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Evidence of cerebellar dysfunction in schizophrenia has mounted over the past several 
decades, emerging from neuroimaging, neuropathological, and behavioral studies. 
Consistent with these findings, cerebellar-dependent delay eyeblink conditioning (dEBC) 
deficits have been identified in schizophrenia. While repeated-measures analysis of 
variance is traditionally used to analyze dEBC data, hierarchical linear modeling (HLM) 
more reliably describes change over time by accounting for the dependence in repeat-
ed-measures data. This analysis approach is well suited to dEBC data analysis because 
it has less restrictive assumptions and allows unequal variances. The current study 
examined dEBC measured with electromyography in a single-cue tone paradigm in an 
age-matched sample of schizophrenia participants and healthy controls (N  =  56 per 
group) using HLM. Subjects participated in 90 trials (10 blocks) of dEBC, during which 
a 400 ms tone co-terminated with a 50 ms air puff delivered to the left eye. Each block 
also contained 1 tone-alone trial. The resulting block averages of dEBC data were fitted 
to a three-parameter logistic model in HLM, revealing significant differences between 
schizophrenia and control groups on asymptote and inflection point, but not slope. 
These findings suggest that while the learning rate is not significantly different compared 
to controls, associative learning begins to level off later and a lower ultimate level of 
associative learning is achieved in schizophrenia. Given the large sample size in the 
present study, HLM may provide a more nuanced and definitive analysis of differences 
between schizophrenia and controls on dEBC.

Keywords: schizophrenia, eyeblink conditioning, cerebellum, associative learning, reflex conditioning, conditioned 
response, cognition, psychosis

inTrODUcTiOn

Schizophrenia is a complex disorder with diverse symptoms and heterogeneous expression. Besides 
its cardinal psychotic symptoms, cognitive and motor abnormalities are prominent symptoms of 
the disorder. The cognitive dysmetria theory of schizophrenia (1) provides a unitary framework 
that can account for the disparate symptoms of schizophrenia. It posits that disruptions in the 
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cortico–cerebello–thalamo–cortical circuit (CCTCC) lead to 
poor coordination of information, resulting in different symptom 
constellations. Given that the cerebellum plays a role in temporal 
processing (2), it may occupy a unique role in this circuit by modu-
lating the temporal coordination of information. Consistent with 
this proposition, evidence collected over the last several decades 
points to not only an important cerebellar role in coordinated 
movement and motor learning, but also non-motor psychological 
processes, most notably cognition (3–8). The neuroanatomical 
substrate for these functional effects has been revealed by studies 
confirming that the CB is reciprocally connected to prefrontal, 
parietal, and motor/premotor cortex (9–12). It is not surpris-
ing then that lesions to the cerebellum can produce symptoms 
commonly seen in schizophrenia, including visuospatial deficits, 
attention deficits, executive dysfunction, flattened affect, disin-
hibited, and socially inappropriate behavior (6).

Neuropathological and neuroimaging studies have docu-
mented morphological and functional cerebellar abnormalities 
in schizophrenia. For example, subjects with schizophrenia have 
reduced bilateral cerebellar volume (13), abnormal cerebellar con-
nectivity to cerebral regions involved in both motor and cognitive 
functions (14), cerebellar morphological abnormalities (15), and 
reductions in Purkinje cell size and density (16–18). Even groups 
at clinical and familial risk for psychosis show reduced cerebellar 
gray matter (19) compared to non-risk groups. However, negative 
findings exist both in the neuroimaging (20) and neuropathology 
(21) literature.

Importantly, first-episode (22–24) and antipsychotic medica-
tion naïve schizophrenia patients (25) have reduced cerebellar 
volume, suggesting that cerebellar abnormalities are character-
istic of the disorder rather than medication use. Perhaps most 
convincingly, cerebellar volume is associated with cognitive defi-
cits (26) as well as symptoms of depression, negative symptoms, 
and psychotic features in schizophrenia (25, 27, 28), suggesting 
that illness severity or progression may coincide with cerebellar 
degradation.

Delay eyeblink conditioning (dEBC) is an associative learn-
ing task that is highly dependent upon cerebellar functioning 
(29–31), in. The neuro-circuitry of this task has been extensively 
studied, and evidence overwhelmingly supports the conclusion 
that the cerebellum is critical both for learning the association 
between the unconditioned and conditioned stimuli and for 
the expression of the conditioned eyeblink response (32, 33). 
Numerous additional brain regions (i.e., hippocampus, medial 
septum, frontal cortex) can change the way in which the eyeblink 
response is expressed (34), neuroplasticity in the cerebellum 
initially elicits the classically conditioned eyeblink response (35).

Over the past decade, accumulating evidence indicates that 
cerebellar-mediated dEBC associative learning is abnormal in 
schizophrenia (36–38), schizotypal personality disorder (39), 
and first-degree relatives of schizophrenia patients (38). These 
associative learning deficits in schizophrenia may be remediated 
by pharmacological intervention (37).

One outstanding issue in the dEBC literature is statistical in 
nature. Specifically, a repeated-measures analysis of variance 
(ANOVA) is commonly used to analyze dEBC data, despite 
the availability of superior and more sophisticated statistical 

techniques, such as hierarchical linear modeling (HLM), which 
may reveal more reliable and nuanced findings. In our previous 
studies of dEBC using ANOVA, we have found conflicting results 
with respect to whether the learning rate (e.g., the block by group 
interaction in ANOVA) differs between groups. Several studies 
have found that the schizophrenia group had a reduced acquisi-
tion rate (36, 39), while others found no difference between groups 
(38, 40). Notably, the study with the largest sample size (N = 62) 
found a reduced average percentage of conditioned responses 
from subjects with schizophrenia, but no between-group differ-
ences in acquisition rate compared to healthy controls (40).

