendering the visual feedback. Both packages are freely
available for all major platforms from their respective websites.

4.2 erP-baSed Hex-o-SPell
The ERP-based Hex-o-Spell (Treder and Blankertz, 2010) is an
adaptation of the standard Hex-o-Spell (see Section 4.1) utilizing
event related potentials (ERPs) to select the symbols. The ERP is the
brain response following an external or internal event. It involves
early positive and negative components usually associated with
sensory processing and later components reflecting cognitive proc-
esses. The main course of selecting symbols works in a two stage

4Numpy homepage. URL http://numpy.scipy.org/
5Panda3d homepage. URL http://panda3d.org/

FIgure 3 | Stage one and two of the erP-based Hex-o-Spell. Instead of an
arrow, intensified discs are used to present the current selection.

www.frontiersin.org December 2010 | Volume 4 | Article 179 | 5

Venthur et al. Pyff

Using the Pyff framework for communication with a BCI system,
the photobrowser implementation displays a 5 × 6 grid of photo-
graphs. The subject watches the whole grid, but attends to an image
to be selected for further use. This can be done by direct gaze, but
alternatively also covert attention mechanisms without direct gaze can
be utilized by the subject. [For an investigation of the effect of target
fixation see (Treder and Blankertz, 2010)]. During this time, the imple-
mentation stimulates subsets of images in a series of discrete steps,
simultaneously sending a synchronization trigger into the EEG system,
so that the timing of the stimulation can be matched to the onset of
the visual stimulation. The photobrowser goes through a series of
stimulation cycles, where subsets of the photographs are highlighted.
After a sufficient number of these cycles, enough evidence is built up
to determine the photograph the user is interested in selecting.

Stimulated images flash white, with a subtle white grid superim-
posed, and are rotated and scaled at the same time. This gives the
visual impression of the images suddenly glowing and popping. The
specific set of the visual parameters used (e.g., scale factor, tilt factor,
flash duration, flash color) can all be configured to maximize the
ERP response. The timing of these stimulations is also completely
adjustable via the Pyff interface. The browser uses an immediate
onset followed by an exponential decay for all of the stimulation
parameters (for example, at the instant of stimulation the image
turns completely white and then returns to its normal luminosity
according to an exponential schedule).

The feedback uses PyOpenGL3 and Pygame1 for rapid display
updates and high-quality image transformation. OpenGL pro-
vides the hardware transformation and alpha blending required
for acceptable performance. NumPy4 is used in the optimization
routines to optimize the group of images stimulated on each cycle.
Pyff provides access to the parallel ports for hard synchroniza-
tion between the visual stimuli and the EEG recordings. Even in
this time-critical application, Python with these libraries has good
enough timing to allow the use of the ERP paradigm.

4.5 goalkeePer
The Goalkeeper Feedback is intended to be used for rapid-response
BCIs (e.g., Ramsey et al., 2009). In a rapid-response BCI, subjects
are forced to alter their brain states in response to a cue as fast as
possible in order to achieve a given task. The major aim of such
experiments is to increase the bit-rates of BCI systems.

The main components of this Feedback are a ball and a keeper
bar (see Figure 5). The ball starts at the top of the screen and then
descends automatically with a predefined velocity while the keeper
is controlled by the subject. The task of the subject is to alter the
keeper position via the BCI such that the keeper catches the ball.
The powerbar at the bottom of the screen visualizes the classifier
output and thus gives immediate feedback to the subject, thereby
helping them to perform the task more successfully.

Each trial starts with an animation (two hemispheres approach-
ing each other) that is intended to make the beginning of the actual
trial (i.e., the descent of the ball) predictable for the subject. After
the animation, the ball will choose one of two directions at random
(i.e., left or right) and start to descend. Since subjects normally need
some time to adapt their brain states according to the direction of ball
movement, the keeper is not controllable (i.e., the classifier output
is not used) in the first period of the descent (e.g., the first 300 ms).

Before the experiment one might be interested in the optimal
blinking frequencies for the subject. The SSVEP-based Hex-o-Spell,
supports a training mode where one centered hexagon is blink-
ing in different frequencies. After testing different frequencies in
random order, the experimenter can chose the six frequencies with
the highest signal to noise ration in the power spectrum of the
recorded SSVEP at the flicker frequency of the stimulus or one of
its harmonics. Since harmonics of different flicker frequencies can
overlap, care must be taken so that the chosen frequencies can be
well discriminated (Krusienski and Allison, 2008).

Since in SSVEP experiments appropriate frequencies of the
flashing stimuli are very important, special attention was given
to this matter. Thus, the Feedback was programmed using Vision
Egg (Straw, 2008) which allows very accurate presentation of time-
critical stimuli. We verified that the specified frequencies where
exactly produced on the monitor by measuring them with an oscil-
loscope (Handyscope HS3 by Bitzer Digitaltechnik).

4.4 erP-baSed PHoto browSer
The photobrowser Feedback enables users to select images from a col-
lection of images, e.g., for selecting images from an album for future
presentation, or simply for enjoyment. Images are selected by detect-
ing a specific ERP response of the EEG upon attended target images
compared to non-attended non-target images, similar to the ERP-based
Hex-o-Spell, see Section 4.2. The photobrowser uses the images them-
selves as stimuli, tilting and flashing some subgroup of the displayed
images at regular intervals (see Figure 4). Users simply focus attention on
a particular image, and the system randomly stimulates the whole col-
lection. After several stimulation cycles, there is sufficient evidence from
the ERP signals to detect the image that the user is responding to.

A

B C

FIgure 4 | (A) The ERP-based photobrowser in operation. (B) Close up of
images in non-intensified state. (C) Same images during the intensification
cycle, with two images intensified.

Frontiers in Neuroscience | Neuroscience Methods December 2010 | Volume 4 | Article 179 | 6

Venthur et al. Pyff

n-back A parametric paradigm to induce workload. Symbols are
presented in a chronological sequence and upon each presen-
tation participants are required to match the current symbol
with the nth preceding symbol (Gevins and Smith, 2000).

boring clock A computerized version of the Mackworth clock test,
a task to investigate long-term vigilance and sustained atten-
tion. Participants monitor a virtual clock whose pointer makes
rare jumps of two steps and they press a button upon detecting
such an event (Mackworth, 1948).

oddball A versatile implementation of the oddball paradigm using
visual, auditory, or tactile stimuli.

4.7 SuPPort for SPecIal Hardware
Since Python can utilize existing libraries (e.g., C-libraries, dlls). It
is easy to use special hardware within Pyff. Pyff already provides a
Python module for the IntelliGaze eye tracker by Alea Technologies
and the g.STIMbox by g.tec. Other modules will follow.

5 uSIng Pyff
So far, we stressed the point that implementing an experiment
using Pyff is fast and easy, but what exactly needs to be done?
Facing the task of implementing a paradigm one has three options:
First, check if a similar solution already exists in Pyff that can be
used for the given experiment with minor modifications. If it is a
standard experiment in BCI or psychology, chances are high that it
is already included in Pyff. Second, if there is no application avail-
able matching the given requirements, a new Feedback has to be
written. In this case one has to check if one of the given base classes
match the task or functionality of the paradigm (e.g., is it a P300
task?, is it written using Pygame?, etc.). If so, the base class can be
used to develop the feedback or stimulus application which will
drastically reduce the code and thus the time required to create the
Feedback. Third, if everything has to be written from scratch and
no base class seems to fit, one should write the code in a way that
is well structured and reusable. A base class may be distilled from
the application to reduce the amount of code to be written the next
time a similar task appears. In the second and third case, the authors
would ideally send their code to us in order to include it in the Pyff
framework. Thus the collection of stimuli and base classes would
grow, making the first case more probable over time.

