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Camalexin has been reported to play defensive functions against several pathogens in

Arabidopsis. In this study, we investigated the possible role of camalexin accumulation in

two Arabidopsis genotypes with different levels of basal resistance to the compatible

eH strain of the clubroot agent Plasmodiophora brassicae. Camalexin biosynthesis

was induced in infected roots of both Col-0 (susceptible) and Bur-0 (partially

resistant) accessions during the secondary phase of infection. However, the level of

accumulation was four-to-seven times higher in Bur-0 than Col-0. This was associated

with the enhanced transcription of a set of camalexin biosynthetic P450 genes in

Bur-0: CYP71A13, CYP71A12, and CYP79B2. This induction correlated with slower

P. brassicae growth in Bur-0 compared to Col-0, thus suggesting a relationship

between the levels of camalexin biosynthesis and the different levels of resistance.

Clubroot-triggered biosynthesis of camalexin may also participate in basal defense in

Col-0, as gall symptoms and pathogen development were enhanced in the pad3mutant

(Col-0 genetic background), which is defective in camalexin biosynthesis. Clubroot and

camalexin responses were then studied in Heterogeneous Inbred Families (HIF) lines

derived from a cross between Bur-0 and Col-0. The Bur/Col allelic substitution in

the region of the previously identified clubroot resistance QTL PbAt5.2 (Chromosome

5) was associated with both the enhanced clubroot-triggered induction of camalexin

biosynthesis and the reduced P. brassicae development. Altogether, our results suggest

that high levels of clubroot-triggered camalexin biosynthesis play a role in the quantitative

control of partial resistance of Arabidopsis to clubroot.
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Introduction

Clubroot is a disease that occurs worldwide in all Brassicaceae
species, and causes important agronomic damage to Brassica
crops, especially B. napus, B. rapa, and B. oleracea (Dixon, 2009).
The infection is characterized by an asymptomatic primary
phase, where germinated resting spores infect root hairs, followed
by a secondary phase where plasmodia progressively develop
inside the root cortex and stele cells. This secondary phase,
which typically develops over 2–5 weeks in A. thaliana, is
associated with hyperplasia and hypertrophy of plant host cells,
resulting in the formation of root galls (Kageyama and Asano,
2009). In Arabidopsis, we previously reported that the Bur-
0 accession harbors quantitative partial resistance against the
telluric agent of clubroot, Plasmodiophora brassicae (Alix et al.,
2007). Four additive QTLs (PbAt1, PbAt4, PbAt5.1, and PbAt5.2)
were involved in the quantitative resistance of this accession

(Jubault et al., 2008), and we previously demonstrated that the

QTL PbAt5.1was associated with the ability to tolerate exogenous
trehalose (Gravot et al., 2011). In a preliminary screen to identify

defense response patterns triggered by clubroot infection, we

also observed that one of the most prominent features of the
Bur-0 response to clubroot is high-levels of camalexin (data not
published).

Camalexin is a sulfur-containing tryptophan-derived
secondary metabolite, and is considered to be the major
phytoalexin involved in biotic responses in A. thaliana (Ausubel
et al., 1995; Glawischnig, 2007). The camalexin biosynthesis
pathway (summarized in Figure 1) first involves the conversion
of tryptophan to indole-3-acetaldoxime (IAOx), through the
action of two functionally redundant cytochrome P450 enzymes,
CYP79B2 and CYP79B3. This step is followed by the dehydration
of IAOx to indole 3 acetonitrile (IAN), catalyzed by CYP71A13
(Nafisi et al., 2007) and CYP71A12 (Millet et al., 2010; Saga
et al., 2012). IAN is then conjugated to glutathione by the
glutathione-S-transferase GSTF6 to synthesize GSH(IAN) (Su
et al., 2011) then metabolized to Cys(IAN) by γ-glutamyl
peptidases GGP1 and GGP3 (Geu-Flores et al., 2011). Finally,
the PAD3/CYP71B15 enzyme catalyzes the last two reactions
of the biosynthesis pathway leading to camalexin (Zhou et al.,
1999; Schuhegger et al., 2006; Böttcher et al., 2009). Many
genetic approaches confirmed that camalexin plays a positive
role in resistance. For instance, camalexin accumulation
was correlated with resistance to necrotrophic fungi such
as Alternaria brassicicola (Thomma et al., 1999; Nafisi et al.,
2007), Botrytis cinerea (Ferrari et al., 2003, 2007; Kliebenstein
et al., 2005; van Baarlen et al., 2007) and Plectosphaerella
cucumerina (Staal et al., 2006; Sanchez-Vallet et al., 2010).
Camalexin has also been reported to play a defensive role
against the hemibiotrophic fungus Leptosphaeria maculans
(Bohman et al., 2004; Staal et al., 2006) and the oomycete
Phytophthora brassicae (Schlaeppi et al., 2010). However,
Camalexin accumulation was not always correlated with
pathogen resistance. For example, camalexin accumulated
in response to various strains of Pseudomonas syringae, but
the pad3 mutant, in which the last two steps of camalexin
biosynthesis are disrupted, did not show any difference in

susceptibility to those strains (Glazebrook et al., 1997; Zhou
et al., 1999).

Clubroot-induced camalexin accumulation was previously
reported in Col-0 and several other Arabidopsis accessions
(Siemens et al., 2008). The absence of enhanced clubroot
susceptibility in the pad3 mutant led the authors to conclude
that camalexin was not likely to play a role in clubroot resistance.
However, our preliminary assays indicated that camalexin levels
accumulate at high levels in the partially resistant accession
Bur-0 compared to the susceptible accession Col-0. Thus,
we carried out an in depth investigation of the role of
camalexin in the defense response toward P. brassicae in A.
thaliana in those accessions. We first evaluated the time-course
of camalexin accumulation and camalexin biosynthesis gene
expression during clubroot infection in Bur-0 and Col-0. We
also followed pathogen growth dynamics using a combination
of histological and PCR-based pathogen quantification, over
the same time-course. Thus, the time-course of camalexin
accumulation and post-invasive partial resistance establishment
could be compared. The role of clubroot-triggered camalexin
biosynthesis in Col-0 was reassessed by phenotyping the pad3
mutant challenged with the eH isolate. Finally, we tested
possible genetic links between two major partial resistance

FIGURE 1 | Camalexin biosynthesis pathway according to Millet et al.

