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More than 20 distinct gene loci have so far been implicated in amyotrophic lateral
sclerosis (ALS), a fatal neurodegenerative disorder characterized by progressive
neurodegeneration of motor neurons (MN) and death. Most of this distinct set of ALS-
related proteins undergoes toxic deposition specifically in MN for reasons which remain
unclear. Here we overview a recent body of evidence indicative that mutations in ALS-
related proteins can disrupt fundamental Ca2+ signalling pathways in MN, and that
Ca2+ itself impacts both directly or indirectly in many ALS critical proteins and cellular
processes that result in MN neurodegeneration. We argue that the inherent vulnerability
of MN to dysregulation of intracellular Ca2+ is deeply associated with discriminating
pathogenicity and aberrant crosstalk of most of the critical proteins involved in ALS.
Overall, Ca2+ deregulation in MN is at the cornerstone of different ALS processes and
is likely one of the factors contributing to the selective susceptibility of these cells to this
particular neurodegenerative disease.

Keywords: neurodegenerative diseases, calcium homeostasis, ALS, proteinopathies, SOD1

Sporadic and Familial ALS Aggregates Share Identical Proteins

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the
selective degeneration of motor neurons (MN) in the spinal cord, brainstem and cerebral cortex
(Rowland and Shneider, 2001). Most cases of ALS are sporadic (sALS) with no known genetic
linkage, while approximately 10% are associated with familial forms (fALS), presenting mutations
in over 20 genes encoding for distinct proteins with varied functions (Table 1). Despite the
heterogeneous genetics of fALS and unknown etiology of sALS and its clear multifactorial character,
most ALS patients present similar phenotypes with formation of cytoplasmic proteinaceous
aggregates in the affected MN (Al-Chalabi et al., 2012). Notably, many proteins involved in fALS
forms are also found in sALS toxic aggregates (Maekawa et al., 2009; Deng et al., 2010; Forsberg
et al., 2010; Blokhuis et al., 2013) and found to cross-talk and impact on each other in ALS pathology
(Kanekura et al., 2004; Volkening et al., 2009; Tudor et al., 2010; Nihei et al., 2012; Pokrishevsky
et al., 2012; Stoica et al., 2014; Osaka et al., 2015). This suggests that apart frommutations, additional
chemical and/or biological factors influence the selective involvement of these proteins also in sALS
neurodegeneration. In agreement, most of the proteins which are involved in ALS are ordinarily
expressed in many distinct cell tissues other than the nervous system (e.g., SOD1, FUS, TDP-43,
VAPB, matrin-3, ataxin-2, alsin) but are only found to generate toxicity among MN. The selective
vulnerability of such cells suggests that environmental triggers within those neurons are mandatory
for the onset of ALS.
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TABLE 1 | Heterogeneity of fALS causative genes.

Protein (% prevalence) Gene/Protein Function

C9ORF72 Suggested to regulate endosomal trafficking and
autophagy

FTD/ALS (40–50%) (DeJesus-Hernandez et al.,
2011)

SOD (SOD1) Antioxidant; scavenging of superoxideALS 1 (20%) (Rosen et al., 1993)

TARDBP (TDP-43) RNA and DNA regulationALS 10 (5%) (Sreedharan et al., 2008)

ALS 6 (4%) (Vance et al., 2009) FUS (FUS) RNA and DNA regulation
ALS 13 (>1%) (Elden et al., 2010) ATXN2 (Ataxin-2) Suggested to regulate RNA processing
Other (less prevalent fALS) (Chen et al., 2004;
Nishimura et al., 2004; Johnson et al., 2010;
Maruyama et al., 2010; Wu et al., 2012; Iguchi et al.,
2013; Su et al., 2014)

ALS2, ANG, CHMP2B, DCTN1, EWSR1, ERBB4,
FIG4, hnRNPA1, MATR3 (Matrin-3), OPTN, PFN1,
SETX, SIGMAR1, SQSTM1, SPG11, TAF15,
UBQ2N2, VAPB, VCP

Protein degradation; ER-Golgi pathways; Trafficking;
Endosomal sorting complexes required for transport;
DNA and RNA processing; Actin dynamics; Mitogenesis
and differentiation

Proteins are indicated in parenthesis for some cases: SOD1, Superoxide Dismutase 1; TDP-43, TAR DNA-binding protein 43; FUS, Fused in Sarcoma protein.

Calcium Dysregulation in ALS-Affected
Motor Neurons—The Factual Case of ALS1

A particular feature that distinguishes ALS affected MN from
other cells relates to their inherent vulnerability to Ca2+ overload;
indeed, these neurons highly express Ca2+ permeable AMPA
receptors (Williams et al., 1997; Shaw and Eggett, 2000; Van
Den Bosch et al., 2000; Vandenberghe et al., 2000; Guatteo
et al., 2007) concurrently with a low Ca2+ buffering capacity
due to endogenous low expression of Ca2+ buffering proteins
(CaBPs) such as parvalbumin and calbindin (Alexianu et al.,
1994; Palecek et al., 1999; Jaiswal, 2013) albeit the presence of
EF-hand Ca2+ binding proteins in MN (Migheli et al., 1999;
Zhang et al., 2014). This combination of inherent physiological
features of MN to manage Ca2+ levels, though essential for
normal functioning (von Lewinski and Keller, 2005), are likely a
predisposition risk for the systematic intracellular Ca2+ overload
that is detected in ALS1 affected MN (Siklós et al., 1996,
1998; Kruman et al., 1999; Grosskreutz et al., 2010; Kawamata
and Manfredi, 2010). Interestingly, the levels of calretinin and
parvalbumin in MN axons is found further decreased in ALS
patients (Hayashi et al., 2013), thus establishing an increased
deficit in MN Ca2+ buffering capability under pathological
conditions.