5.1 eaSe of uSe
We have successfully used Pyff for teaching and experiments in
our group since 2008. Our experience shows that researchers and
students from various backgrounds quickly learn how to utilize Pyff
to get their experiments done. We discuss three cases exemplary: In
the early stages of Pyff, we asked a student to re-implement a given
Matlab-Feedback in Pyff, to test if Pyff is feasible for our needs.
We used Matlab for our experiments back then and we wanted to
test if our new framework is capable of substituting the Matlab
solutions. The paradigm was a Cursor-Arrow task, a standard BCI
experiment. Given only the framework and documentation, the
student completed the task within a few days without any ques-
tions. The resulting Feedback looked identical to the Matlab version
but ran much smoother. Shortly later we wanted to compare the
effort needed to implement a Feedback in Matlab and with our
framework. We asked a student who was proficient in Matlab and

There are three main positions for the keeper: middle (initial posi-
tion), left, and right. If the classifier threshold on either side is reached,
the keeper will change its position to the respective side. This is typi-
cally realized as a non revertible jump according to the goalkeeper
metaphor, but optionally a different behavior can be chosen. The
velocity of the ball can be gradually increased during the experiment
in order to force the subjects to speed up their response.

In addition to a number of general variables which can be used
to define the time course (e.g., the time of a trial or the start ani-
mation) or the layout (e.g., the size of the visual components of
the Feedback), there are also several main settings governing the
work flow of the Feedback: (1) The powerbar can either show the
direct classifier output or integrate the classifier output over time
in order to smooth rapid fluctuations. (2) The keeper can either
be set to perform exactly one move, or the Feedback can allow for
a return of the keeper back to other positions. (3) The position
change of the keeper can either be realized as a rapid jump or a
smooth movement with a fixed duration. (4) Two additional control
signals can optionally be visualized in the start animation by color
changes between green and red of the two hemispheres. This option
is inspired by the observation that a high pre-stimulus amplitude of
sensorimotor rhythms (SMR) promotes better feedback perform-
ance in the subsequent trial (Maeder et al., 2010). (5) The trial can
be prolonged if the keeper is still in the initial position (i.e., the
subject did not yet reach the threshold for either side).

The implementation of the Feedback is done in a subclass of
the MainLoop_Feedback base class provided by Pyff and using
Pygame1 and the Python image library (PIL)6 for presentation.

4.6 otHer feedbackS and StImulI
While the previous selection of paradigms had a focus on brain–
computer interface research, Pyff also ships with a growing number
that are widely used in neuroscience, neuroergonomics, and psy-
chophysics. The following list gives a few examples.

d2 test A computerized version of the d2 test (Brickenkamp,
1972), a Psychological pen and paper test to assess concen-
tration- and performance ability of a subject. The complete
listing of the application is in Section 13.

6Pil homepage. URL http://www.pythonware.com/products/pil/

A B

FIgure 5 | The goalkeeper Feedback: (A) Feedback during the trial start
animation. (B) Feedback during the trial.

www.frontiersin.org December 2010 | Volume 4 | Article 179 | 7

Venthur et al. Pyff

referenceS
Acqualagna, L., Treder, M. S., Schreuder,

M., and Blankertz, B. (2010). A novel
brain–computer interface based on
the rapid serial visual presentation
paradigm, Proc. 32nd Ann. Int. IEEE
EMBS Conf. 2686–2689.

Beazley, D. M. (1996). Swig: an easy to use
tool for integrating scripting languages
with c and c++, TCLTK’96: Proceedings
of the 4th conference on USENIX Tcl/Tk
Workshop, 1996, USENIX Association,
Berkeley, CA, USA, 1996, pp. 15–15.
URL http://www.swig.org/

Blankertz, B., Krauledat, M., Dornhege,
G., Williamson, J., Murray-Smith, R.,
and Müller, K.-R. (2007). A note on
brain actuated spelling with the Berlin
brain-computer interface. Lect. Notes
Comput. Sci. 4555, 759.

Brainard, D. (1997). The psychophysics
toolbox. Spat. Vis. 10, 433–436.

Brickenkamp, R. (1972). Test d2.
Göttingen, Germany: Hogrefe Verlag
für Psychologie.

Brickenkamp, R., and Zillmer, E. (1998).
D2 Test of Attention. Göttingen,
Germany: Hogrefe and Huber.

Brouwer, A.-M., and van Erp J. B. F.
(2010). A tactile p300 brain-computer
interface. Front. Neuroprosthetics 4:19.
doi: 10.3389/fnins.2010.00019.

Brüderle, D., Müller, E., Davison, A.,
Muller, E., Schemmel, J., and Meier,
K. (2009). Establishing a novel mod-
eling tool: a python-based interface
for a neuromorphic hardware sys-
tem. Front. Neuroinformatics 3:17. doi:
10.3389/neuro.11.017.2009.

Cheng, M., Gao, X., Gao, S., and Xu, D.
(2002). Design and implementation of
a brain-computer interface with high

transfer rates. IEEE Trans. Biomed.
Eng. 49, 1181–1186.

Dornhege, G., del, J., Millán, R.,
Hinterberger, T., McFarland, D.,
and Müller, K.-R. (eds.). (2007).
Toward Brain-Computer Interfacing.
Cambridge, MA: MIT Press.

Drewes, R., Zou, Q., and Goodman, P.
(2009). Brainlab: a Python toolkit
to aid in the design, simulation, and
analysis of spiking neural networks
with the NeoCortical simulator. Front.
Neuroinformatics 3:16. doi: 10.3389/
neuro.11.016.2009.

By providing an interface utilizing well known standard
 protocols and formats, this framework should be adaptable to
most existing neuro systems. Such a unified framework creates
the unique opportunity of exchanging neuro feedback appli-
cations and stimuli between different groups, even if indi-
vidual systems are used for signal acquisition, processing, and
classification.

At the time of writing Pyff has been used in four labs and several
publications (Ramsey et al., 2009; Acqualagna et al., 2010; Höhne
et al., 2010; Maeder et al., 2010; Schmidt et al., 2010; Treder and
Blankertz, 2010; Venthur et al., 2010).

We consider Pyff as stable software which is actively main-
tained. To date, new versions are released every few months that
include bug fixes and new features. We plan to continue develop-
ment of Pyff as our group uses it to conduct many experiments
and other groups are starting to adopt it. As such, we realize
that backward compatibility of the API is very important and
we work hard to avoid breakage of existing experiments when
making changes.

Pyff has a homepage7, where users can download current as
well as older versions of Pyff. The homepage also provides online
documentation for each Pyff version and a link to Pyff ’s mailing
list for developers and users and to Pyff ’s repository.