(2010) and Geu-Flores et al. (2011). Camalexin is derived from tryptophan

which is firstly converted to indole 3 acetaldoxime (IAOx) by the cytochrome

P450 enzymes CYP79B2 and CYP79B3. IAOx is then converted to indole 3

acetonitrile (IAN) by the CYP71A12 and CYP71A13 enzymes. Subsequently,

IAN is converted to the Cys(IAN) conjugate after intermediate steps

(represented in dashed arrows). The final two steps in camalexin biosynthesis

are catalyzed by the P450 enzyme CYP71B15/PAD3.
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QTL from Bur-0, PbAt1, and PbAt5.2, and the intensity of the
clubroot-induced camalexin response. For this purpose, the time-
course of pathogen development, camalexin accumulation and
camalexin-biosynthesis gene transcription was evaluated in pairs
of appropriate near isogenic Heterogeneous Inbred Lines (HIF)
developed from the Bur-0× Col-0 cross.

Materials and Methods

Inoculum and Plant Material
The inoculum used in all the clubroot tests was the “selected” eH
isolate (Fähling et al., 2003) which belongs to the pathotype P1
according to Somé et al. (1996). The host differential set described
by Somé et al. (1996) was included in each test as a control.

The Versailles A. thaliana Resource Centre provided all the
Arabidopsis seeds used in the study. The Bur-0 (172AV) and
Col-0 (186 AV) accessions were described previously as partially
resistant and susceptible to the eH isolate respectively by Alix
et al. (2007). Genetic analysis of a Recombinant Inbreed Line
(RIL) population generated from the Bur-0 × Col-0 cross led to
the detection of four additive and two epistatic QTLs conferring
partial resistance to clubroot in the Bur-0 accession (Jubault et al.,
2008).

Heterogeneous Inbred Families (HIF) pairs were
obtained from the Versailles Arabidopsis Stock Centre
(publiclines.versailles.inra.fr). The HIFs were derived from
RIL lines described in Simon et al. (2008). The HIF pair 499
shows polymorphism at the QTL PbAt5.2, harboring either the
Col-0 susceptibility or the Bur-0 resistance allele. This HIF pair
harbors the Bur-0 resistance allele at the QTL PbAt1. The HIF
pair 508 shows polymorphism at the QTL PbAt1, harboring
either the Col-0 susceptibility or the Bur-0 resistance allele. This
HIF pair harbors the Bur-0 resistance allele at the QTL PbAt5.2
(Supplementary Figures S2, S3).

Dr. Erich Glawischnig (Technische Universität, München)
kindly provided the seeds of the camalexin deficient homozygous
phytoalexin deficient 3 (pad3) T-DNA mutant (SALK_026585).

Clubroot Tests and Symptom Quantification
Clubroot symptoms were quantified for four biological replicates,
each containing 12–18 plants per genotype. Seeds of the
susceptible Col-0, the partially resistant Bur-0 and the HIF
pairs 499 and 508 were sown individually in “Mottefertiss” pots
containing a mix of compost:vermiculite (2:1, v/v). Seedlings
were grown in a growth chamber (16 h of light at 22◦C at
200µmol m−2 s−1 and 8 h of dark at 19◦C) and were inoculated
at the crown 10 days after germination with 1ml of the eH spore
suspension (107 spores ml−1) (Manzanares-Dauleux et al., 2000)
or distilled water for non-inoculated plants.

The susceptibility of plants to clubroot was evaluated at 17 and
21 days post-inoculation (dpi) by symptom quantification using
image analysis. Inoculated plants were washed and photographed
with a scale and symptoms were evaluated using the GA/LA
pathological index. Briefly, this index was calculated from the
ratio between the gall area (GA in cm2) and the square of the
longest leaf length of the rosette (LA in cm2), determined by
ImageJ software, which was then multiplied by 5000 (Gravot

et al., 2011). After being photographed, 3 cm of roots was
collected from all plants, pooled, frozen in liquid nitrogen and
stored at−80◦C for molecular and biochemical analysis.

Pathogen DNA Quantification by Real-time PCR
in Infected Roots
Total genomic DNA was extracted from 50mg (12–54 freeze
dried pooled plants depending on the sampling time) of infected
roots (10, 14, and 17 dpi) using the “NucleoSpin Plant II” kit
(Macherey-Nagel) following the manufacturer’s instructions. The
DNA quality was verified on agarose gel and the quantity was
estimated with a ≪ Nanodrop 2000 ≫ (Thermoscientific). The
final DNA concentration was adjusted to 10 ng/µL for each
sample. Semi quantitative real-time PCR was performed in a
Light Cycler 480 thermocycler (Roche) in a 12.5µl volume
with the following components: 2.5 ng of DNA, 6.25µL of
2X Light Cycler 480 Syber Green I Master (Roche), 4mM of
forward and reverse primers and 1.25µl of ultrapure water. The
Arabidopsis F-box protein gene (At5g15710) previously described
by Czechowski et al. (2005) was used to normalize the results and
the P. brassicae target gene [part of the 18 s region (AF231027)]
was previously described by Faggian et al. (1999). The primer sets
used were as follows: Pb F, 5′-AAACAACGAGTCAGCTTGAA
TGC-3′; Pb R, 5′- AGGACTTGGCTGCGGATCAC-3′; F-Box F,
5′-TTTCGGCTGAGAGGTTCGAGT-3′; F-Box R, 5′- GATTCC
AAGACGTAAAGCAGATCAA -3′. Quantitative PCR reactions
were carried out with 50 cycles of denaturation at 95◦C for 15 s
and annealing/extension at 61◦C for 30 s, followed by melt curve
analysis. Amplification specificity was assessed by both melt
curve analyses and agarose gel electrophoresis. Four biological
replicates were analyzed for each time point. The results were
expressed as the ratio between the DNA quantities of P. brassicae
and the corresponding plant genotype DNA multiplied by 100.