Hierarchical linear modeling is particularly well suited to 
dEBC data analysis and is superior to repeated-measures ANOVA 
for measuring time-dependent change because it takes into 
consideration the statistical dependencies in repeated-measures 
designs. HLM can be considered a special case of regression that 
can accommodate variance on more than one level (i.e., nested 
data), in this case, at both the individual level and at the group 
level. In HLM, the best-fitting line for each individual is identi-
fied, but each line fit is also influenced by the trajectories of other 
group members. This aspect of HLM has the effect of increasing 
the accuracy of each individual’s fit while minimizing the error of 
measurement at the individual and group level. Moreover, HLM 
has less restrictive assumptions, can tolerate missing data points, 
and can accommodate hierarchical or nested data structures 
(41). Perhaps the greatest strength of HLM is that heterogeneity 
of variance is treated as potentially meaningful information that 
can help to identify significant interactions between variables 
(42), whereas in ANOVA it is treated as a nuisance factor. Finally, 
HLM can be used to examine growth curves that model tradi-
tional learning curves so that important parameters, such as the 
slope, asymptote, and inflection point of the fitted curves can be 
quantified. [For a more comprehensive explanation of the use of 
HLM in repeated-measures designs, please see Ref. (43)].

Hierarchical linear modeling was implemented in a recent 
study (44, 45) in which dEBC data from healthy controls, 
individuals with schizophrenia, and first-degree relatives of 
individuals with schizophrenia (N  =  18 per group) were fitted 
to a linear model. Differences in acquisition rate (i.e., slope), 
indicating a slower rate of associative learning was found between 
both the schizophrenia and family members groups compared to 
controls. In the present study, data from a larger schizophrenia 
sample was age-matched to controls (N  =  59 per group) and 
HLM was applied to a three-parameter logistic growth model to 
more closely approximate a learning curve. We predicted that the 
slope of the learning curve would be lower for the schizophrenia 
group, indicating a slower learning rate. We also expected that 
the asymptote – the maximum level of performance – would be 
lower in schizophrenia, and that the inflection point, which is the 
point on the learning curve when learning begins to slow down 
and level off, would occur later.

MaTerials anD MeThODs

Participants
Participants were 56 individuals (17 females) who were diagnosed 
with schizophrenia and 56 age-matched control participants (29 
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TaBle 1 | Demographic, clinical, and medication information.

schizophrenia controls

Age (years) M = 36.4 (SD = 10) M = 35.8 (SD = 10)
Sex (M:F) 39:17 27:29
PANSS total score M = 59 (SD = 13) –
 Positive M = 16 (SD = 6) –
 Negative M = 15 (SD = 5) –
 General M = 28 (SD = 6) –
aPast alcohol dependence 13 0
Past illicit drug dependence 16 0
bPsychotropic medication
 No antipsychotic medication 6 56
 Atypical antipsychotic 44 0
 Typical antipsychotic 12 0

aNine schizophrenia patients met criteria for both past alcohol and other drug 
dependence.
bEight schizophrenia patients were taking both typical and atypical antipsychotic drugs 
at the time of testing. Medication information was not available for two participants with 
schizophrenia.
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females). Control participants had no history of psychotic and 
mood disorders and no history of schizophrenia spectrum disor-
ders within first-degree relatives. Data from 36 individuals with 
schizophrenia (12 females) and 32 controls (15 females) included 
in this study had been included in an earlier study of dEBC that 
used more traditional analysis methods (40). Participants with 
schizophrenia were recruited through outpatient and inpatient 
units at local hospitals. The control group was recruited by post-
ing community and newspaper advertisements. Participants’ 
demographic, clinical, and medication information can be seen 
in Table  1. Welch’s t-test showed that, as expected due to age-
matching, the mean age of schizophrenia participants did not 
differ from controls [t(1,112) = −0.29, P = 0.77]. Sex was signifi-
cantly different across groups [χ2(1) = 4.46, P = 0.035], with more 
males in the schizophrenia group (see Table  1). Importantly, 
sex was used as a covariate in the HLM analyses and it did not 
significantly improve model fit (p > 0.05).

The Diagnostic and Statistical Manual of Mental Disorders-IV 
Axis I Disorders (SCID-I) (46) sections for mood disorders, 
psychotic disorders, and substance abuse disorders was used 
to diagnose participants in the schizophrenia group. Medical 
records were consulted to refine diagnoses when necessary. The 
non-patient version of SCID-I (47) sections for mood, psychotic, 
and substance abuse, as well as the SCID II, was used to identify 
controls without a history of psychiatric or personality disorders. 
The positive and negative syndrome scale (PANSS) (48) was used 
to rate clinical symptoms in the schizophrenia group. A total of 
53 of the 56 participants in the schizophrenia group had PANSS 
scores available within 2 weeks of the time of dEBC testing.

Participants were excluded from the experiment if they had 
clinically significant hearing loss, cardiovascular disease, an 
intelligence quotient (IQ) score of less than 70, had received 
electroconvulsive therapy, or if they had a history of neurologi-
cal disorders, head injury resulting in loss of consciousness, or 
alcohol or substance dependence within the 3  months prior 
to their participation in the experiment. Additional exclusion 
criteria for potential control group participants were history of 
psychotic or mood disorders, or having a first-degree relative 

with a schizophrenia spectrum diagnosis. All aspects of this 
study were approved by the Indiana University Human Subjects 
Institutional Review Board (IUB-IRB; Protocol #1009001702), 
and all participants provided written informed consent prior to 
participation in the study.

Delay eyeblink conditioning Procedure
The experiment consisted of 10 blocks of dEBC, with 10 trials 
per block. Of these 10 trials, 9 were paired with a conditioned 
stimulus tone lasting 400 ms (1000 Hz, 80 dB) that co-terminated 
with a 50  ms unconditioned stimulus air puff (10  psi at the 
source). A single tone-alone trial was also randomly presented 
during each block. The experiment began with eight uncondi-
tioned stimuli (15  s average inter-trial interval with a range of 
10–20  s) that were presented alone to assess the integrity of 
eyeblink responses. Participants rated neutral pictures from 
the International Affective Picture System (49) throughout the 
experiment to maintain alertness. Pictures were presented for 2 s 
between trials and participants indicated the pleasantness of each 
picture on a response pad. Participants were monitored using a 
closed circuit camera to ensure their eyes remained open during 
the experiment. In cases in which a participant’s eyes appeared to 
close, the experiment was briefly suspended so alertness could be 
re-established by turning on the lights and offering the participant 
a drink of water.

Procedure
Electromyographic activity was recorded from the orbicularis 
palpebrarum of the left eye by placing two bipolar electrodes 
1 cm below the left eyelid, approximately 1 cm apart, and centered 
beneath the pupil. A ground electrode was placed on the forehead. 
The 50 ms unconditioned stimulus air puff was delivered to the left 
eye via copper tubing affixed to lens-less glasses and connected to 
plastic tubing (approximately 120″) connected to a regulator. Ear 
inserts (E-A-RLINK – Aearo Company Auditory Systems) were 
used to deliver the conditioned stimulus tone. Electromyographic 
recordings were continuously recorded (2.5 kHz A/D rate; high-
pass filter =  1  Hz; low-pass filter =  500  Hz; gain =  1000) and 
stored offline for further processing.