Pyff is free software and available under the terms of the GNU
general public license (GPL)8. Pyff currently requires Python 2.69
and PyQT version 410 or later. Some Feedbacks may require addi-
tional Python modules. Pyff runs under all major operating systems
including Linux, Mac, and Windows.

acknowledgmentS
This work was partly supported by grants of the Bundesministerium
für Bildung und Forschung (BMBF) (FKZ 01IB001A, 01GQ0850)
and by the FP7-ICT Programme of the European Community,
under the PASCAL2 Network of Excellence, ICT-216886. This pub-
lication only reflects the authors’ views. Funding agencies are not
liable for any use that may be made of the information contained
herein. We would also like to thank the reviewers, who helped to
substantially improve the manuscript.

Python to implement a Feedback in Matlab and our framework.
The paradigm was quite simple: a ball is falling from the top of
the screen, and the users tasks was to “catch” the ball with a bar
on the bottom of the screen, which can only be moved to the left
or right. The student implemented both Feedbacks within days
without any questions regarding Pyff or Matlab. After the pro-
gramming he told us that he had no problems with any of the two
implementations. Since the given task was relatively simple he could
use Matlab’s plotting primitives to draw the Feedback on screen
which was easier than with Pygame, which he used to draw the
primitives on the screen, where he had to read the documentation
first. He reported however that a more complex paradigm would
also have required much more effort for the Matlab solution and
only a little more for the Pyff version. In a third test we wanted a
rather complex paradigm and see how well our framework copes
with the requirements. The idea was to simulate a liquid floating
on a plane which can tilt in any direction. The plane has three or
more corners and the user’s task is to tilt the plane in a way that
the liquid floats to a designated corner. The simulation included a
realistic physical model of liquid motion. A Ph.D. student imple-
mented the Feedback in Pyff, the physical model was developed
in C and then SWIG (Beazley, 1996) was used to wrap the C-code
in Python. He implemented the Feedback without any questions
regarding the framework. The result is an impressive simulation,
which runs very smoothly within our framework.

These three examples indicate that students and researchers
without experience with Pyff have no difficulties implementing
paradigms in a short time. The tasks varied from simple Matlab to
Python comparisons to significantly more complex applications.
This is consistent with our more than 2 years of experience using
Pyff in our lab, an environment where co-workers and students
use it regularly for teaching and experiments.

6 concluSIon
The Pythonic Feedback Framework provides a platform for writ-
ing high-quality stimulus and feedback applications with minimal
effort, even for non-computer scientists.

Pyff ’s concept of Feedback base classes allows for rapid feedback
and stimulus application development, e.g., oddball paradigms,
ERP-based typewriters, Pygame-based applications, etc. Moreover,
Pyff already includes a variety of stimulus presentations and feed-
back applications which are ready to be used instantly or with mini-
mal modifications. This list is ever growing as we constantly develop
new ones and other groups will hopefully join the effort.

7Pyff homepage. URL http://bbci.de/pyff/
8GNU general public license. URL http://www.gnu.org/copyleft/gpl.html
9Python homepage. URL http://python.org/
10Pyqt homepage. URL http://www.riverbankcomputing.co.uk/software/pyqt/

Frontiers in Neuroscience | Neuroscience Methods December 2010 | Volume 4 | Article 179 | 8

Venthur et al. Pyff

optimization of working conditions
in industry, in: Proc. 2010 IEEE Conf.
Syst. Man Cybernet. in press.

Williamson, J., Murray-Smith, R.,
Blankertz, B., Krauledat, M., and
Müller, K.-R. (2009). Designing for
uncertain, asymmetric control: inter-
action design for brain-computer
interfaces. Int. J. Hum. Comput. Stud.
67, 827–841.

Conflict of Interest Statement: The
authors declare that the research was
conducted in the absence of any com-
mercial or financial relationships that
could be construed as a potential conflict
of interest.

Received: 14 June 2010; accepted: 02
October 2010; published online: 02
December 2010.
Citation: Venthur B, Scholler S, Williamson
J, Dähne S, Treder MS, Kramarek MT,
Müller K and Blankertz B (2010) Pyff – a
Pythonic framework for feedback applica-
tions and stimulus presentation in neuro-
science. Front. Neurosci. 4:179. doi: 10.3389/
fnins.2010.00179
This article was submitted to Frontiers
in Neuroscience Methods, a specialty of
Frontiers in Neuroscience.
Copyright © 2010 Venthur, Scholler,
Williamson, Dähne, Treder, Kramarek,
Müller and Blankertz. This is an open-
access article subject to an exclusive
license agreement between the authors
and the Frontiers Research Foundation,
which permits unrestricted use, distribu-
tion, and reproduction in any medium,
provided the original authors and source
are credited.

Maeder, C., Sannelli, C., Haufe, S., Lemm,
S., and Blankertz, B. (2010). Effect
of prestimulus SMR amplitude
on BCI performance. Poster at the
TOBI Workshop ‘Integrating Brain-
Computer Interfaces with Conventional
Assistive Technology’ in Graz.

Müller-Putz, G., and Pfurtscheller, G.
(2008). Control of an electrical pros-
thesis with an SSVEP-based BCI. IEEE
Trans. Biomed. Eng. 55, 361–364.

Müller, K.-R., and Blankertz, B. (2006).
Toward noninvasive brain-computer
interfaces. IEEE Signal Process Mag.
23, 125–128.

Pecevski, D., Natschläger, T., and Schuch,
K. (2009). PCSIM: a parallel simula-
tion environment for neural circuits
fully integrated with python. Front.
Neuroinformatics 3:11. doi: 10.3389/
neuro.11.011.2009.

Peirce, J. W. (2007). Psychopy–
psychophysics software in python. J.
Neurosci. Methods 162, 8–13.

Pfurtscheller, G., Leeb, R., Keinrath, C.,
Friedman, D., Neuper, C., Guger, C.,
and Slater, M. (2006). Walking from
thought. Brain Res. 1071, 145–152.

Prechelt, L. (2000). An empirical compari-
son of C, C + +, Java, Perl, Python, Rexx
and Tcl. IEEE Comput. 33, 23–29.

Ramsey, L., Tangermann, M., Haufe, S.,
and Blankertz, B. (2009). Practicing
fast-decision BCI using a “goalkeeper”
paradigm. BMC Neurosci. 10 (Suppl.
1), P69.

Schalk, G., McFarland, D., Hinterberger, T.,
Birbaumer, N., and Wolpaw, J. (2004).
Bci2000: a general-purpose brain-
computer interface (BCI) system. IEEE
Trans. Biomed. Eng. 51, 1034–1043.

Geller, A., Schleifer, I., Sederberg, P.,
Jacobs, J., Kahana, M. (2007). PyEPL: a
cross-platform experiment-program-
ming library. Behav. Res. Methods 39,
950–958.

Gevins, A., and Smith, M. (2000).
Neurophysiological measures of work-
ing memory and individual differences
in cognitive ability and cognitive style.
Cereb. Cortex 10, 829.

Herrmann, C. S. (2001). Human EEG
responses to 1-100 hz flicker: reso-
nance phenomena in visual cortex
and their potential correlation to
cognitive phenomena. Exp. Brain Res.
137, 346–353.

Höhne, J., Schreuder, M., Blankertz, B.,
and Tangermann, M. (2010). Two-
dimensional auditory P300 speller with
predictive text system, Proc. 32nd Ann.
Int. IEEE EMBS Conf. 4185–4188.

Ince, R., Petersen, R., Swan, D., and
Panzeri, S. (2009). Python for infor-
mation theoretic analysis of neural
data. Front. Neuroinformatics 3:4. doi:
10.3389/neuro.11.004.2009.