Histology
Infected and non-infected roots collected at 17 dpi were fixed
in a glutaraldehyde (2%) and paraformaldehyde (1%) phosphate
buffer (0.1M pH 7.2), then washed with phosphate buffer (0.1M
pH 7.2) and distilled water, dehydrated in different ethanol:water
solutions (10, 30, 50, 70, 90, and 100%) and finally embedded
in resin with the Technovit 7100 kit (Heraeus Kulzer). 4µm
thick histological sections were cut with a microtome (Microm
Microtech) and stained in cotton blue (1%) and safranin (1%)
to differentiate the pathogen plasmodia and the root plant cells
respectively during microscopic investigations. The impact of
the infection on xylem vessel upkeep was visualized with an
epifluorescence Nikon Eclipse E200 microscope (BP 365 nm,
LP400 nm) after staining the sections with aniline blue (0.5%)
dissolved in lactophenol.

RNA Extraction and Real-time RT-PCR
Total RNA from 10, 14, and 17 dpi infected and non-infected
roots was extracted using the ≪ SV Total RNA Isolation
System ≫ kit (Promega) according to the manufacturer’s
instructions, with an additional DNAse step using the≪Ambion
DNA-free ≫ kit (Ambion). First strand cDNA was synthesized
in a 20µl reaction mixture containing 1.6µg of treated total
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RNA with the ≪ Superscript II Reverse Transcriptase ≫

kit (Invitrogen) with oligo-(dT)15 primers following the
manufacturer’s instructions. Semi-quantitative real-time PCR
reactions were performed as follows in a 12.5µl final volume:
4µl of diluted cDNA, 6.25µl of 2X Light Cycler 480 Syber
Green I Master (Roche), 1.25µl of nuclease free water and
4mM of forward and reverse primers. The primer sets used
to analyze the expression of the camalexin biosynthesis genes
were as follows: CYP79B2 (At4G39950) F, 5′-CCACTGCAA
CCGAAACATCG-3′; CYP79B2 R, 5′-GGCTCTTTAGCAT
CGTCGGA-3′; CYP79B3 (At2G22330) F, 5′-CTCTTCGGAT
CTCACGACCA-3′; CYP79B3 R, 5′-CATCAAGAAGCAAAG
GGCCG-3′; CYP71A12 (At2G30750) F, 5′-TCCCAAGCGATG
TTACGAGT-3′; CYP71A12 R, 5′-CTGTCTATCCATGCCA
AAGCC-3′; CYP71A13 (At2G30770) F, 5′- GCCCCGGGA
TAAATCTTGCT-3′; CYP71A13 R, 5′-TGTTGCATAGCATA
ACAAGGTGA-3′; PAD3/CYP71B15 (At3G26830) F, 5′-GGA
GTCGCTGGCATAACACT-3′; PAD3/CYP71B15 F, 5′-ATGT
CTCCTTGACCACGAGC-3′ and the housekeeping gene PP2A
(At1G13320) F, 5′-TAACGTGGCCAAAATGATGC-3′; 5′-GTT
CTCCACAACCGCTTGGT-3′ described by Czechowski et al.
(2005). Amplification reactions were carried out with 50 cycles
of denaturation at 95◦C for 15 s, annealing/extension at 60◦C
for 30 and 72◦C for 30 s, respectively, followed by melt curve
analysis. CP values were obtained for each gene studied and
converted to arbitrary units. The final results were expressed as
the ratio between the gene of interest and the housekeeping gene
in arbitrary units. Two technical and three biological replicates
were analyzed.

Camalexin Quantification
The accumulation of camalexin in infected and non-infected
roots of each genotype was determined at 10, 14, and 17 dpi.
For each time point and genotype, camalexin was extracted
from approximately 200mg of freshly ground roots in 1.5mL
tubes. After addition of 1mL of a methanol:water:formic acid
(80:19:1) (v:v:v) mixture solvent, tubes were ultrasonicated and
agitated at room temperature for 30min. The tubes were then
centrifuged at 1200 g for 10min and the supernatants were
removed into new 1.5mL tubes. The pellets were re-extracted
with 1ml of the extraction solvent and the supernatants were
pooled with those from the first extraction and dried in a
speed vacuum centrifuge. Dried residues were then resuspended
in 100µl of acidified methanol and 5µl were injected and
analyzed on an Acquity UPLC system (Waters) coupled to a
Quattro Premier XE equipped with an electrospray ionization
(ESI) source. Chromatographic separation was performed on an
Acquity HSS C18 T3 1.8µm (2.1 × 150mm) column using a
gradient of two mobile phases corresponding to an A solution
(0.1% of formic acid and water) and B solution (0.1% of formic
acid and methanol). The elution gradient started with 99% of
A and 1% of B, then 20min later 100% of B and returned to
the initial conditions 25min after the start of the elution. This
separation step was at 40◦C with a flow rate of 0.35ml min−1

and the retention time of the camalexin was determined at
12.77min. The eluted camalexin was ionized in negative mode
at the ESI source of the mass spectrometer and fragmented at

40V. Data were acquired in Multi Reaction Monitoring (MRM)
mode, using the transition 199 > 141, with Masslynx software
and results were expressed by reporting MS peak areas of the
corresponding camalexin concentration in ng mL−1 determined
using a camalexin standard (kindly provided by Pr P. Simoneau,
University of Angers).

Statistical Analysis
Statistical analyses were performed with R software by using
Wald tests applied on Linear Mixed Models (function “lme,”
package “nlme”). Each model took into account the genotype,
the kinetic time point of sampling and the inoculation as fixed
factors and biological replicates as random factors.When needed,
pairwise comparisons of Least Squares Means were computed
(function “lsmeans,” package “lsmeans”). The alpha level was set
at a standard level of 5%.

Results

Time-Course of Camalexin Accumulation in
Col-0 and Bur-0 during Clubroot Infection
Camalexin was initially identified as a promising metabolic
marker of clubroot resistance in a preliminary assay in
which HPLC-MS profiles of defense compounds triggered by
clubroot infection in Bur-0 and Col-0 were determined (data
not shown). Consequently, camalexin levels were accurately
quantified—using an UPLC-MS/MS method coupled with an
authentic chromatographic chemical standard—in non-infected
and infected roots of Col-0 and Bur-0 at different times during
the secondary phase of infection. The results showed that the
camalexin concentration was very low in non-infected roots
(Figure 2). At 10 dpi, the camalexin content showed a weak

FIGURE 2 | Camalexin content in infected (continuous lines) and

non-infected (dashed lines) roots of the partially resistant accession

Bur-0 and the susceptible accession Col-0 at 10, 14, and 17 dpi.