Data Processing
The continuous dEBC data files were segmented into 1086  ms 
epochs starting 500  ms before the conditioned stimulus onset. 
Data were high-pass filtered using a 28 Hz (6 dB per octave) filter, 
rectified, then smoothed using a 41 point Gaussian weighted 
moving average. The 90 paired dEBC trials from each experiment 
were analyzed using DataMunch, a MatLab program specifically 
designed for eyeblink conditioning data analysis (36, 38–40, 44, 
45, 50–52). Blinks that occurred between 25 and 100  ms were 
characterized as alpha responses, which occur in response to 
the conditioned response tone onset and are reflexive, orienting 
responses that are not learning-related phenomena. For each 
participant, eyeblinks were counted as conditioned responses if 
they exceeded 5 SDs of baseline activity (baseline = 125 ms prior 
to conditioned stimulus onset) for each trial.

Trials in which electromyographic activity increased during 
the time window beginning 25  ms prior to the conditioned 
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TaBle 2 | Parameter estimates for the hlM growth curve model for 
percentage of conditioned responses.

Value (se) DF t-value p-value

R2 = 0.73
Asymptote 68.92 (3.46) 1003 −19.91 0.000
 SZ-HC −20.31 (4.97) 1003 −4.09 0.000*
Inflection Point 0.64 (0.17) 1003 3.59 0.000
 SZ-HC 0.74 (0.27) 1003 2.77 0.006*
Slope 1.1 (0.19) 1003 5.88 0.000
 SZ-HC 0.51 (0.33) 1003 1.59 0.112

SZ, schizophrenia, HC, healthy controls.
*Indicates differences between groups with a significance at P < 0.017.
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stimulus onset through 75  ms post-onset were excluded from 
analysis. These trials were excluded because blinks during this 
interval are not considered learning-related, and can interfere 
with the emission of a true conditioned response eyeblink.

Conditioned responses were recorded when an eyeblink 
occurred between 100 and 350 ms after the tone’s onset, the time 
interval corresponding to the 250 ms prior to the unconditioned 
stimulus onset. The onset latency was calculated as the time when 
the electromyographic activity exceeded 0.5 SDs from baseline 
activity.

statistical analysis
Block-by-block percentages of conditioned responses from dEBC 
experiments were fitted to growth curve models using HLM. 
Conditioned response averages for each of the 10 blocks for each 
individual were calculated and the best-fitting line was generated, 
resulting in one line for each participant – a total of 154 lines. 
Eleven from this initial group (six participants with schizophrenia 
and five controls) were dropped from the analysis because they 
failed to exhibit conditioned responding such that the difference 
between the last and the first estimation of a linear curve fit was 
<0%. Therefore, 143 participants remained for age-matching (60 
in the schizophrenia group; 83 in the control group). The final 
sample included 59 participants with schizophrenia who were 
age-matched to a healthy control whose age was within 2 years 
of their own.

The lme function of the nlme package (53) in R 3.0 (R 
Development Core Team, 2009) was used to model associative 
learning for growth curve modeling in HLM. Models used maxi-
mum likelihood estimation, except when testing whether effects 
should be fixed or random, in which case restricted maximum 
likelihood was used as suggested by Singer and Willett (54). 
Linear and non-linear forms of change were examined with 
nested model comparisons using the likelihood ratio test. Model 
fit was examined with pseudo-R2 (54), which was calculated by 
the squared correlation between the model’s fitted and observed 
values, representing the proportion of variance in the outcome 
explained by the model.

A three-parameter logistic growth curve with a randomly 
varying asymptote and fixed values for the slope and inflection 
point was used, which fit the data well (pseudo-R2 = 0.73). The 
model allowed different asymptote estimates across participants 
but not different estimates of slope or inflection point (but were 
allowed to differ by group). A random effect of asymptote was a 
better model fit than a model with a random effect of inflection 
point, and models with a random effect of slope did not converge. 
For each individual, logistic growth curves were fit to associative 
learning curves across the 10 blocks of the experiment. These 
logistic curves estimated whether the groups were different 
for each of the three parameters: slope, inflection point, and 
asymptote. The inflection point is the point on the curve where 
it changes curvature, and the asymptote is where learning begins 
to level off. The slope measures the change in associative learn-
ing over time and was used to assess differences in learning rate 
between groups.

We attempted to analyze data from conditioned response 
onset latency, but the data fit a logistic growth curve model 

poorly (pseudo-R2  =  0.24). Therefore, although all indications 
were that no differences on primary dependent variables could 
be observed, given the lack of fit and consequent unreliability 
of statistical measures, we have not included this analysis in the 
Section “Results.”

Using three separate statistical tests of between-group dif-
ferences (schizophrenia vs. controls for asymptote, slope, and 
inflection point), a Bonferroni-corrected alpha level of P < 0.017 
(P  <  0.05/3 comparisons) was deemed significant, although 
results with P < 0.05 are reported.

resUlTs

Baseline Unconditioned response 
amplitude
Differences in conditioned response measurements could arise 
from impairment in general eyeblink performance. Therefore, 
to ensure that any observed differences between groups on 
the percentage of conditioned responses was not due to such a 
general performance issue, eight unconditioned stimulus air 
puffs were presented alone at the beginning of the experiment. 
Baseline unconditioned response amplitude was available for 
a total of 41 participants with schizophrenia and 42 controls. 
Neither the average peak unconditioned response amplitudes 
[F(1,81) = 3.17, P = 0.08] nor latencies [F(1, 81) = 0.003, P = 0.96] 
were significantly different between groups. While the differences 
in amplitude did not reach significance, it is important to note that 
average group differences indicated that the schizophrenia group 
had larger unconditioned response amplitudes (M =  97.89 μV, 
SD = 23.27) compared to controls (M = 89.64 μV, SD = 18.79). 
This finding is consistent with earlier findings that unconditioned 
response amplitude was larger on paired dEBC trials in schizo-
phrenia (40). Overall, these findings suggest that differences in 
conditioned responses are unlikely to be due to deficits in blink 
performance in the schizophrenia group.