Jurica, P., and Van Leeuwen, C. (2009).
OMPC: an open-source MATLAB®-
to-Py thon compi ler. Front .
Neuroinformatics 3:5. doi: 10.3389/
neuro.11.005.2009.

Krusienski, D. J., and Allison, B. Z. (2008).
Harmonic coupling of steady-state vis-
ual evoked potentials. Conf. Proc. IEEE
Eng. Med. Biol. Soc. 2008, 5037–5040.

Lutz, M. (2006). Programming Python.
Sebastopol, CA, USA: O’Reilly Media,
Inc.

Mackworth, N. (1948). The breakdown
of vigilance during prolonged visual
search. Q. J. Exp. Psychol. 1, 6–21.

Schmidt, N. M., Blankertz, B., and Treder,
M. S. (2010). Alpha-modulation
induced by covert attention shifts as
a new input modality for EEG-based
BCIs. Proc. 2010 IEEE Conf. Syst. Man
Cybernet., (in press).

Schreiner, T. (2008). Development and
Application of a Python Scripting
Framework for bci2000. Master’s thesis.
Universität Tübingen, Tübingen.

Schreuder, M., Blankertz, B., and
Tangermann, M. (2010). A new audi-
tory multi-class brain-computer inter-
face paradigm: spatial hearing as an
informative cue. PLoS One 5, e9813.
doi: 10.1371/journal.pone.0009813.

Spacek, M., Blanche, T., and Swindale, N.
(2008). Python for large-scale electro-
physiology. Front. Neuroinformatics
2:9. doi: 10.3389/neuro.11.009.2008.

Strangman, G., Zhang, Q., and Zeffiro,
T. (2009). Near-infrared neu-
roimaging with NinPy. Front.
Neuroinformatics 3:12. doi: 10.3389/
neuro.11.012.2009.

Straw, A. D. (2008). Vision Egg: an
open-source library for realtime
visual stimulus generation. Front.
Neuroinformatics 2:4. doi: 10.3389/
neuro.11/004.2008.

Tanenbaum, A. S. (2001). Modern
Operating Systems. Upper Saddle
River, NJ, USA: Prentice Hall PTR.

Treder, M. S., and Blankertz, B. (2010).
(C)overt attention and visual speller
design in an ERP-based brain-
 computer interface. Behav. Brain
Funct. 6, 28.

Venthur, B., Blankertz, B., Gugler, M. F., and
Curio, G. (2010). Novel applications of
BCI technology: psychophysiological

www.frontiersin.org December 2010 | Volume 4 | Article 179 | 9

Venthur et al. Pyff

7.2 tHe graPHIcal uSer Interface
The framework provides a graphical user interface (GUI) which
enables easy access to the Feedback Controller’s main functions
and the Feedback’s variables. The GUI communicates with the
Feedback Controller like the system connected to Pyff does: via
XML over UDP. Therefore, the GUI does not have to run on the
same machine as the Feedback Controller does, which is particularly
useful for experiments where the experimenter and subject are in
different rooms.

Figure 7 shows a screen shot of the GUI. The drop down menu
presents a list of available Feedbacks. On the right of this list are
various buttons for Init, Play, Pause, etc. The main part of the GUI
is occupied by a table which presents the name, value, and type
of variables belonging to the currently running Feedback. The
table is editable so that the user can modify any Feedback vari-
able as desired and send it back to the Feedback where the change
is directly applied. The possibility to inspect and manipulate the
running Feedback’s object variables gives a great deal of flexibility
for experimenters to explore and try new settings.

7.3 tHe feedback baSe claSSeS
The Feedback base class is the base class of all Feedbacks and the
interface to the Feedback Controller’s plugin system.

As mentioned in Section 7.1, the Feedback Controller is able to
load, control, and unload Feedbacks dynamically. Feedbacks can be
very different in complexity, functionality, and purpose. To work
with different Feedbacks properly, the Feedback Controller relies
on a small set of methods that every Feedback has to provide. The
Feedback base class declares these methods and thus guarantees
that from the Feedback Controller’s point of view, a well defined
set of operations is supported by every Feedback.

The methods are: on_init, on_play, on_pause, on_stop,
on_quit, on_interaction_event, and on_control_event.
The Feedback Controller calls them whenever it received a respec-
tive signal. For example: when the Feedback Controller receives
a control signal, it calls the on_control_event method of the
Feedback. For a complete overview which events cause which
method calls in the Feedback, see Section 8.

Most of the above methods are parameterless, they are just called to
let the Feedback know that a certain event just happened. Exceptions
are on_control_event and on_interaction_event. These
events carry an argument data, which is a dictionary containing all
variables which where sent to the Feedback Controller and should
be set in the Feedback. For convenience, a Feedback does not have
to implement these two methods just to get the data, the Feedback
Controller takes care that the data is already set in the Feedback
before the respective method is called in the Feedback.

The Feedback base class also has a method send_parallel(data)
which the can be used to send data to the parallel port of its host machine
and this is a typical way to set markers into the acquired EEG.

For convenience the Feedback base class also provides a logger
attribute. The logger attribute is a logger object of Python’s stand-
ard logging facility. A logger is basically like the print statement
with a severity (the loglevel) attached. A global severity thresh-
old can be set which stops all log-messages below that level from
appearing on the console or in the logfile. The global loglevel and
the output format is configured by the Feedback Controller: The

aPPendIx
Throughout this appendix we use the term feedback synonymous
for feedback and stimulus application as both concepts make tech-
nically little difference in the context of the framework: feedbacks
are usually stimuli with some sort of closed loop from the subject
to the application.

7 comPonentS of tHe framework
Pyff consists of four major parts: the Feedback Controller, the graph-
ical user interface (GUI), a set of Feedback baseclasses and a set of
Feedbacks. Figure 6 shows an overview of Pyff.

Pyff communicates with the rest of the world via a standardized
communication protocol using UDP and XML (Section 11).

7.1 tHe feedback controller
The Feedback Controller manages the communication between the
Feedback and the world outside Pyff. It is responsible for spawning
new Feedback processes, starting, pausing and stopping them as
well as inspecting and manipulating their internal variables.

Once started, the Feedback Controller acts like a server, wait-
ing for incoming signals from the network. Incoming signals are
encoded in XML (Section 11), the Feedback Controller converts
them to message objects and – depending on the kind of signal
(Section 8) – either processes them directly or passes them to the
currently running Feedback.

The Feedback Controller starts new Feedbacks by spawning
new Feedback processes. This has the advantage that a crashing
or otherwise misbehaving Feedback application does not directly
affect the Feedback Controller as it would do if we had used
Threads. Since this framework also aims to be a workbench for
easy Feedback development, misbehaving Feedbacks can be quite
common, especially in the beginning of the Feedback develop-
ment. The communication between two different processes how-
ever, is a bit more complicated than between two threads since
two processes do not share the same address space. In our frame-
work we solved this issue with an Inter-Process Communication
mechanism using sockets to pass message objects back and
forth between the Feedback Controller and a running Feedback
(Section 9).

FIgure 6 | Schematic overview of an experiment using Pyff. The
arbitrary data source, which could be a BCI system, feeds data to the
Feedback Controller using our protocol. The Feedback Controller translates
those signals and forward them to the currently running Feedback which in
turn produces output to be consumed by the subject. The experimenter can
remotely control the whole experiment via the GUI, which is connected to
the Feedback Controller. The Feedback uses modules of the Feedback
base classes.