Camalexin was quantified in root methanol extracts using UPLC-MS/MS, and

is expressed as ng g−1 of fresh weight. Error bars represent standard error

(three biological replicates, 12–54 plants analyzed per biological replicate).

Asterisks indicate statistically significant differences according to the Wald

tests applied on a linear mixed model (P < 0.05).
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increase in infected roots of both plant genotypes with no
significant differences between Col-0 and Bur-0 at this time point
(P = 0.060). At 14 dpi, the camalexin content in infected roots
increased in both genotypes and was seven times higher in the
partial resistant Bur-0 genotype than in the susceptible Col-0. At
17 dpi, the camalexin content was again enhanced in the infected
roots of both genotypes, and reachedmore than four times higher
levels in Bur-0 than in Col-0.

Transcriptional Regulation of the Camalexin
Biosynthetic Pathway in Bur-0 and Col-0 during
Clubroot Infection
Quantitative RT-qPCR analyses were performed to evaluate
the transcriptional regulation of four camalexin biosynthesis
genes in both Col-0 and Bur-0 accessions: CYP79B2, CYP71A13,
CYP71A12, and CYP71B15/PAD3, over the infection time-
course (Figure 3). CYP79B2 encodes a P450 involved in the
first biosynthetic step (tryptophan to indole-3-acetaldoxime
conversion). Clubroot infection induced its expression in Bur-
0 at 14 dpi (Figure 3A). CYP71A13 encodes a P450 involved
in Indole-3-acetaldoxime to Indole-3-acetonitrile dehydration.
It showed stable expression in non-inoculated roots but was
significantly upregulated in clubroot infected Bur-0 at all the
time points studied (10, 14, and 17 dpi) (Figure 3B). In infected
Col-0, CYP71A13 induction was not statistically significant

in our experimental conditions despite an apparent upward
trend at 17 dpi (Figure 3B). Clubroot infection also induced
the closely related P450 CYP71A12, involved in this same
biochemical step, at both 14 and 17 dpi, with a higher level
of induction in Bur-0 (Supplementary Figure S1). The basal
expression levels of CYP71B15/PAD3 (encoding the single P450
enzyme involved in the two last steps of camalexin biosynthesis)
were lower in Bur-0 than in Col-0 in non-inoculated roots.
This gene was not significantly induced by clubroot infection
in Bur-0 and was induced at 17 dpi in infected Col-0 roots
(Figure 3C).

The Camalexin-deficient Mutant PAD3 more
Susceptible to P. brassicae than Col-0
Although it accumulated at lower levels than in Bur-0,
as described above, there was significant clubroot-triggered
biosynthesis of camalexin in Col-0 at 17 dpi. Thus, we evaluated
whether, under our experimental conditions, this camalexin
accumulation is involved in the control of post-invasive basal
resistance to the eH isolate. To test this hypothesis, clubroot
symptoms and root pathogen content were evaluated in the pad3
mutant (Col-0 background). The results are shown in Figure 4

and clearly indicated that, at 21 dpi, both symptom severity
and pathogen content in infected roots were enhanced in pad3
compared to the wild type Col-0. This suggests that the camalexin

FIGURE 3 | (A) Transcript levels of CYP79B2, (B) CYP71A13, and (C) PAD3

in infected (black bars) and non-infected roots (white bars) of the partially

resistant accession Bur-0 and the susceptible accession Col-0 at 10, 14, and

17 dpi. (A–C), Expression levels were normalized using the reference gene

PP2A. Error bars represent standard error (four biological replicates, 12–54

plants analyzed per biological replicate). Asterisks indicate statistically

significant differences according to the Wald tests applied on a linear mixed

model (P < 0.05).
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FIGURE 4 | (A) Clubroot symptoms and (B) quantification of Plasmodiophora

brassicae DNA in infected roots of the clubroot susceptible WT Col-0 and

pad3. (A) Clubroot symptoms were evaluated using the GA/LA disease index

calculated by image analysis at 21 dpi. GA/LA is the ratio between gall area

(GA in cm2) and an estimation of the rosette extent (LA in cm2 ). Error bars

represent standard error (Four biological replicates, six plants per biological

replicate). (B) Pathogen DNA quantification (Pb) by qPCR, expressed as a ratio

relative to the expression level of the plant Fbox gene, at 21 dpi (Four

biological replicates, six plants per biological replicate). Asterisks indicate

statistically significant differences according to the Wald tests applied on a

linear mixed model (P < 0.05).

response does contribute to a late and weak basal control of
clubroot symptoms and pathogen development in Col-0.

P. brassicae Growth was Slower in Bur-0 than In
Col-0 during the Secondary Phase of Infection
We then compared symptom development and pathogen growth
with the time-course of camalexin accumulation in both
genotypes. Disease symptoms were quantified at 17 and 21 dpi
and showed a two-fold increase in the severity of clubroot
symptoms in Col-0 compared to Bur-0 at both time points
(Figures 5A,B). The ratio between pathogen and plant DNA
content was determined in infected Col-0 and Bur-0 roots. At 10
dpi, no significant difference in relative pathogen DNA content
between the two genotypes was observed (P = 0.134). At 14 and
17 dpi, the relative pathogen DNA content increased in both
genotypes, but to a higher degree in Col-0 than in Bur-0. Thus,
pathogen DNA content was two-times higher in Col-0 than in
Bur-0 infected roots at 14 and 17 dpi (Figure 5C).

Intracellular secondary plasmodia of P. brassicae were
visualized using cotton blue and safranin staining of sections

FIGURE 5 | (A,B) Clubroot symptoms and (C), quantification of

Plasmodiophora brassicae DNA in infected roots of the partially resistant

accession Bur-0 and the susceptible accession Col-0. (A) Clubroot symptoms

were evaluated using the GA/LA disease index calculated by image analysis at

17 and 21 dpi. GA/LA was calculated from gall area (GA in cm2 ) divided by an

estimation of the rosette extent (LA in cm2 ). Error bars represent standard

error (Four biological replicate, 18 plants analyzed per biological replicate).