Percentage of conditioned responses
Parameter estimates of the logistic model examining learning 
curves of the percentage of conditioned responses are in Table 2. 
Figure 1 shows the line fits for each participant, the group average 
fitted line, and the conditioned response average for each of the 10 
blocks. Findings suggest that the difference in learning between the 
beginning and end of the experiment is similar between groups, 
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FigUre 1 | conditioned response data for the control group (left) and 
the schizophrenia group (right). The logistic curve fit for each individual 
(black lines), the average percentage of CRs for the raw data for each block 
in red, and the group average logistic curve fit in blue.
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but that learning saturates later in the schizophrenia group, and 
the level at which saturation occurs is lower in the schizophrenia 
group. When the groups were considered together, performance 
improved across the 10 blocks of the experiment, t(1003) = 5.88, 
P  <  0.001, SE  =  0.19, and the rate of learning did not differ 
between groups, t(1003) = 1.59, P = 0.11, SE = 0.33. However, 
the asymptote was significantly lower in the schizophrenia group, 
t(1003) = −4.09, P < 0.001, SE = 4.97. Moreover, the inflection 
point occurred later in schizophrenia group [t(1003)  =  2.77, 
P  =  0.006, SE  =  0.27]. These results indicate that the rate of 
learning over the course of the experiment (the slope), measured 
as the difference between blocks 1 and 10 on the fitted logistic 
curves, was not significantly different between groups. However, 
the reduced asymptote in schizophrenia makes the slope more 
similar between groups even though the inflection point occurred 
later. Overall, the schizophrenia group attained a lower ultimate 
level of learning and took longer to achieve this maximum.

correlations with clinical symptoms
We examined associations of participants’ estimates on each of the 
three logistic model parameters for the percentage of conditioned 
responses with PANSS positive, negative, general, and total scores 
using bivariate correlations with age partialed out. There were no 
significant correlations between any behavioral parameters and 
clinical variables.

DiscUssiOn

The goal of the present study was to extend and clarify results 
of earlier studies examining dEBC in schizophrenia using more 
sophisticated statistical models. HLM of data fitted to a logistic 
growth curve model provided insight into how three components 
of the learning curve change over time in schizophrenia. Overall, 
associative learning in the schizophrenia group leveled off at a 

lower level compared to controls, and took longer to reach the 
maximal learning level. Surprisingly, the rate of learning (i.e., 
slope) within subjects with schizophrenia was not significantly 
different from controls.

Analysis of dEBC data using HLM, a superior analytic approach 
compared to ANOVA, suggests robust differences between subjects 
in the control and schizophrenia groups. Cerebellar abnormalities 
in schizophrenia are most likely responsible for these behavioral 
dEBC differences. The regions of cerebellar cortex that show 
reduced regional cerebral blood flow (rCBF) during dEBC in 
unmedicated schizophrenia (55) also overlap with those identi-
fied as fundamental to normal expression of conditioned eyeblink 
responses in animal studies (56–59). The interpositus nucleus is 
necessary for the acquisition and retention of the conditioned eye-
blink response with cerebellar cortical sites, in particular long-term 
depression at the parallel fiber–Purkinje cell synapse, modulating 
important aspects of the gain and timing of the response (see, Ref. 
(60) for extensive review). Human studies of populations with 
cerebellar lesions or degeneration largely support these findings, 
and also suggest that purely cortical lesions produce significant 
reductions in the expression of conditioned responses, but do not 
abolish them (61). Importantly, cerebellar cortical structure is 
associated with conditioned response timing (62) and acquisition 
(63). Taken together, these findings suggest that abnormalities in 
the interpositus nuclei and the cortex of the cerebellum contribute 
to the dEBC deficits observed in schizophrenia.

Our laboratory has undertaken a program of research that aims 
to tackle outstanding questions about cerebellar abnormalities in 
schizophrenia. We have previously reported deficits in schizophre-
nia on timing tasks that rely heavily on cerebellar-based timing 
mechanisms, including paced finger-tapping (64) and a temporal 
bisection task (45, 65, 66). Using neuroimaging techniques, we 
can more definitively understand the extent to which the dEBC 
deficits in schizophrenia are uniquely attributable to alterations 
in cerebellar function compared to other cortical and subcortical 
circuits in which the cerebellum participates. We are currently 
using functional magnetic resonance imaging in conjunction 
with dEBC and paced finger-tapping to determine how cerebellar 
functional and structural abnormalities contribute to perfor-
mance deficits in schizophrenia. Moreover, our recent studies 
have identified dEBC abnormalities in an intermediate phenotype 
of schizophrenia, namely schizotypal personality disorder (39), 
and in first-degree relatives of individuals with schizophrenia 
(44), suggesting that dEBC impairments may be risk markers 
for schizophrenia. Ongoing studies of first-degree relatives will 
determine whether familial risk is associated with morphological 
and functional alterations in the cerebellum and related circuits.

Our current studies and others addressing similar questions 
may provide evidence that the cerebellum is a potential thera-
peutic target for remediating symptoms of schizophrenia. Indeed, 
preliminary evidence supports this idea. For example, secretin is 
a neuropeptide with receptors in the cerebellum, which permit-
ted us to make predictions based on a mechanistic model of its 
actions within the cerebellar cortex (67, 68). When we adminis-
tered secretin to a small group of participants with schizophrenia, 
it significantly improved dEBC performance and validated the 
utility of the cerebellum as a potential pharmacological target 
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(37) [c.f., Ref. (69, 70)]. Similarly, a small sample of individuals 
with treatment-resistant schizophrenia underwent theta-burst 
transcranial magnetic stimulation of the cerebellum and experi-
enced both improved mood symptoms and enhanced cognitive 
performance (71). Taken together, efforts to identify cerebellar-
dependent biomarkers will facilitate the development of new 
potential therapeutic targets within the cerebellum that could 
provide previously unexplored avenues of treatment that are 
sorely needed for this perplexing disorder.

acKnOWleDgMenTs

We would like to thank the participants and clinical research team 
at Larue D. Carter Memorial Hospital and the Indiana University 
Neuroscience Clinical Research Center for their support.