Frontiers in Neuroscience | Neuroscience Methods December 2010 | Volume 4 | Article 179 | 10

Venthur et al. Pyff

FIgure 7 | The graphical user interface of the framework. Within the GUI the experimenter can select a Feedback, start, pause, and stop it and he can inspect
and manipulate the Feedback’s internal variables.

loglevel has a default value but it can be modified via the Feedback
Controller’s command line option. A Feedback programmer can
use this logger directly without any extra initialization of the log-
ger whatsoever.

By subclassing the Feedback base class, the derived class inher-
its all methods from the base class and thus becomes a valid and
ready-to-use Feedback for the Feedback Controller. The Feedback
programmer’s task is to implement the methods as needed in a
derived class or just leave the unneeded methods alone.

This object-oriented approach drastically simplifies the develop-
ment of Feedbacks, since common code of similar Feedbacks can
be moved out of the actual Feedbacks into a common base class.
Figure 8 shows an example: on the left side, two similar Feedbacks
share a fair amount of code. Both Feedbacks work with a main
loop. They have a set of main loop related methods and also more
Feedback specific related methods. Implementing a third Feedback
with a main loop means the programmer will likely copy the main
loop from one of the existing Feedbacks into his new Feedback. This
a bad approach for several reasons, the most important one being
that a bug in the main loop related logic will probably appear in
all of the Feedbacks. Due to code duplication, it will then have to
be fixed every feedback using the logic. A solution is to extract the
main loop related logic into a base class and implement it there
(Figure 8, right). The Feedbacks can derive from this class, inherit
the logic, and only need to implement the Feedback specific part.
The code of the Feedbacks is much shorter, less error prone, and
main loop related bugs can be fixed in a single file.

7.4 feedbackS
Besides providing a platform for easy development of feedback
applications, Pyff also provides a set of useful and ready-to-use
Feedbacks. The list of those Feedbacks will grow as we and hope-
fully other groups will develop more of them.

8 control- and InteractIon SIgnalS
Pyff receives two different kinds of signals: Control Signals and
Interaction Signals. The difference between the two is that Interaction
Signals can contain variables and commands and Control Signals
only variables. The commands in the Interaction Signal are for the
Feedback Controller to control the behavior of the Feedback, the
variables contained in both the Control- and Interaction Signals
are to be set in the currently running Feedback. Technically both
variants are equivalent but practically they are used for different
things: The variables in the Interaction Signal are used to modify the
Feedback’s object variables and therefore influence the Feedback’s
behavior. The variables in the Control Signal are the actual data
coming from a data source like EEG. The distinction is useful for
example when a Feedback needs to do something on every arriving
block of data. It can then take advantage of the fact that incom-
ing Control- and Interaction Signals trigger on_control_event
respective on_interaction_event methods in the Feedback. The
programmer of the Feedback can focus on the handling of the data
by implementing on_control_event and does not have to worry
if the variables sent by the signal are actual data or just object vari-
ables of the Feedback.

www.frontiersin.org December 2010 | Volume 4 | Article 179 | 11

Venthur et al. Pyff

thread is immediately visible to all other threads of this process. A
complete description of processes, threads, and inter-process com-
munication can be found in (Tanenbaum, 2001). Since there is no
need for a IPC when using threads, threads are often more desirable
than processes and a sufficient solution for many common concur-
rent applications. In Python however things are a bit different. First,
and most importantly: in Python two threads of a process do not
run truly concurrently, but sequentially in a time-sliced manner.
The reason is Python’s global interpreter lock (GIL) which ensures
that only one Python thread can execute in the interpreter at once
(Lutz, 2006)11. The consequence is that Python programs cannot
make use of multi processors using Python’s threads. In order to
use real concurrency one has to use processes, effectively sidestep-
ping the GIL. The second important point is that many important
graphical Python libraries like pygame or PyQT need to run in the
main (first) thread of the Python process. In a threaded version

Table 1 shows the complete list of available commands in Control
signals and Figure 9 shows a sequence diagram illustrating the
interaction between the GUI, the Feedback Controller, and the
Feedback. All signals coming from the GUI are Interaction Signals,
the signals coming from the BCI system are Control signals. Once
the GUI is started, it tries to automatically connect to a running
Feedback Controller on the machine where the GUI is running. If
that fails (e.g., since the Feedback Controller is running on a different
machine on the network) the experimenter can connect it manually
by providing the host name or IP address of the target machine.
Upon a successful connection with the Feedback Controller, the
Feedback Controller replies with a list of available Feedbacks which
is then shown in a drop down menu in the GUI. The experimenter
can now select a Feedback and click the Init Button which sends the
appropriate signal to the Feedback Controller telling it to load the
desired Feedback. The Feedback Controller loads the Feedback and
requests the Feedback’s object variables which it sends back to the
GUI. The GUI then shows them in a table where the experimenter
can inspect and manipulate them. Within the GUI, the experimenter
can also Start, Pause, Stop, and Quit the Feedback.

9 Inter-ProceSS communIcatIon
When writing applications, there are usually two possible options
to achieve concurrency: The first one is to use threads, the sec-
ond is to use processes. Processes are heavyweight compared to
threads. Processes have their own address space and some form of
inter-process communication (IPC) is needed to allow processes to
interact with each other. Threads on the other side are lightweight,
there can be one ore more thread in the same process and threads of
the same process share their address space. The implication of the
shared address space is, that a modification of a variable within one

FIgure 8 | Left: Two Feedbacks sharing common code. Right: The common code was moved into a single base class.

Table 1 | Available commands.

Command Meaning

getfeedbacks Return a list of available Feedbacks

getvariables Return a dictionary of the Feedback’s variables

sendinit Load a Feedback

play Start the Feedback

pause Pause the Feedback

stop Stop the Feedback

quit Unload the Feedback

11Thread state and the global interpreter lock. URL http://docs.python.org/c-api/
init.html#thread-state-and-the-global-interpreter-lock

Frontiers in Neuroscience | Neuroscience Methods December 2010 | Volume 4 | Article 179 | 12

Venthur et al. Pyff

of Pyff this would make things a lot more complicated, since the
Feedback Controller as a server runs during the whole lifetime of
the experiment, while Feedbacks (where those libraries are used)
usually get loaded, unloaded, started and stopped many times dur-
ing an experiment. The natural way to implement this in a threaded
way would be to run the Feedback Controller in the main thread
and let it spawn Feedback threads as needed. Doing it the other way
round by reserving the main thread for the Feedback and letting
the Feedback Controller insert Feedbacks into the first thread on
demand would be a lot more complicated and error prone.

For that reasons we decided to use processes instead of threads.
The feedback applications have much more resources running in
their own process (even on their own processor) while keeping the
programming of Pyff ’s logic simple and easy to maintain.

FIgure 9 | The different kinds of signals and the events they cause in the
Feedback. 1, The GUI connects to the Feedback Controller; 2, The user selects
a Feedback; 3, The user starts the Feedback; 4, The BCI System provides EEG
data; 5–7, The user pauses, stops, and quits the Feedback

9.1 Inter-ProceSS communIcatIon In Pyff
We decided to use a socket based IPC since it works on all major
platforms. The basic idea is that two processes establish a TCP
connection to communicate. If a peer wants to send a message to
the other one, it uses his end of the connection-called socket-to
send the message. The message is then sent to the other end of
the connection, where the second peer can read it from his socket
(Lutz, 2006).