Asterisks indicate statistically significant differences according to the (P < 0.05)

(B) Illustration of clubroot symptoms. The scale bar indicates 1 cm. (C)

Pathogen DNA quantification (Pb) by qPCR, expressed as a ratio relative to the

expression level of the plant Fbox gene at 10, 14, and 17 dpi (Three biological

replicates, 12–54 plants per biological replicate). Asterisks indicate statistically

significant differences according to the Wald tests applied on a linear mixed

model (P < 0.05).

of infected Col-0 and Bur-0 roots. At 14 dpi, the outer cortex
layer in both genotypes showed enlarged and disorganized cells,
which are characteristic of clubroot infection. At this time point,
however, the disorganization and hypertrophy of stele cells
appeared to be more pronounced in Col-0 than in Bur-0, and
plasmodia in central cylinder cells were smaller in Bur-0 than in
Col-0 (data not shown). At 17 dpi, infected Col-0 roots displayed
maximal stele cell hypertrophy associated with a highly reduced
and disorganized vascular system. In comparison, infected Bur-
0 roots showed lower levels of cellular hypertrophy and weak
disorganization of vascular tissues (Figures 6A,B).

Bur/Col Allelic Variation at the Resistance QTL
PbAt5.2 was Associated with the Levels of Both
Clubroot Camalexin Response and P. Brassicae

Growth
We previously showed that QTL PbAt1 and PbAt5.2 are the
two genetic regions which mainly contribute to the quantitative
partial resistance in Bur-0 (Jubault et al., 2008). The objective
was then to establish whether the presence of the Bur-0 allele
in the PbAt1 and PbAt5.2 regions is associated with the high
levels of camalexin accumulation in Bur-0. We used two pairs
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FIGURE 6 | (A) Safranin and blue cotton and (B) aniline blue stained radial

sections of roots infected by Plasmodiophora brassicae in the partially resistant

accession Bur-0 and the susceptible accession Col-0. Roots were sampled at

17 dpi, then fixed and immobilized in resin as described in Materials and

Methods part. (A,B), Histological sections were cut with a microtome and

stained in cotton blue and safranin to visualize pathogen plasmodia (colored in

blue in A), plant cell walls (colored in red in A), and vascular vessels colored by

aniline blue in (B) respectively. White arrows indicate plasmodia structures in

infected cells. For each condition, the image shown is representative of the

observations performed on at least six independent root samples.

Annotations: vv, vascular vessels; c, cortex. The scale bars indicate 100µm.

of Heterogeneous Inbred Families (HIF) lines derived from the
Bur-0× Col-0 RIL lines 499 and 508 (cf Materials and Methods).
The HIF paired lines 499-Col and 499-Bur have an identical
homozygous genetic background issued from the recombination
between the Col-0 and Bur-0 genomes (Supplementary Figure
S2), except in the genomic region between markers c5_14766
and c5_21319. Between those two markers, which comprise
the confidence interval of QTL PbAt5.2, 499-Col, and 499-
Bur carry either the Col-0 or Bur-0 alleles in the homozygous
state, respectively (Supplementary Figure S2). Comparison of
the phenotypic behaviors of 499-Col and 499-Bur near isogenic
lines thus allowed the effect of the Bur-0/Col-0 allelic variation
at QTL PbAt5.2 to be tested. Similarly, the two other lines,
508-Col and 508-Bur, have the same homozygous recombinant
genetic background (different from the genetic background of
the 499 line) derived from both the Col-0 and Bur-0 genomes,
and differ only from each other in the QTL PbAt1 region, i.e.,
betweenmarkers c1_00593 and c1_08385 (Supplementary Figure
S3). Comparison of the phenotypic behaviors of 508-Col and
508-Bur allowed the phenotypic consequences of the Bur-0/Col-0
allelic variation at the QTL PbAt1 to be evaluated (Supplementary
Figure S3).

We first validated the effect of QTL PbAt5.2 and PbAt1 on
clubroot and pathogen development at 17 and 21 dpi in these
two HIF lines (Figure 7). In the HIF lines 499, the Col-to-
Bur allelic substitution (in the genomic regions of PbAt5.2)
significantly reduced the severity of gall symptoms (Figure 7A)

and conferred a one third reduction of pathogen growth at 17
dpi (Figure 7C). In contrast, the allelic substitution at PbAt1,
between 508 HIF lines, significantly reduced clubroot symptoms
(Figure 7B) but did not have an impact on pathogen growth
(Figure 7D), suggesting that different genetic factors may control
gall development and pathogen growth.

The camalexin content was then analyzed in inoculated and
non-inoculated roots of the HIF 499 and HIF 508 pairs at 10,
14, and 17 dpi (Figure 8). During clubroot infection, camalexin
levels increased significantly in both HIF pairs. Comparison
of camalexin accumulation in infected HIF 499-Bur and 499-
Col lines revealed that the Bur-allele at the PbAt5.2 region
leads to a significant enhancement in the amount of camalexin
(Figure 8A). In contrast, analysis of the 508 HIF lines revealed
that allelic variation in the PbAt1 region did not affect the
camalexin levels in response to clubroot (Figure 8B).

We then determined the expression of camalexin biosynthesis
genes CYP71A13 and PAD3 in the 499 HIF lines, in order to test
whether the allelic variation at the QTL PbAt5.2 affected their
expression levels (Figure 9A). CYP71A13 and PAD3 expression
was similar in non-inoculated roots for both lines. Clubroot
infection did not induce CYP71A13 expression in 499-Col, but
this gene was induced in 499-Bur at all three time points (10, 14,
and 17 dpi). This suggests that the Bur/Col allelic substitution
in the region of the QTL PbAt5.2 had a significant effect on
the clubroot-triggered transcriptional induction of CYP71A13
observed in the parental line Bur-0 (Figure 3B). PAD3 was
induced at 14 dpi in both 499-Col and 499-Bur, but its expression
levels were significantly higher in 499-Bur, which harbors the
Bur-0 allele at PbAt5.2, than in 499-Col (Figure 9B). Thus, in
the genetic background of the 499 HIF lines, allelic variation at
QTL PbAt5.2 was linked to both clubroot-induced biosynthesis
of camalexin and transcriptional regulation of CYP71A13 and
PAD3.

Discussion

A preliminary screen for contrasted biochemical defense
responses to clubroot between the Bur-0 and Col-0 accessions
highlighted the defense-related compound camalexin as a
promising marker associated with partial resistance. The initial
aim of this study was to clarify the extent to which the induction
of camalexin contributes to the different degrees of basal/partial
resistance to clubroot in Col-0 and Bur-0.