FUnDing

National Institute of Mental Health (R01 MH074983B, PI: WH).

reFerences

1. Andreasen NC. A unitary model of schizophrenia: Bleuler’s “fragmented 
phrene” as schizencephaly. Arch Gen Psychiatry (1999) 56(9):781–7. 
doi:10.1001/archpsyc.56.9.781 

2. Ivry RB, Spencer RM. The neural representation of time. Curr Opin Neurobiol 
(2004) 14(2):225–32. doi:10.1016/j.conb.2004.03.013 

3. Ivry RB, Keele SW. Timing functions of the cerebellum. J Cogn Neurosci (1989) 
1(2):136–52. doi:10.1162/jocn.1989.1.2.136 

4. Katz DB, Steinmetz JE. Psychological functions of the cerebellum. Behav Cogn 
Neurosci Rev (2002) 1:229–41. doi:10.1177/1534582302001003004 

5. Leiner HC, Leiner AL, Dow RS. The human cerebro-cerebellar system: its com-
puting, cognitive, and language skills. Behav Brain Res (1991) 44(2):113–28. 
doi:10.1016/S0166-4328(05)80016-6 

6. Schmahmann JD. Disorders of the cerebellum: ataxia, dysmetria of thought, 
and the cerebellar cognitive affective syndrome. J Neuropsychiatry Clin 
Neurosci (2004) 16(3):367–78. doi:10.1176/appi.neuropsych.16.3.367 

7. Schmahmann JD, Sherman JC. Cerebellar cognitive affective syndrome. Int 
Rev Neurobiol (1997) 41:433–40. doi:10.1016/S0074-7742(08)60363-3 

8. Schmahmann JD, Sherman JC. The cerebellar cognitive affective syndrome. 
Brain (1998) 121(Pt 4):561–79. doi:10.1093/brain/121.4.561 

9. Clower DM, West RA, Lynch JC, Strick PL. The inferior parietal lobule is the 
target of output from the superior colliculus, hippocampus, and cerebellum. J 
Neurosci (2001) 21(16):6283–91. 

10. Middleton FA, Strick PL. Anatomical evidence for cerebellar and basal ganglia 
involvement in higher cognitive function. Science (1994) 266(5184):458–61. 
doi:10.1126/science.7939688 

11. Middleton FA, Strick PL. Cerebellar output: motor and cognitive channels. 
Trends Cogn Sci (1998) 2(9):348–54. doi:10.1016/S1364-6613(98)01220-0 

12. Middleton FA, Strick PL. Cerebellar projections to the prefrontal cortex of the 
primate. J Neurosci (2001) 21(2):700–12. 

13. Laidi C, d’Albis MA, Wessa M, Linke J, Phillips ML, Delavest M, et  al. 
Cerebellar volume in schizophrenia and bipolar I disorder with and without 
psychotic features. Acta Psychiatr Scand (2015) 131(3):223–33. doi:10.1111/
acps.12363 

14. Shinn AK, Baker JT, Lewandowski KE, Ongur D, Cohen BM. Aberrant cere-
bellar connectivity in motor and association networks in schizophrenia. Front 
Hum Neurosci (2015) 9:134. doi:10.3389/fnhum.2015.00134 

15. Schmitt A, Schulenberg W, Bernstein HG, Steiner J, Schneider-Axmann 
T, Yeganeh-Doost P, et  al. Reduction of gyrification index in the cerebellar 
vermis in schizophrenia: a post-mortem study. World J Biol Psychiatry (2011) 
12(Suppl 1):99–103. doi:10.3109/15622975.2011.598379 

16. Maloku E, Covelo IR, Hanbauer I, Guidotti A, Kadriu B, Hu Q, et al. Lower 
number of cerebellar Purkinje neurons in psychosis is associated with 
reduced reelin expression. Proc Natl Acad Sci U S A (2010) 107(9):4407–11. 
doi:10.1073/pnas.0914483107 

17. Reyes MG, Gordon A. Cerebellar vermis in schizophrenia. Lancet (1981) 
2(8248):700–1. doi:10.1016/S0140-6736(81)91039-4 

18. Tran KD, Smutzer GS, Doty RL, Arnold SE. Reduced Purkinje cell size in 
the cerebellar vermis of elderly patients with schizophrenia. Am J Psychiatry 
(1998) 155(9):1288–90. doi:10.1176/ajp.155.9.1288 

19. Roman-Urrestarazu A, Murray GK, Barnes A, Miettunen J, Jaaskelainen 
E, Maki P, et  al. Brain structure in different psychosis risk groups in the 
Northern Finland 1986 birth cohort. Schizophr Res (2014) 153(1–3):143–9. 
doi:10.1016/j.schres.2013.12.019 

20. Cahn W, Hulshoff Pol HE, Bongers M, Schnack HG, Mandl RC, Van Haren 
NE, et al. Brain morphology in antipsychotic-naive schizophrenia: a study of 
multiple brain structures. Br J Psychiatry Suppl (2002) 43:s66–72. doi:10.1192/
bjp.181.43.s66 

21. Supprian T, Ulmar G, Bauer M, Schuler M, Puschel K, Retz-Junginger P, et al. 
Cerebellar vermis area in schizophrenic patients  –  a post-mortem study. 
Schizophr Res (2000) 42(1):19–28. doi:10.1016/S0920-9964(99)00103-6 

22. Bottmer C, Bachmann S, Pantel J, Essig M, Amann M, Schad LR, et al. Reduced 
cerebellar volume and neurological soft signs in first-episode schizophrenia. 
Psychiatry Res (2005) 140(3):239–50. doi:10.1016/j.pscychresns.2005.02.011 

23. Kasparek T, Marecek R, Schwarz D, Prikryl R, Vanicek J, Mikl M, et al. Source-
based morphometry of gray matter volume in men with first-episode schizo-
phrenia. Hum Brain Mapp (2010) 31(2):300–10. doi:10.1002/hbm.20865 

24. Rasser PE, Schall U, Peck G, Cohen M, Johnston P, Khoo K, et al. Cerebellar grey 
matter deficits in first-episode schizophrenia mapped using cortical pattern match-
ing. Neuroimage (2010) 53(4):1175–80. doi:10.1016/j.neuroimage.2010.07.018 

25. Ichimiya T, Okubo Y, Suhara T, Sudo Y. Reduced volume of the cerebellar 
vermis in neuroleptic-naive schizophrenia. Biol Psychiatry (2001) 49(1):20–7. 
doi:10.1016/S0006-3223(00)01081-7 