The messages itself are message objects which are serialized before
being sent and unserialized on the receiving end. Serialization and
Unserialization is done using Python’s pickle library.

10 remotely controllIng Pyff
To make the framework as portable as possible to other existing
systems, it was critical to design an interface generic enough to
support a wide range of programming languages and operating
systems. This loose coupling is achieved through our choice to use
the UDP for the transport of the data through the network and
XML for the encoding of the signal.

User datagram protocol was chosen because it is a well known
and established standard network protocol and because virtually
every programming language supports it. UDP-clients and -servers
are fairly easy to implement and it is possible to send arbitrary data
over UDP. For similar reasons, XML was chosen for the encoding
of the signals: XML is an established standard for exchanging data
and libraries for parsing and writing XML are available for most
common programming languages.

Once the FeedbackController starts, it listens on UDP port
12345 for incoming control- and interaction signals. Clients can
remotely control the FeedbackController as they would using the
GUI by sending signals to that address. The signals have to be
wrapped in XML. Documentation for Pyff ’s XML scheme is given
in Section 11.

11 Pyff’s xml ScHeme
To wrap the content of the control- and interaction-signals, we
chose XML. XML is a well known, accepted standard and was spe-
cifically designed for tasks like this, where arbitrary data needs to
be exchanged between different systems12.

The Feedback Controller accepts a defined set of commands
and arbitrary variables which should be set in the Feedback. A
command is a simple string and has no parameters, they are not
arbitrary Python statements but a well defined set of commands
that the Feedback Controller executes, like loading a Feedback or
starting it. A variable is defined as a triple (type,name,value), where
type is the data type, name the name of the variable and value the
actual value of the variable.

For this purpose, we created an XML scheme capable of contain-
ing variables and commands. The following describes the version
1.0 of the scheme.

The root element of this XML scheme is the bci-signal-node
which contains an attribute version, defining the bci-signal version
and one child node which can be either of the type interaction- or
control signal.

12Extensible markup language 1.0, design and goals. URL http://www.w3.org/TR/
REC-xml/#sec-origin-goals

www.frontiersin.org December 2010 | Volume 4 | Article 179 | 13

Venthur et al. Pyff

Nested Variables
Some variables can contain other variables, like Lists (Vector, Array) or
Dictionaries (Hashes, Hash Tables). The following example shows the
XML representation of a List called mylist containing three Integers:

<list name=”mylist”>
 <i value=”1”/>
 <i value=”2”/>
 <i value=”3”/>

</list>

Nested variables can also contain other nested variables. The
following example shows a list containing two integers and a list
which also contains two integers:

<list name=”mylist2”>
 <i value=”1”/>
 <i value=”2”/>
 <list>
 <i value=”3”/>
 <i value=”4”/>
 </list>

</list>

No restrictions are put upon the depth of the nested variables.
Special care has to be taken using Dictionaries. Dictionaries are

not simply collections of variables but collections of mappings from
Strings to a Variables. The mappings are expressed through Tuples
(String, Variable) and consequently, a Dictionary is expressed as a
collection of Tuples in our XML scheme. The following example
shows a dictionary mydict containing three mappings (foo, 1), (bar,
2) and (baz, 3):

<dict name=”mydict”>
 <tuple>
 <s value=”foo”/>
 <i value=”1”/>
 </tuple>
 <tuple>
 <s value=”bar”/>
 <i value=”2”/>
 </tuple>
 <tuple>
 <s value=”baz”/>
 <i value=”3”/>
 </tuple>

</dict>

This XML scheme provides a well defined and clean interface for
other systems to communicate with Pyff: we provide a set of com-
mands to control the Feedback Controller and the Feedback and a
way to read and write the Feedback’s variables. The whole protocol
is operating system and programming language independent. It is
simple enough to grasp it without much effort but generic enough
to send any kind of data to the Feedback.

12 documentatIon and examPleS
Part of the framework is a complete documentation of the system
and its interfaces. All modules, classes, and methods are also exten-
sively documented in form of Python docstrings. Those docstrings

<?xml version=”1.0”?>
<bci-signal version=”1.0”>
 <interaction-signal>
 <command value=”start”/>
 <s name=”string” value=”foo”/>
 <f name=”float” value=”0.69”/>
 <list name=”list”>
 </i value=”1”/>
 </i value=”2”/>
 </i value=”3”/>
 </list>
 </interaction-signal>

</bci-signal>

Commands
Commands are only allowed in interaction signals and have the
following form:
<command value=”commandname”/>

where commandname is a member of the set of supported com-
mands. Supported commands are: getfeedbacks, play, pause, stop,
quit, sendinit, getvariables. Only one command is allowed per
interaction signal. The meaning of the commands is explained
in Section 8. An interaction signal can contain a command and
several variables.

Variables
Variables are allowed in interaction- and control signals. A variable
is represented by the triple (type,name,value) and has the following
form in XML:

<type name=”varname” value=”varvalue”>
for example: an Integer with the variable name “foo” and the value
42 would be represented as:

<integer name=”foo” value=”42”>

The XML scheme supports all variable types supported by Python,
Table 2 shows a complete listing. Sometimes there is more than one
way to express the type of a variable. For example, a boolean can be
expressed in this XML scheme via <boolean… />, <bool… />
and <b… />. All alternatives are equivalent and exist merely for
convenience.

Table 2 | Data types supported by our XML scheme.

Type Type in XML example values Nestable

Boolean boolean, bool, b “True,” “true,” “1” No

Integer integer, int, i “1” No

Float float, f “1.0” No

Long long, l “1” No

Complex complex, cmplx, c “(1 + 0j),” “(1 + 0i)” No

String string, str, s “foo” No

List list Yes

Tuple tuple Yes

Set set Yes

Frozenset frozenset Yes

Dictionary dict Yes

None None No

Frontiers in Neuroscience | Neuroscience Methods December 2010 | Volume 4 | Article 179 | 14

Venthur et al. Pyff

13.1 InItIalIzatIon of tHe feedback
The TestD2 (Listing 1) class is derived from the PygameFeedback
Class. PygameFeedback takes care of proper initialization and
shutdown of Pygame before and after the Feedback runs. It also
provides helpful methods and members which make dealing with
Pygame much easier.

The init method of TestD2 sets various variables control-
ling the behavior of the Feedback. In the first line of init the
init method of the parent class is called. This is necessary
since the parent’s init declares variables needed to make
PygameFeedback’s methods work. caption sets the caption
text of the Pygame window, random_seed sets the seed for the
random number generator. This is important to make experi-
ments reproducible when using random numbers. number_of_
symbols, seconds_per_symbol, and targets_persent
set how many symbols are presented at most, how much time the
subject has to process one symbol and the percentage of target
symbols of all symbols presented. The number of symbols and
seconds per symbol are used to calculate the duration of the
experiment. The three numbers are taken from the standard
Test D2 condition where a subject has 14 lines with 47 symbols
per line and 20 s time per line. color, backgroundColor,
and fontheight control the look of the Feedback, color is
for the color of the symbols, backgroundColor for the color
of the background and fontheight the height of the font in
pixels. key_target and key_nontarget are the keys on the
keyboard the user has to click if s/he wants to mark a target or
a non-target.