Infection with isolate eH led to a significant level of
camalexin accumulation during the secondary phase of clubroot
infection in both Col-0 and Bur-0. This finding is consistent
with that of Siemens et al. (2008), who reported camalexin
accumulation in the Col-0 response to P. brassicae (isolate
e3) infection, at the latest time point of infection (28 dpi).
Camalexin levels were four times higher in the partially resistant
accession Bur-0 than in Col-0 at the end of the kinetic
time course. Thus, as camalexin levels accumulated, pathogen
and/or symptom development was inhibited. Indeed, there
was a clear enhancement in clubroot symptoms and pathogen
development in the camalexin deficient mutant pad3 (Col-0
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FIGURE 7 | Clubroot symptoms and accumulation of DNA from

Plasmodiophora brassicae in infected roots of the HIFs 499

and 508. 499-Bur and 499-Col harbor the Bur and Col alleles,

respectively, at the QTL PbAt5.2. 508-Bur and 508-Col harbor the

Bur and Col alleles, respectively, at the QTL PbAt1. (A,B) Clubroot

symptoms evaluated using the GA/LA disease index from image

analysis as described in the Materials and Methods Section. Error

bars represent standard error (Four independent biological replicates,

18 plants per biological replicate). (C,D) Pathogen DNA

quantification (Pb) by qPCR after normalization with the Fbox gene

from Arabidopsis, at 10, 14, and 17 dpi (Three independent

replicates, 12–54 plants per biological replicate). Asterisks indicate

statistically significant differences according to the Wald tests applied

on a linear mixed model (P < 0.05).

genetic background). Under our laboratory conditions, this
mutant exhibited more severe clubroot symptoms than Col-0
and increased pathogen development when challenged with the
eH isolate. Siemens et al. (2008) previously reported that when
challenged with the e3 isolate the pad3mutant was as susceptible
as Col-0. Isolates eH and e3 are both derived from the field isolate
“e,” but they showed a different pattern of pathogenicity (Fähling
et al., 2003). In addition to this difference between the isolates
used, the experimental conditions, the sampling time and the
methods for quantifying clubroot resistance are quite different
from those used in Siemens et al. (2008), and could explain the
differences in the results.

Both Col-0 and Bur-0 clearly established a compatible
interaction with the eH isolate, as illustrated by gall development,
the detection of high concentrations of pathogen DNA during
the secondary phase of infection, and the observation of
secondary plasmodia. However, Bur-0 exhibited a partial
resistance phenotype (fewer symptoms, less pathogen DNA and
less secondary plasmodia) compared to Col-0, corroborating
previous findings (Alix et al., 2007; Jubault et al., 2008). The
molecular and histological data highlighted that the partial
inhibition of pathogen development started in Bur-0 at 14
dpi, i.e., during the secondary phase of infection. This timing

is consistent with the idea, discussed in Hatakeyama et al.
(2013), that genetic resistance factors often inhibit plasmodia
development during the secondary rather than the primary
infection. In Bur-0, the setup of partial resistance correlated with
the camalexin response. Thus, enhanced induction of camalexin
biosynthesis in Bur-0, compared to Col-0, appears to contribute
to its partial post-invasive resistance.

Several reports associated induction of camalexin biosynthesis
with the transcriptional induction of a set of genes encoding key
enzymes in the pathway. For example, Millet et al. (2010) showed
that PAD3, CYP71A13, and CYP71A12 expression increased
in response to Flg22 treatment in Arabidopsis. In the present
study, CYP79B2, CYP71A13, and CYP71A12 were significantly
more induced during the secondary phase of infection in Bur-
0 compared to Col-0. Thus, enhanced camalexin biosynthesis
in Bur-0 appears to be controlled at the transcriptional
level through the induction of several camalexin biosynthetic
enzymes. The induction of CYP71A13 in infected Bur-0 roots
was interesting, as it occurred as early as 10 dpi and was
sustained all along the secondary phase of infection. This
suggests that the IAN biosynthetic step plays a prominent role
in the regulation of camalexin biosynthesis during clubroot
infection.
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FIGURE 8 | (A,B) Camalexin content in infected (continuous lines) and

non-infected (dashed lines) roots of the HIFs 499 (A) and 508 (B) at 10, 14,

and 17 dpi. 499-Bur and 499-Col harbor the Bur-0 and Col-0 alleles,

respectively, at the QTL PbAt5.2. 508-Bur and 508-Col harbor the Bur-0 and

Col-0 alleles, respectively, at the QTL PbAt1. (A,B), Camalexin was quantified

in root methanol extracts using UPLC-MS/MS, and is expressed as ng g−1 of

the fresh weight. Error bars represents standard error (Three biological

replicates, 12–54 plants per biological replicate). Asterisks represent

statistically significant differences according to the Wald tests applied on a

linear mixed model (P < 0.05).

Surprisingly, PAD3 is expressed at much lower levels in Bur-
0 than in Col-0 in both non-inoculated and inoculated roots.
No statistically significant induction of this gene was detected in
infected Bur-0 roots. This induction may have been missed for
technical reasons due to the low abundance of PAD3 transcripts
in Bur-0. Nevertheless, our data suggest that a high level of
PAD3 transcription is not absolutely necessary for high levels
of camalexin accumulation, at least in Bur-0. Interestingly, the
HIF lines 499-Bur and 499-Col both harbor the Col-0 allele at
the PAD3 locus on chromosome 3 (Supplementary Figure S2).
In addition, the PAD3 transcript was more abundant in the non-
inoculated roots of these two lines than the parental line Bur-0.
This could suggest that the low level of PAD3 transcription in
Bur-0 is related to allelic variations in the coding sequence or in
the regulatory sequences. As large amounts of camalexin are still
biosynthesized in Bur-0 infected roots, it is possible that in this

genotype a specific locus encodes an additional enzyme, which is
redundant with PAD3. In this context, the transgressive behavior
of 499-Bur, which accumulates even more camalexin than Bur-0,
could be explained by a synergistic effect between a hypothetical
PAD3-like locus and the Col-0 allele at the PAD3 locus. However,
we could not identify a PAD3 homologous sequence in the Bur-
0 genome [data from Gan et al. (2011), available on the 1001
genomes website: http://1001genomes.org]. Alternatively, we can
speculate that the translation of the PAD3 transcript or PAD3
protein stability is higher in Bur-0, thus explaining why low levels
of PAD3 transcription do not impair the biosynthetic flux toward
camalexin. The introgression of a pad3 mutation into the Bur-0
genetic background could be of great interest to solve this tricky
question.