26. Nopoulos PC, Ceilley JW, Gailis EA, Andreasen NC. An MRI study of cere-
bellar vermis morphology in patients with schizophrenia: evidence in support 
of the cognitive dysmetria concept. Biol Psychiatry (1999) 46(5):703–11. 
doi:10.1016/S0006-3223(99)00093-1 

27. Wassink TH, Andreasen NC, Nopoulos P, Flaum M. Cerebellar morphology 
as a predictor of symptom and psychosocial outcome in schizophrenia. Biol 
Psychiatry (1999) 45(1):41–8. doi:10.1016/S0006-3223(98)00175-9 

28. Potkin SG, Alva G, Fleming K, Anand R, Keator D, Carreon D, et al. A PET 
study of the pathophysiology of negative symptoms in schizophrenia. Positron 
emission tomography. Am J Psychiatry (2002) 159(2):227–37. doi:10.1176/
appi.ajp.159.2.227 

29. Daum I, Schugens MM, Ackermann H, Lutzenberger W, Dichgans J, 
Birbaumer N. Classical conditioning after cerebellar lesions in humans. Behav 
Neurosci (1993) 107(5):748–56. 

30. Topka H, Valls-Sole J, Massaquoi SG, Hallett M. Deficit in classical condition-
ing in patients with cerebellar degeneration. Brain (1993) 116(Pt 4):961–9. 
doi:10.1093/brain/116.4.961 

31. Woodruff-Pak DS,  Papka M,  Ivry RB. Cerebellar involvement in eyeblink 
classical conditioning in humans. Neuropsychology (1996) 10(4):443–58. 
doi:10.1037/0894-4105.10.4.443

32. Kim JJ, Thompson RF. Cerebellar circuits and synaptic mechanisms involved 
in classical eyeblink conditioning. Trends Neurosci (1997) 20(4):177–81. 
doi:10.1016/S0166-2236(96)10081-3 

33. Steinmetz JE. Brain substrates of classical eyeblink conditioning: a highly 
localized but also distributed system. Behav Brain Res (2000) 110(1–2):13–24. 
doi:10.1016/S0166-4328(99)00181-3 

34. Christian KM, Thompson RF. Neural substrates of eyeblink conditioning: 
acquisition and retention. Learn Mem (2003) 10:427–55. doi:10.1101/
lm.59603 

35. Fanselow MS, Poulos AM. The neuroscience of mammalian associative 
learning. Annu Rev Psychol (2005) 56:207–34. doi:10.1146/annurev.
psych.56.091103.070213 

36. Brown SM, Kieffaber PD, Carroll CA, Vohs JL, Tracy JA, Shekhar A, et  al. 
Eyeblink conditioning deficits indicate timing and cerebellar abnormal-
ities in schizophrenia. Brain Cogn (2005) 58(1):94–108. doi:10.1016/j.
bandc.2004.09.011 

http://www.frontiersin.org/Psychiatry/archive
http://www.frontiersin.org/Psychiatry/
http://www.frontiersin.org
http://dx.doi.org/10.1001/archpsyc.56.9.781
http://dx.doi.org/10.1016/j.conb.2004.03.013
http://dx.doi.org/10.1162/jocn.1989.1.2.136
http://dx.doi.org/10.1177/1534582302001003004
http://dx.doi.org/10.1016/S0166-4328(05)80016-6
http://dx.doi.org/10.1176/appi.neuropsych.16.3.367
http://dx.doi.org/10.1016/S0074-7742(08)60363-3
http://dx.doi.org/10.1093/brain/121.4.561
http://dx.doi.org/10.1126/science.7939688
http://dx.doi.org/10.1016/S1364-6613(98)01220-0
http://dx.doi.org/10.1111/acps.12363
http://dx.doi.org/10.1111/acps.12363
http://dx.doi.org/10.3389/fnhum.2015.00134
http://dx.doi.org/10.3109/15622975.2011.598379
http://dx.doi.org/10.1073/pnas.0914483107
http://dx.doi.org/10.1016/S0140-6736(81)91039-4
http://dx.doi.org/10.1176/ajp.155.9.1288
http://dx.doi.org/10.1016/j.schres.2013.12.019
http://dx.doi.org/10.1192/bjp.181.43.s66
http://dx.doi.org/10.1192/bjp.181.43.s66
http://dx.doi.org/10.1016/S0920-9964(99)00103-6
http://dx.doi.org/10.1016/j.pscychresns.2005.02.011
http://dx.doi.org/10.1002/hbm.20865
http://dx.doi.org/10.1016/j.neuroimage.2010.07.018
http://dx.doi.org/10.1016/S0006-3223(00)01081-7
http://dx.doi.org/10.1016/S0006-3223(99)00093-1
http://dx.doi.org/10.1016/S0006-3223(98)00175-9
http://dx.doi.org/10.1176/appi.ajp.159.2.227
http://dx.doi.org/10.1176/appi.ajp.159.2.227
http://dx.doi.org/10.1093/brain/116.4.961
http://dx.doi.org/10.1037/0894-4105.10.4.443
http://dx.doi.org/10.1016/S0166-2236(96)10081-3
http://dx.doi.org/10.1016/S0166-4328(99)00181-3
http://dx.doi.org/10.1101/lm.59603
http://dx.doi.org/10.1101/lm.59603
http://dx.doi.org/10.1146/annurev.psych.56.091103.070213
http://dx.doi.org/10.1146/annurev.psych.56.091103.070213
http://dx.doi.org/10.1016/j.bandc.2004.09.011
http://dx.doi.org/10.1016/j.bandc.2004.09.011


January 2016 | Volume 7 | Article 47

Bolbecker et al. Eyeblink Conditioning in Schizophrenia

Frontiers in Psychiatry | www.frontiersin.org

37. Bolbecker AR, Hetrick WP, Johannesen JK, O’Donnell BF, Steinmetz JE, 
Shekhar AS. Secretin effects on cerebellar-dependent motor learning in 
schizophrenia. Am J Psychiatry (2009) 166(4):460–6. doi:10.1176/appi.
ajp.2008.08040597 

38. Bolbecker AR, Steinmetz AB, Mehta CS, Forsyth JK, Klaunig MJ, Lazar EK, 
et  al. Exploration of cerebellar-dependent associative learning in schizo-
phrenia: effects of varying and shifting interstimulus interval on eyeblink 
conditioning. Behav Neurosci (2011) 125(5):687–98. doi:10.1037/a0025150 

