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In recent years, the field of in vivo gene transfer with adeno-
associated virus (AAV) vectors has seen an extraordinary expan-
sion of applications and investments. Results emerging from clin-
ical trials (1) and the recent market approval of a gene therapy
drug for lipoprotein lipase deficiency (2) contributed to the hype
around this vector system (3). Indeed, AAV vectors have several
features that make them an ideal tool for gene transfer, for exam-
ple, parental virions are replication deficient and non-pathogenic
(4), and vectors can drive expression of a transgene for several
years (5, 6) despite the fact that they do not integrate efficiently
into the host genome. In recent years, a portfolio of natural AAV
isolates (AAV serotypes) differing in tissue tropism has been devel-
oped as vectors. This toolbox has been further expanded with
engineered AAV capsids developed to enhance efficiency and speci-
ficity of gene delivery, and to escape antibody neutralization (7). At
the vector genome level, availability of potent promoter/enhancer
sequences, codon-optimization of transgenes, and development
of self-complementary AAV vectors (8) further enhanced effi-
cacy of gene transfer. Finally, the availability of scalable processes
to produce AAV vectors in GMP contributed significantly to the
expansion of the field.

As the AAV vector technology reached a more mature stage, it
has become clear that a better understanding of the interactions
of viral vectors with the host immune system is needed. In this
Research Topic of Frontiers in Immunology, the editors present a
collection of reviews and research articles discussing the two sides
of immune responses triggered by in vivo gene transfer. These
responses in fact can be desirable when they result in induction
of tolerance to the therapeutic transgene (9), or when they are
exploited for vaccine development, as discussed by Nieto and Sal-
vetti in their review article (10). Conversely, immunogenicity of
the viral capsid or the transgene product can be detrimental, as
it may result in lack or loss of efficacy following vector-mediated
gene transfer.

Evidence for the critical role of tolerance induction in the
achievement of sustained therapeutic efficacy following gene
transfer comes from the work of Liao and colleagues, which pro-
vides evidence that glucocorticoid-induced TNF receptor (GITR)
and its ligand GITR-L are of fundamental importance for the
induction of immune regulatory responses in gene transfer and
that lack of expression of GITR-L on antigen presenting cells

results in impaired induction of regulatory T cells (Tregs) (11).
Indeed, evidence of the key function of Tregs for successful in vivo
gene therapy comes from several studies (12), and Liu and col-
leagues further demonstrate this concept in a model of plasmid
gene transfer for hemophilia A, in which a combination of B
cell depleting and Treg-enhancing drugs is used to successfully
modulate transgene immunogenicity (13).

INNATE IMMUNE RESPONSES TO AAV VECTORS
The innate immune system constitutes the first line of defense
against invading pathogens. It recognizes evolutionarily conserved
structures foreign to the host or detects structures known as
self, but present in the wrong intracellular compartment, via
innate immune sensors termed pathogen recognition receptors
(PRRs). Binding of such pathogen-associated molecular patterns
(PAMPs) to PRRs activates the intracellular innate immune sys-
tem, leading to substantial changes in the expression of genes
related to host defense, in secretion of cytokines and chemokines,
and up-regulation of co-stimulatory molecules, which as a con-
sequence induce or modulate the adaptive arm of the immune
system.

Of the four families of cellular PRRs [toll-like-receptors (TLRs),
NOD-like receptors, RIG-like receptors, and C-type lectin recep-
tors], as of now only two members of the TLR family, TLR-2 and
TLR-9, have been described as sensors for AAV vectors. TLR-2
was identified as a PRR of the viral capsid in studies on cell
autonomous immune responses in primary human liver cells (liver
sinusoidal endothelial cells, Kupffer cells) and activated endothe-
lial cells (14), while TLR-9 was reported as sensor of AAV vector
genomes in plasmacytoid dendritic cells (pDC) isolated from mice
and humans (15). Although both PRRs are part of the same fam-
ily, recognition of the viral capsid caused induction of a Nuclear
Factor kB-dependent inflammatory response (14), while activa-
tion of TLR-9 induced secretion of type I interferon (IFN) that
was found to be enhanced if vectors with self-complementary
(sc) AAV vector genomes were used (15, 16). The nature of this
enhanced immunogenicity remains to be clarified, but is maybe
related to a negative impact of sc vector genomes on capsid stability
(16) or to the additional inverted terminal repeat (ITR) sequence
present in sc vector genomes (8). The later hypothesis would be in
line with a recent study reporting significantly reduced adaptive
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immune responses toward the capsid and the transgene product
when using AAV vectors with a reduced number of CpG motifs,
which are known TLR-9 PAMPs (17). The route of vector delivery
appears to be a critical factor in AAV recognition by the innate
immune system. The above-described activation of the TLR-9
myeloid differentiation primary response 88 (MyD88) signaling
pathway, for example, resulted in humoral and T cell-mediated
adaptive immune responses toward the AAV capsid and the trans-
gene product in mice in which AAV vectors were administered
intramuscularly. Conversely, following tail vein injection, neither
a TLR-2, nor a TLR-9, or a type I IFN dependent induction of AAV
specific IgG antibodies could be detected (15, 18).