Our data clearly demonstrated that the Bur/Col allelic
substitution in the PbAt5.2 region (chromosome 5) drove the
level of clubroot-induced camalexin biosynthesis (including the
induction of key genes involved in the camalexin biosynthetic
pathway) and contributed to partial inhibition of P. brassicae
development. Together with other features discussed above
(enhanced symptoms observed in the pad3mutant and paralleled
kinetics of partial resistance and camalexin biosynthesis in Bur-
0), these results give additional support to a model where
camalexin levels are related to the quantitative control of clubroot
infection.

In A. thaliana, the role of camalexin as a second layer
of defense was reported to contribute to different resistance
“types” such as in the case of the incompatible interaction with
Phytophthora brassicae (Schlaeppi et al., 2010), and in the non-
host interaction with Erysiphe pisi (Sanchez-Vallet et al., 2010).
Interestingly, using a quantitative genetics approach, camalexin
accumulation was also associated with several resistance QTLs
toward different isolates of the necrotrophic fungus Botrytis
cinerea (Denby et al., 2004; Rowe and Kliebenstein, 2008). Our
findings provide an additional example of the role of camalexin
in post-invasive pathogen inhibition in the context of partial
quantitative resistance in the root, to a compatible isolate of an
obligatory biotrophic pathogen.

The confidence interval of PbAt5.2 is bordered by the
genes At5G46260 and At5G47690. The interval includes several
plant defense-related genes but no single gene (such as PAD3,
CYP71A12, or CYP71A13) that would be directly linked
with the camalexin biosynthesis pathway. Gene regulation
in the HIF pair 499-Bur/499-Col suggests instead that the
allelic variation in the PbAt5.2 region is associated with a
signaling process potentially controlling the expression of genes
involved in all steps of the camalexin biosynthetic pathway.
Substantial additional studies are now needed to identify
the nature of the causal nucleotide variation(s) underlying
QTL PbAt5.2, and to clarify which molecular mechanisms
are driving the modulation of clubroot-triggered camalexin
biosynthesis.
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FIGURE 9 | (A) Transcript levels of CYP71A13 and (B), PAD3 in infected

(black bars) and non-infected roots (white bars) of the HIF 499 at 10, 14, and

17 dpi. 499-Bur and 499-Col harbors the Bur-0 and Col-0 allele, respectively,

at QTL PbAt5.2. (A,B), Expression levels were normalized using the

reference gene PP2A. Error bars represent standard error (Four independent

replicates, 12–54 plants per biological replicate). Asterisks indicate

statistically significant differences according to the Wald tests applied on a

linear mixed model (P < 0.05).

contributed to the design and the conduct of clubroot assays
and samplings. NM developed the analytical method for the
quantification of camalexin. SL, CL, and NM contributed
to all metabolite extractions and biochemical analyses. SL
and JL performed PCR and RT-qPCR analyses. SL and AL
did the histology work. All co-authors contributed to the
interpretation of data. SL, AR, AG, and MM wrote the
manuscript.

Acknowledgments

This work was supported by the CETIOM (The Technical
Center for Oilseed Crops and Industrial Hemp). SL is a PhD

student funded by a CJS grant of the National Institute for
Agronomic Research (INRA). AR is supported by a Marie
Curie FP7 fellowship. We gratefully acknowledge Pr. Philippe
Simoneau and PD Dr. Erich Glawischnig for providing us the
camalexin standard for UPLC quantification and seeds of pad3,
respectively. We express our thanks to Pascal Glory for technical
support.

Supplementary Material

The Supplementary Material for this article can be found
online at: http://journal.frontiersin.org/article/10.3389/fpls.2015.
00539

References

Alix, K., Lariagon, C., Delourme, R., and Manzanares-Dauleux, M. J. (2007).

Exploiting natural genetic diversity and mutant resources of Arabidopsis

thaliana to study the A. thaliana-Plasmodiophora brassicae interaction. Plant

Breed. 126, 218–221. doi: 10.1111/j.1439-0523.2007.01314.x

Ausubel, F. M., Katagiri, F., Mindrinos, M., and Glazebrook, J. (1995).

Use of Arabidopsis thaliana defense-related mutants to dissect the plant

response to pathogens. Proc. Natl. Acad. Sci. U.S.A. 92, 4189–4196. doi:

10.1073/pnas.92.10.4189

Bohman, S., Staal, J., Thomma, B. P. H. J., Wang, M., and Dixelius, C. (2004).

Characterisation of an Arabidopsis-Leptosphaeria maculans pathosystem:

resistance partially requires camalexin biosynthesis and is independent of

salicylic acid, ethylene and jasmonic acid signalling. Plant J. 37, 9–20. doi:

10.1046/j.1365-313X.2003.01927.x

Böttcher, C., Westphal, L., Schmotz, C., Prade, E., Scheel, D., and Glawischnig,

E. (2009). The multifunctional enzyme CYP71B15 (PHYTOALEXIN

DEFICIENT3) converts cysteine-indole-3-acetonitrile to camalexin in the

indole-3-acetonitrile metabolic network of Arabidopsis thaliana. Plant Cell 21,

1830–1845. doi: 10.1105/tpc.109.066670

Czechowski, T., Stitt, M., Altmann, T., Udvardi, M. K., and Scheible, W.-R.

(2005). Genome-wide identification and testing of superior reference genes

for transcript normalization in Arabidopsis. Plant Physiol. 139, 5–17. doi:

10.1104/pp.105.063743

Frontiers in Plant Science | www.frontiersin.org 10 July 2015 | Volume 6 | Article 539

http://journal.frontiersin.org/article/10.3389/fpls.2015.00539
http://journal.frontiersin.org/article/10.3389/fpls.2015.00539
http://journal.frontiersin.org/article/10.3389/fpls.2015.00539
http://journal.frontiersin.org/article/10.3389/fpls.2015.00539
http://journal.frontiersin.org/article/10.3389/fpls.2015.00539
http://journal.frontiersin.org/article/10.3389/fpls.2015.00539
http://journal.frontiersin.org/article/10.3389/fpls.2015.00539
http://journal.frontiersin.org/article/10.3389/fpls.2015.00539
http://journal.frontiersin.org/article/10.3389/fpls.2015.00539
http://journal.frontiersin.org/article/10.3389/fpls.2015.00539
http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


Lemarié et al. Camalexin contributes to clubroot resistance in Arabidopsis

Denby, K. J., Kumar, P., and Kliebenstein, D. J. (2004). Identification of Botrytis

cinerea susceptibility loci in Arabidopsis thaliana. Plant J. 38, 473–486. doi:

10.1111/j.0960-7412.2004.02059.x

Dixon, G. R. (2009). The occurrence and economic impact of Plasmodiophora

brassicae and clubroot disease. J. Plant Growth Regul. 28, 194–202. doi:

10.1007/s00344-009-9090-y

Faggian, R., Bulman, S. R., Lawrie, A. C., and Porter, I. J. (1999).