39. Forsyth JK, Bolbecker AR, Mehta CS, Klaunig MJ, Steinmetz JE, O’Donnell BF, 
et  al. Cerebellar-dependent eyeblink conditioning deficits in schizophrenia 
spectrum disorders. Schizophr Bull (2010) 38:751–9. doi:10.1093/schbul/
sbq148 

40. Bolbecker AR, Mehta CS, Edwards CR, Steinmetz JE, O’Donnell BF, Hetrick 
WP. Eye-blink conditioning deficits indicate temporal processing abnormal-
ities in schizophrenia. Schizophr Res (2009) 111(1–3):182–91. doi:10.1016/j.
schres.2009.03.016 

41. Gueorguieva R, Krystal JH. Move over ANOVA: progress in analyzing 
repeated-measures data and its reflection in papers published in the archives 
of general psychiatry. Arch Gen Psychiatry (2004) 61(3):310–7. doi:10.1001/
archpsyc.61.3.310 

42. Bryk AS, Raudenbush SW. Heterogeneity of variance in experimental studies: a 
challenge to conventional interpretations. Psychol Bull (1988) 104(3):396–404. 
doi:10.1037/0033-2909.104.3.396 

43. Raudenbush SW, Bryk AS. Hierarchical Linear Models: Applications and Data 
Analysis Methods. 2nd ed. (Vol. 1). Thousand Oaks, CA: Sage Publications, 
Inc (2002).

44. Bolbecker AR, Kent JS I, Petersen T, Klaunig MJ, Forsyth JK, Howell JM, et al. 
Impaired cerebellar-dependent eyeblink conditioning in first-degree relatives 
of individuals with schizophrenia. Schizophr Bull (2014) 40(5):1001–10. 
doi:10.1093/schbul/sbt112 

45. Bolbecker AR, Westfall DR, Howell JM, Lackner RJ, Carroll CA, O’Donnell 
BF, et al. Increased timing variability in schizophrenia and bipolar disorder. 
PLoS One (2014) 9(5):e97964. doi:10.1371/journal.pone.0097964 

46. First MB, Spitzer RL, Gibbon M, Williams JBW. Structured Clinical Interview 
for DSM-IV-TR Axis I Disorders, Research Version, Patient Edition (SCID-I/P). 
New York: New York State Psychiatric Institute, Biometrics Research (2002).

47. First MB, Spitzer RL, Gibbon M, Williams JBW. Structured Clinical Interview 
for DSM-IV Axis I disorders  –  Nonpatient Version 2.0. New York, NY: 
Psychiatric Institute (1995).

48. Kay SR, Fiszbein A, Opler LA. The positive and negative syndrome scale 
(PANSS) for schizophrenia. Schizophr Bull (1987) 13(2):261–76. doi:10.1093/
schbul/13.2.261 

49. Lang PJ, Greenwald MK. The International Affective Picture System 
Standardization Procedure and Initial Group Results for Affective Judgements: 
Technical Reports 1A and 1B. Gainseville: Center for Research in 
Psychophysiology, University of Florida (1988).

50. Bolbecker AR, Mehta C, Johannesen JK, Edwards CR, O’Donnell BF, 
Shekhar A, et  al. Eyeblink conditioning anomalies in bipolar disorder 
suggest cerebellar dysfunction. Bipolar Disord (2009) 11(1):19–32. 
doi:10.1111/j.1399-5618.2008.00642.x 

51. Steinmetz AB, Edwards CR, Steinmetz JE, Hetrick WP. Comparison of audi-
tory and visual conditioning stimuli in delay eyeblink conditioning in healthy 
young adults. Learn Behav (2009) 37(4):349–56. doi:10.3758/lb.37.4.349 

52. Steinmetz AB, Skosnik PD, Edwards CR, Bolbecker AR, Steinmetz JE, 
Hetrick WP. Evaluation of bidirectional interstimulus interval (ISI) shift in 
auditory delay eye-blink conditioning in healthy humans. Learn Behav (2011) 
39(4):358–70. doi:10.3758/s13420-011-0031-9 

53. Pinheiro J, Bates D, DebRoy S, Sarkar D, R Core Team. NLME: Linear and 
Nonlinear Mixed Effects Models; R Package Version 3. (2009). Available from 
http://www.r-project.org/

54. Singer JD, Willett JB. Applied Longitudinal Data Analysis: Modeling Change 
and Event Occurrence. New York: Oxford (2003).

55. Parker KL, Andreasen NC, Liu D, Freeman JH, O’Leary DS. Eyeblink 
conditioning in unmedicated schizophrenia patients: a positron emission 
tomography study. Psychiatry Res (2013) 214(3):402–9. doi:10.1016/j.
pscychresns.2013.07.006 

56. Gould TJ, Steinmetz JE. Changes in rabbit cerebellar cortical and interpos-
itus nucleus activity during acquisition, extinction, and backward classical 
eyelid conditioning. Neurobiol Learn Mem (1996) 65(1):17–34. doi:10.1006/
nlme.1996.0003 

57. Mostofi A, Holtzman T, Grout AS, Yeo CH, Edgley SA. Electrophysiological 
localization of eyeblink-related microzones in rabbit cerebellar cortex. J 
Neurosci (2010) 30(26):8920–34. doi:10.1523/jneurosci.6117-09.2010 

58. Rosenfield ME, Moore JW. Connections to cerebellar cortex (Larsell’s 
HVI) in the rabbit: a WGA-HRP study with implications for classi-
cal eyeblink conditioning. Behav Neurosci (1995) 109(6):1106–18. 
doi:10.1037/0735-7044.109.6.1106 

59. Villarreal RP, Steinmetz JE. Neuroscience and learning: lessons from study-
ing the involvement of a region of cerebellar cortex in eyeblink classical  
conditioning. J Exp Anal Behav (2005) 84(3):631–52. doi:10.1901/
jeab.2005.96-04 

60. Freeman JH, Steinmetz AB. Neural circuitry and plasticity mechanisms 
underlying delay eyeblink conditioning. Learn Mem (2011) 18(10):666–77. 
doi:10.1101/lm.2023011 

61. Gerwig M, Guberina H, Esser AC, Siebler M, Schoch B, Frings M, et  al. 
Evaluation of multiple-session delay eyeblink conditioning comparing 
patients with focal cerebellar lesions and cerebellar degeneration. Behav Brain 
Res (2010) 212(2):143–51. doi:10.1016/j.bbr.2010.04.007 