All variables declared in this method are immediately visible in
the GUI after the Feedback is loaded. The experimenter can modify
them as he likes and set them in the Feedback.

13.2 Pre- and PoStmaInlooP
Pre- and postmainloop (Listings 2 and 3) are invoked respectively,
immediately before after the mainloop of the Feedback. Since the
mainloop of a Feedback can be invoked several times during it’s life-
time, variables which need to be initialized before each run should
be set in pre_mainloop and evaluations of the run should be done
in post_mainloop.

In pre_mainloop we call the parent’s pre_mainloop which
initializes Pygame. Then we generate the sequence of stimuli (see
Section 13.4), the graphics for the stimuli (see Section 13.5). The
variables current_index represents the current position in the
list of stimuli, e1 and e2 are the number of errors of omission and

are used by integrated development environments (IDEs) and tools
like Python’s pydoc to generate help and documentation from the
source files.

The framework also provides Tutorials explaining every major
aspect of Feedback development with example Feedbacks.

13 examPle feedback
This section contains a complete listing of the TestD2 Feedback, a
Feedback implementing a computer version of the classic d2 test
of attention, developed by Brickenkamp and Zillmer (1998) as the
paper-and-pencil test. The listing is complete and functionally
identical with the TestD2 Feedback delivered with Pyff, however
many blank lines, comments, and the copyright statement in the
beginning of the file were removed make it shorter. The following
subsections correspond to one or two methods of the TestD2 class.
The complete listing of the TestD2 module is given at the end of
this section.

In the paper-and-pencil version, the test consists of the letters
d and p, which are printed on a sheet of paper in 14 lines with
47 letters per line. Each letter has between one and four vertical
lines above or below. The subject’s task is to cross out all occur-
rences of the letter d with two lines (target) on the current line
as fast and correct as possible. A d with more or less than two
lines or a p (non-targets) must not be crossed out. The subject
usually has 20 s to process a line. After those 20 s the experimenter
gives a signal and the subject has to process the next line. The
number of mistakes (erroneously crossed out non d2s or not
crossed out d2s) can be used afterward to quantify the attention
of the subject.

Our computerized version of TestD2 differs from the paper-
and-pencil variant in the following ways: The stimuli are not
presented in rows which have to be processed in a given short
amount of time, but are presented one by one on the screen.
For each stimulus the subject has to decide whether it is a target
or a non-target by pressing the according key on the keyboard.
Figure 10 shows screenshots of the running Feedback. In the
paper-and-pencil version, the subject has to process 14 rows of
47 symbols and has 20 s per row. In the standard configuration
of our Feedback we present 14 · 20 symbols and give the user a
maximum of 14 · (20/47) s. Of course this makes the results of
our version not directly comparable with the paper-and-pencil
variant, we think however that it still makes a good demonstra-
tion on how to implement a sophisticated feedback application
with our framework.

FIgure 10 | Screenshots of the stimuli presented by the Feedback. A stimulus is presented until the subject presses one of two available buttons to decide if he
sees a d2 or not. After the key is pressed the next stimulus is presented immediately.

www.frontiersin.org December 2010 | Volume 4 | Article 179 | 15

Venthur et al. Pyff

14 uSIng Pyff
After downloading and extracting Pyff from7 there are two directories:
src and tools. To start Pyff go into src and run FeedbackController.
py. This will start the Feedback Controller and the GUI. The control
elements of the GUI are explained in Figure 11.

When the GUI has started, it will automatically ask the Feedback
Controller for available Feedbacks and will populate the Feedback
Selector. The experimenter selects the desired Feedback from there
and loads it by pushing the Init button. The Feedback Controller
will now load the Feedback and send the Feedback’s object vari-
ables back to the GUI where they are presented in the Table. The
experimenter can now modify variables as needed and apply the
changes in the Feedback by pushing the Send button.

Up to this point, the Feedback has just been loaded and initial-
ized but not yet started. To start, pause and stop the Feedback
the experimenter pushes the Play-, Pause- and Stop buttons. A
Feedback can be started, stopped and paused unlimited times dur-
ing the Feedback’s lifetime.

To quit the Feedback the experimenter uses the quit button.
Quitting the Feedback will stop and unload the Feedback from
the Feedback Controller. Selecting and loading a Feedback while
another one is already running, will stop and quit the running
Feedback and load the new one afterwards.

14.1 feedback controller’S oPtIonS
The Feedback Controller supports various options. To get a complete
listing start the Feedback Controller with the –help parameter.

Feedback Controller’s Loglevel
The --loglevel=LEVEL parameter sets the loglevel of the

Feedback Controller and it’s components. Accepted levels in
increasing order are: notset, debug, info, warning, error and criti-
cal. Setting the loglevel will cause the Feedback Controller to output
certain log messages of the given level and higher.

Feedback’s Loglevel
When developing Feedback applications it is important to have a
logger dedicated for Feedbacks. Pyff provides a logger for Feedbacks
which is configurable separately from the Feedback Controller’s
loglevel. The --fb-loglevel=LEVEL parameter controls the
loglevel of the Feedback’s logger. It accepts the same values as
the --loglevel parameter.

Additional Feedback Directory
When developing Feedback applications which are not to be
included in the Pyff framework, it might be desirable to locate them
in a different directory than Pyff ’s default directory for Feedbacks.

errors of commission. The QUIT event is then scheduled. This event
will appear in Pygame’s event queue after the given time and marks
the regular end of the Feedback. The current time is measured and
the first stimulus presented and the mainloop starts.

In post_mainloop we measure the time needed to run the
experiment by calling clock.tick() a second time which returns
the time in milliseconds since the last call. Then we call the parent’s
post_mainloop which cleanly shuts down Pygame. After that,
various results of the experiment are calculated and printed out.

13.3 tIck
The tick method (Listing 4) is called repeatedly during the main-
loop by the MainloopFeedback which is a parent Feedback of the
PygameFeedback. Usually the tick method of PygameFeedback
limits the Framerate by calling self.clock.tick(self.FPS)
and processes Pygame’s event queue. This is the desired behavior
in most Pygame Feedbacks containing a mainloop. In this case,
however the Feedback is not paced by small timesteps, but by the
keypresses of the subject, so we overwrite the parent’s tick to omit
the call of self.clock.tick and call self.wait_for_pygame_
event instead of self.process_pygame_events. This means
tick waits at this call until the user pressed a key (or another Pygame
event appears in the event queue). Then the key is checked if it is
one of the two available keys and if the correct key was pressed. If
not, the corresponding error accumulator is increased by one. Then
the position in the list of stimuli is increased by one. If the index
reached the end of the list, the Feedback is stopped, otherwise the
next stimulus is presented (Listing 7).

13.4 generatIng tHe d2 lISt
The method generate_d2list (Listing 5) sets the seed for the
random number generator to make the results reproducible and
generates the list of targets and non-targets. It uses the targets_
percent attribute to obey the correct ratio of targets and non-
targets in the list. The method also ensures that a symbol never
appears twice or more in a row.

13.5 generatIng tHe SymbolS
The method generate_symbols (Listing 6) generates the images,
or surfaces in Pygame lingo, for the various symbols and stores them
in an object attribute so the Feedback can later use them directly
when painting them on the screen. The Symbols are generated as
a combination of a letter and one of two possible lines above and
below the letter. The method first generates the images for the
letters then the images for the lines and glues them together in
the last loop.