Specific polymerase chain reaction primers for the detection of

Plasmodiophora brassicae in soil and water. Phytopathology 89, 392–397.

doi: 10.1094/PHYTO.1999.89.5.392

Fähling, M., Graf, H., and Siemens, J. (2003). Pathotype separation of

Plasmodiophora brassicae by the host plant. J. Phytopathol. 151, 425–430. doi:

10.1046/j.1439-0434.2003.00744.x

Ferrari, S., Galletti, R., Denoux, C., de Lorenzo, G., Ausubel, F. M., and

Dewdney, J. (2007). Resistance to Botrytis cinerea induced in Arabidopsis

by elicitors is independent of salicylic acid, ethylene, or jasmonate signaling

but requires PHYTOALEXIN DEFICIENT3. Plant Physiol. 144, 367–379. doi:

10.1104/pp.107.095596

Ferrari, S., Plotnikova, J. M., De Lorenzo, G., and Ausubel, F. M. (2003).

Arabidopsis local resistance to Botrytis cinerea involves salicylic acid and

camalexin and requires EDS4 and PAD2, but not SID2, EDS5 or PAD4. Plant

J. 35, 193–205. doi: 10.1046/j.1365-313X.2003.01794.x

Gan, X. C., Stegle, O., Behr, J., Steffen, J. G., Drewe, P., Hildebrand, K. L.,

et al. (2011). Multiple reference genomes and transcriptomes for Arabidopsis

thaliana. Nature 477, 419–423. doi: 10.1038/nature10414

Geu-Flores, F., Møldrup, M. E., Böttcher, C., Olsen, C. E., Scheel, D., and Halkier,

B. A. (2011). Cytosolic γ-glutamyl peptidases process glutathione conjugates in

the biosynthesis of glucosinolates and camalexin in Arabidopsis. Plant Cell 23,

2456–2469. doi: 10.1105/tpc.111.083998

Glawischnig, E. (2007). Camalexin. Phytochemistry 68, 401–406. doi:

10.1016/j.phytochem.2006.12.005

Glazebrook, J., Zook, M., Mert, F., Kagan, I., Rogers, E. E., Crute, I. R., et al.

(1997). Phytoalexin-deficient mutants of Arabidopsis reveal that PAD4 encodes

a regulatory factor and that four PAD genes contribute to downy mildew

resistance. Genetics 146, 381–392.

Gravot, A., Grillet, L.,Wagner, G., Jubault, M., Lariagon, C., Baron, C., et al. (2011).

Genetic and physiological analysis of the relationship between partial resistance

to clubroot and tolerance to trehalose in Arabidopsis thaliana. New Phytol. 191,

1083–1094. doi: 10.1111/j.1469-8137.2011.03751.x

Hatakeyama, K., Suwabe, K., Tomita, R. N., Kato, T., Nunome, T., Fukuoka, H.,

et al. (2013). Identification and characterization of Crr1a, a gene for resistance

to clubroot disease (Plasmodiophora brassicae Woronin) in Brassica rapa L.

PLoS ONE 8:e54745. doi: 10.1371/journal.pone.0054745

Jubault, M., Lariagon, C., Simon, M., Delourme, R., and Manzanares-Dauleux, M.

J. (2008). Identification of quantitative trait loci controlling partial clubroot

resistance in new mapping populations of Arabidopsis thaliana. Theor. Appl.

Genet. 117, 191–202. doi: 10.1007/s00122-008-0765-8

Kageyama, K., and Asano, T. (2009). Life cycle of Plasmodiophora brassicae. J. Plant

Growth Regul. 28, 203–211. doi: 10.1007/s00344-009-9101-z

Kliebenstein, D. J., Rowe, H. C., and Denby, K. J. (2005). Secondary metabolites

influence Arabidopsis/Botrytis interactions: variation in host production and

pathogen sensitivity. Plant J. 44, 25–36. doi: 10.1111/j.1365-313X.2005.02508.x

Manzanares-Dauleux, M. J., Delourme, R., Baron, F., and Thomas, G. (2000).

Mapping of one major gene and of QTLs involved in resistance to clubroot in

Brassica napus. Theor. Appl. Genet. 101, 885–891. doi: 10.1007/s001220051557

Millet, Y. A., Danna, C. H., Clay, N. K., Songnuan, W., Simon, M. D., Werck-

Reichhart, D., et al. (2010). Innate immune responses activated in Arabidopsis

roots by microbe-associated molecular patterns. Plant Cell 22, 973–990. doi:

10.1105/tpc.109.069658

Nafisi, M., Goregaoker, S., Botanga, C. J., Glawischnig, E., Olsen, C. E., Halkier,

B., et al. (2007). Arabidopsis cytochrome P450 monooxygenase 71A13 catalyzes

the conversion of indole-3-acetaldoxime in camalexin synthesis. Plant Cell 19,

2039–2052. doi: 10.1105/tpc.107.051383

Rowe, H. C., and Kliebenstein, D. J. (2008). Complex genetics control natural

variation in Arabidopsis thaliana resistance to Botrytis cinerea. Genetics 180,

2237–2250. doi: 10.1534/genetics.108.091439

Saga, H., Ogawa, T., Kai, K., Suzuki, H., Ogata, Y., Sakurai, N., et al. (2012).

Identification and characterization of ANAC042, a transcription factor family

gene involved in the regulation of camalexin biosynthesis inArabidopsis.MPMI

25, 684–696. doi: 10.1094/MPMI-09-11-0244

Sanchez-Vallet, A., Ramos, B., Bednarek, P., López, G., Piślewska-Bednarek,
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