62. Edwards CR, Newman S, Bismark A, Skosnik PD, O’Donnell BF, Shekhar 
A, et  al. Cerebellum volume and eyeblink conditioning in schizophrenia. 
Psychiatry Res (2008) 162(3):185–94. doi:10.1016/j.pscychresns.2007.06.001 

63. Dimitrova A, Gerwig M, Brol B, Gizewski ER, Forsting M, Beck A, et  al. 
Correlation of cerebellar volume with eyeblink conditioning in healthy sub-
jects and in patients with cerebellar cortical degeneration. Brain Res (2008) 
1198:73–84. doi:10.1016/j.brainres.2008.01.034 

64. Carroll CA, O’Donnell BF, Shekhar A, Hetrick WP. Timing dysfunctions in 
schizophrenia as measured by a repetitive finger tapping task. Brain Cogn 
(2009) 71(3):345–53. doi:10.1016/j.bandc.2009.06.009 

65. Carroll CA, Boggs J, O’Donnell BF, Shekhar A, Hetrick WP. Temporal 
processing dysfunction in schizophrenia. Brain Cogn (2008) 67(2):150–61. 
doi:10.1016/j.bandc.2007.12.005 

66. Carroll CA, O’Donnell BF, Shekhar A, Hetrick WP. Timing dysfunctions in 
schizophrenia span from millisecond to several-second durations. Brain Cogn 
(2009) 70(2):181–90. doi:10.1016/j.bandc.2009.02.001 

67. Lee SM, Chen L, Chow BK, Yung WH. Endogenous release and multiple 
actions of secretin in the rat cerebellum. Neuroscience (2005) 134(2):377–86. 
doi:10.1016/j.neuroscience.2005.04.009 

68. Yung WH, Leung PS, Ng SS, Zhang J, Chan SC, Chow BK. Secretin facilitates 
GABA transmission in the cerebellum. J Neurosci (2001) 21(18):7063–8. 

69. Fuchs JR, Robinson GM, Dean AM, Schoenberg HE, Williams MR, Morielli 
AD, et al. Cerebellar secretin modulates eyeblink classical conditioning. Learn 
Mem (2014) 21(12):668–75. doi:10.1101/lm.035766.114 

70. Williams MR, Fuchs JR, Green JT, Morielli AD. Cellular mechanisms and 
behavioral consequences of Kv1.2 regulation in the rat cerebellum. J Neurosci 
(2012) 32(27):9228–37. doi:10.1523/jneurosci.6504-11.2012 

71. Demirtas-Tatlidede A, Freitas C, Cromer JR, Safar L, Ongur D, Stone WS, 
et al. Safety and proof of principle study of cerebellar vermal theta burst stim-
ulation in refractory schizophrenia. Schizophr Res (2010) 124(1–3):91–100. 
doi:10.1016/j.schres.2010.08.015 

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be 
construed as a potential conflict of interest.

Copyright © 2016 Bolbecker, Petersen, Kent, Howell, O’Donnell and Hetrick. This 
is an open-access article distributed under the terms of the Creative Commons 
Attribution License (CC BY). The use, distribution or reproduction in other forums 
is permitted, provided the original author(s) or licensor are credited and that the 
original publication in this journal is cited, in accordance with accepted academic 
practice. No use, distribution or reproduction is permitted which does not comply 
with these terms.

http://www.frontiersin.org/Psychiatry/archive
http://www.frontiersin.org/Psychiatry/
http://www.frontiersin.org
http://dx.doi.org/10.1176/appi.ajp.2008.08040597
http://dx.doi.org/10.1176/appi.ajp.2008.08040597
http://dx.doi.org/10.1037/a0025150
http://dx.doi.org/10.1093/schbul/sbq148
http://dx.doi.org/10.1093/schbul/sbq148
http://dx.doi.org/10.1016/j.schres.2009.03.016
http://dx.doi.org/10.1016/j.schres.2009.03.016
http://dx.doi.org/10.1001/archpsyc.61.3.310
http://dx.doi.org/10.1001/archpsyc.61.3.310
http://dx.doi.org/10.1037/0033-2909.104.3.396
http://dx.doi.org/10.1093/schbul/sbt112
http://dx.doi.org/10.1371/journal.pone.0097964
http://dx.doi.org/10.1093/schbul/13.2.261
http://dx.doi.org/10.1093/schbul/13.2.261
http://dx.doi.org/10.1111/j.1399-5618.2008.00642.x
http://dx.doi.org/10.3758/lb.37.4.349
http://dx.doi.org/10.3758/s13420-011-0031-9
http://www.r-project.org/
http://dx.doi.org/10.1016/j.pscychresns.2013.07.006
http://dx.doi.org/10.1016/j.pscychresns.2013.07.006
http://dx.doi.org/10.1006/nlme.1996.0003
http://dx.doi.org/10.1006/nlme.1996.0003
http://dx.doi.org/10.1523/jneurosci.6117-09.2010
http://dx.doi.org/10.1037/0735-7044.109.6.1106
http://dx.doi.org/10.1901/jeab.2005.96-04
http://dx.doi.org/10.1901/jeab.2005.96-04
http://dx.doi.org/10.1101/lm.2023011
http://dx.doi.org/10.1016/j.bbr.2010.04.007
http://dx.doi.org/10.1016/j.pscychresns.2007.06.001
http://dx.doi.org/10.1016/j.brainres.2008.01.034
http://dx.doi.org/10.1016/j.bandc.2009.06.009
http://dx.doi.org/10.1016/j.bandc.2007.12.005
http://dx.doi.org/10.1016/j.bandc.2009.02.001
http://dx.doi.org/10.1016/j.neuroscience.2005.04.009
http://dx.doi.org/10.1101/lm.035766.114
http://dx.doi.org/10.1523/jneurosci.6504-11.2012
http://dx.doi.org/10.1016/j.schres.2010.08.015
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	New Insights into the Nature of Cerebellar-Dependent Eyeblink Conditioning Deficits in Schizophrenia: A Hierarchical 
Linear Modeling Approach
	Introduction
	Materials and Methods
	Participants
	Delay Eyeblink Conditioning Procedure
	Procedure
	Data Processing
	Statistical Analysis

	Results
	Baseline Unconditioned Response Amplitude
	Percentage of Conditioned Responses
	Correlations with Clinical Symptoms

	Discussion
	Acknowledgments
	Funding
	References