FIgure 11 | The control elements of the guI. 1, Filter; 2, Clear Button; 3, Connect Button; 4, Feedback Selector; 5, Init Button; 6, Send Button; 7, Refresh Button;
8, Play-, Pause, and Stop Buttons; 9, Quit Button.

Frontiers in Neuroscience | Neuroscience Methods December 2010 | Volume 4 | Article 179 | 16

Venthur et al. Pyff

 4 tn=self.current_index + 1
 5 error=self.e1 + self.e2
 6 error_rate=100. * error / tn
 7 correctly_processed = tn - error
 8 cp=correctly_processed - self.e2
 9 rt_avg=elapsed_seconds / tn
10 print ”Results:”
11 print “ ========”
12 print
13 print ”Processed symbols: %i of %i” % (tn,

 self.number_of_symbols)
14 print ”Elapsed time: %f sec” %

 elapsed_seconds
15 print ”Correctly processed symbols: %i” %

 (correctly_processed)
16 print ”Percentage of Errors: %f” %

 (error_rate)
17 print ”Errors: %i” % error
18 print “… errors of omission: %i” % self.e1
19 print “… errors of commission: %i” % self.e2
20 print ”Concentration Performance: %i” % cp
21 print ”Average reaction time: %f sec” %

 rt_avg

Listing 4: tick

 1 def tick(self):
 2 self.wait_for_pygame_event()
 3 if self.keypressed:
 4 key=self.lastkey_unicode
 5 self.keypressed=False
 6 if key not in (self.key_target,

 self. key_nontarget):
 7 return
 8 else:
 9 if key == self.key_nontarget
10 and self.d2list[self. current_index]

 in TARGETS:
11 self.e1+= 1
12 elif key == self.key_target
13 and self.d2list[self. current_index]

 in NON_TARGETS:
14 self.e2 += 1
15 else:
16 pass
17 self.current_index += 1
18 if self.current_index > self.

number_of_symbols - 1:
19 self.on_stop()
20 else:
21 self.present_stimulus()

Listing 5: generate_d2list

 1 def generate_d2list(self):
 2 random.seed(self.random_seed)
 3 targets=int(round(self.number_of_symbols *

 self.targets_percent / 100))
 4 non_targets=int(self.number_of_symbols

 - targets)
 5 l=[random.choice(TARGETS) for i in

 range(targets)] + \
 6 [random.choice(NON_TARGETS) for i in

The --additional-feedback-path=PATH parameter supports
this, by causing the Feedback Controller to additionally search for
Feedbacks under the given path.

Starting Without GUI
When running the Feedback Controller in an automated experi-
ment setup where the interaction signals are emitted from a differ-
ent source than the GUI, the experimenter can start the Feedback
Controller without the GUI via the --nogui parameter.

Configuring The Parallel Port
On different computers the parallel port sometimes has a different
address than the default. The --port=PORTNUM parameter con-
figures the parallel port address (in hexadecimal) the Feedback
Controller tries to use.

Listing 1: First par of the file

 1 import random
 2 import pygame
 3 from FeedbackBase.PygameFeedback

import PygameFeedback
 4
 5 TARGETS=[‘d11’, ‘d20’, ‘d02’]
 6 NON_TARGETS=[‘d10’, ‘d01’, ‘d21’, ‘d12’, ‘d22’,
 7 ‘p10’, ‘p01’, ‘p11’, ‘p20’, ‘p02’,

 ‘p21’, ‘p12’, ‘p22’]
 8
 9 class TestD2(PygameFeedback):
10
11 def init(self):
12 PygameFeedback.init(self)
13 self.caption=”Test D2”
14 self.random_seed=1234
15 self.number_of_symbols=47 * 14
16 self.seconds_per_symbol=20 / 47.
17 self.targets_percent=45.45
18 self.color=[0, 0, 0]
19 self.backgroundColor=[127, 127, 127]
20 self.fontheight=200
21 self.key_target=”f”
22 self.key_nontarget=”j”

Listing 2: pre_mainloop

 1 def pre_mainloop(self):
 2 PygameFeedback.pre_mainloop(self)
 3 self.generate_d2list()
 4 self.generate_symbols()
 5 self.current_index=0
 6 self.e1=0
 7 self.e2=0
 8 pygame.time.set_timer(pygame.QUIT,

 self. number_of_symbols * self.
 seconds_per_symbol * 1000)

 9 self.clock.tick()
10 self.present_stimulus()

Listing 3: post_mainloop

 1 def post_mainloop(self):
 2 elapsed_seconds=self.clock.tick() / 1000.
 3 PygameFeedback.post_mainloop(self)

www.frontiersin.org December 2010 | Volume 4 | Article 179 | 17

Venthur et al. Pyff

 linewidth)
18 self.symbol= {}
19 for symbol in TARGETS + NON_TARGETS:
20 surface = pygame.Surface((width, height

 * 3), pygame.SRCALPHA)
21 letter= surface_d if symbol[0]= = ‘d’

 else surface_p
22 surface.blit(letter, (0, height))
23 if symbol[1]= = ‘1’:
24 surface.blit(surface_l1, (0, 0))
25 elif symbol[1]= = ‘2’:
26 surface.blit(surface_l2, (0, 0))
27 if symbol[2]= = ‘1’:
28 surface.blit(surface_l1, (0, 2 * height))
29 elif symbol[2]= = ‘2’:
30 surface.blit(surface_l2, (0, 2 * height))
31 self.symbol[symbol]=surface

Listing 7: present_stimulus

1 def present_stimulus(self):
2 self.screen.fill(self.backgroundColor)
3 symbol=self.d2list[self.current_index]
4 self.screen.blit(self.symbol[symbol],
5 self.symbol[symbol].get_rect(center=self.

 screen.get_rect().center))
6 pygame.display.flip()

Lisiting 8: End of file

1 if __name__ == “__main__”:
2 fb=TestD2()
3 fb.on_init()
4 fb.on_play()

 range(non_targets)]
 7 random.shuffle(l)
 8 for i in range(len(l) - 1):
 9 if l[i]== l[i + 1]:
10 pool=TARGETS if l[i] in TARGETS

 else NON_TARGETS
11 new=random.choice(pool)
12 while new == l[i + 1]:
13 new=random.choice(pool)
14 l[i]=new
15 self.d2list=l

Listing: 6 generate_symbols

 1 def generate_symbols(self):
 2 linewidth=self.fontheight / 11
 3 font=pygame.font.Font(None, self.fontheight)
 4 surface_d=font.render(”d”, True, self.color)
 5 surface_p=font.render(”p”, True, self.color)
 6 width, height=surface_d.get_size()
 7 surface_l1=pygame.Surface((width, height),

 pygame.SRCALPHA)
 8 surface_l2=pygame.Surface((width, height),

 pygame.SRCALPHA)
 9 pygame.draw.line(surface_l1, self.color,
10 (width / 2, height / 10),
11 (width / 2, height - height / 10),

 linewidth)
12 pygame.draw.line(surface_l2, self.color,
13 (width / 3, height / 10),
14 (width / 3, height - height / 10), linewidth)
15 pygame.draw.line(surface_l2, self.color,
16 (2 * width / 3, height / 10),
17 (2 * width / 3, height - height / 10),