ADAPTIVE IMMUNE RESPONSES IN AAV VECTOR-MEDIATED
GENE TRANSFER
Exposure to wild-type AAV or to AAV vectors, and the conse-
quent activation of innate and adaptive immunity to vector and
transgene leads to both antibody and cell-mediated responses.
Antibodies directed against the AAV capsid are highly prevalent in
humans (up to 60% of healthy individuals) and can efficiently neu-
tralize the vector even when present at low titers, resulting in lack
of efficacy, thus posing a significant constrain to patients enroll-
ment in clinical trials. Similarly, vector administration results in
long-lasting high-titer anti-AAV neutralizing antibodies (NAb),
which prevent vector readministration. Results from human trials
and studies conducted in small and large animal models of gene
transfer showed that NAb titers as low as 1:5 can completely block
AAV vector transduction, and that AAV vectors remain suscep-
tible to antibody-mediated neutralization for several hours after
intravascular delivery.

Two contributions on the topic of anti-AAV antibodies can
be found in this Research Topic. Calcedo and Wilson reviewed
the issue of NAb directed against AAV; in their manuscript,
they discussed the prevalence of NAb in various human pop-
ulations, the issue of antibody cross-reactivity, and finally the
assays used to measure antibodies to AAV, and the strategies
that could possibly be used to overcome this limitation (19).
In the second review article, Tseng and Agbandje-McKenna
(20) discuss different approaches to antibody epitope mapping
and the relationship of these epitopes with the capsid struc-
ture. Furthermore, they suggest how this knowledge can be
exploited to drive the efforts toward engineering novel AAV
capsid variants resistant to antibodies, and to gain a better
understanding on the structure-function-relationship across AAV
serotypes when it comes to the interactions with the immune
system.

In addition to neutralizing antibodies, natural infection with
wild-type AAV also triggers cell-mediated immune responses
against the capsid, which results in a reservoir of memory CD8+

T cells that can be reactivated upon vector administration. This
can cause the destruction of transduced cells harboring AAV
capsid antigen in the context of MHC class I, as it has been
observed in subjects enrolled in AAV vector-mediated liver gene
transfer trials. Several questions remain on the role of these
capsid-specific CD8+ T cells in the outcome of gene transfer,
as detection of T cell reactivity to the capsid in PBMCs has not
always been associated with detrimental effects on gene transfer

in liver and muscle trials. Notably, experience from the AAV8
gene therapy trials in hemophilia B subjects suggests that timely
administration of immunosuppression can prevent detrimental
effects of capsid-directed T cell immunity.

Three review articles in this Research Topic focus specifically
on adaptive immune responses to AAV vectors in the context of
gene transfer to different tissues, and discuss the issue of T cell-
mediated immunity directed against the vector capsid. Willett and
Bennett provide an overview of what it is known about gene
transfer in an immune privileged body site, the eye, describing
the unique and valuable lessons learned from the preclinical and
clinical studies of AAV gene transfer for RPE65 deficiency (21).
Ferreira and colleagues describe the experience with AAV vectors
in muscle gene transfer in the context of the development of Gly-
bera, the approved drug for the treatment of lipoprotein lipase
deficiency (22). Finally, in their manuscript, Basner-Tschakarjan
and Mingozzi provide a broad overview on the issue of T cell
immunity to AAV vectors focusing on data emerging from gene
therapy trials (23). To complete this collection of articles on
immune responses in gene transfer, two review articles discuss
the tools available to the investigators to study the immunogenic-
ity of AAV vectors. Basner-Tschakarjan and colleagues provide
an overview of in vitro and in vivo preclinical models that have
helped to explain the immune responses to AAV vectors observed
in human trials (24), while Britten and colleagues address the
extremely important issue of immune assay standardization in
clinical trials (25).
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