In fact, a direct outcome of the low expression of CaBPs
in MN is that mitochondria are likely to assume a major
role in buffering calcium in these cells. In agreement, it
might not be a coincidence that in ALS1, mutated SOD1
was shown to abnormally accumulate in the mitochondrial
intermembrane space (Jaarsma et al., 2001; Liu et al., 2004),
affecting mitochondrial function leading to disturbance of
Ca2+ homeostasis and ERMCC cycle (Jaiswal and Keller, 2009;
Lautenschläger et al., 2013). Moreover, studies on cellular and
animal ALS1 models have shown that Ca2+ overload is linked
with SOD1 aggregation (Tateno et al., 2004; Tradewell et al.,
2011). Indeed, we have recently shown that Ca2+ can bind to
SOD1 immature states promoting its aggregation (Leal et al.,
2013; Estácio et al., 2015) thus establishing an additional ALS1
pathological pathway for the impact of Ca2+ overload on SOD1
toxic deposition. In agreement, a decrease of intracellular Ca2+

overload in ALS1 models through AMPA channel antagonists
or overexpression of calcium-buffering proteins has been shown

to reduce SOD1 toxic aggregation and neurodegeneration (Beers
et al., 2001; VanDamme et al., 2003; Tateno et al., 2004; Tortarolo
et al., 2006; Yin et al., 2007; Parone et al., 2013).

Crossways of ALS Critical Proteins with
Calcium

In spite of the scarcity of available data regarding more
recently discovered fALS models linked with systematic Ca2+

deregulation, compelling evidence argues that many critical
proteins involved in ALS (other than SOD1), are directly or
indirectly involved with Ca2+. It is noteworthy that in such
instances, ALS-associated mutations in many of these ALS
critical proteins happen to potentiate Ca2+ deregulation and/or
result in an increased vulnerability to the effects of Ca2+.
For example, VAP-B which is involved in ALS8, is a ER-
membrane MAM protein directly engaged in Ca2+ exchange
between the ER and mitochondria (De Vos et al., 2012). The
ALS VAPBP56S variant was shown to disrupt Ca2+ homeostasis
leading to a perturbation of the anterograde mitochondrial
axonal transport and affecting the Miro1/kinesin-1 interaction
with tubulin (Mórotz et al., 2012). Alsin, a protein implicated in
juvenile ALS2, is involved in endossome/membrane trafficking
that undergoes Ca2+ dependent binding to the NCS regulating
neurocalcin alpha protein (Masutani et al., 2008). This suggests
that alsinmembrane bindingmight be a Ca2+ dependent process,
and therefore passible to become affected by dysregulation of
Ca2+ levels. Moreover, alsin is also found to play a role in
AMPAR trafficking, where ALS2 mutations lead to distinct
subcellular GRIP1 localization and reduction of the calcium-
impermeable GluR2 containing AMPA receptors, thus likely
rendering neurons susceptible to deviant Ca2+ influxes (Lai
et al., 2006). Matrin 3, a multifunctional nuclear matrix protein
involved in ALS21, is suggested to be regulated through a Ca2+

dependent interaction with CaM (Valencia et al., 2007) and
is therefore likely to be affected by deregulated Ca2+ levels.
As only very recently matrin 3 has been implicated in ALS
(Johnson et al., 2014), future studies will be needed to clarify
this possibility. Ataxin-2, which is involved in ALS13 is an
ubiquitous cytoplasmic protein proposed to induce defects in the
ER–Golgi pathway and disrupt Ca2+ signalling (van den Heuvel
et al., 2014). The possibility that ataxin-2 influences ER–Golgi
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function is inferred from a recent study where it was shown
that intermediate-length polyQ expansions in ataxin-2 mutants
enhance FUS-induced ER stress and Golgi fragmentation (Farg
et al., 2013). The suggestion that the ALS13 related intermediate-
length polyQ expansions in ataxin-2 can lead to Ca2+ signalling
disruption derives from the causal association that polyQ-
expanded forms of ataxin-2, or huntingtin and ataxin-3 in
other diseases, associates with the C-terminal domain of the
intracellular calcium release channel receptor—InsP3R1 and
enhance InsP3R1-mediated calcium release in neurons (Tang
et al., 2003; Chen et al., 2008; Liu et al., 2009). Thus, it is
tempting to speculate that intermediate-length polyQ expansions
in ataxin-2 may also cause it to associate with InsP3R1 and
thereby modulate calcium signaling, though this was not yet
shown. In ALS6, the FUS protein leads to CAMK2N2 up-
regulation (Convertini et al., 2013), an inhibitor of CAMKII that
regulates neuronal synaptic plasticity through phosphorylation
of AMPA receptors. Given that it has been shown that abnormal
CAMKII inhibition by small molecules and peptides results in
dysregulation of Ca2+/glutamate signalling (Ashpole et al., 2012),
it may be hypothesized that CAMKII inhibitor—CAMK2N2 up-
regulation by mutant FUS will also result in Ca2+ dysregulation
in ALS6. Moreover, deregulated Ca2+ levels can activate the
Ca2+-dependent calpain protease that cleaves TDP-43 at the
C-terminal, generating aggregation prone N-terminal segments
that are found misallocated in the majority of ALS patients (even
in those that do not carry TDP-43 mutations associated with
ALS10) driving TDP-43 toxicity across ALS pathology (Aggad
et al., 2014; Yamashita and Kwak, 2014). In addition, TDP-43 is
simultaneously found to interact with other critical proteins in
ALS namelymatrin-3 (Johnson et al., 2014), ataxin-2 (Nihei et al.,
2012), VAPB (Stoica et al., 2014), and SOD1 (Volkening et al.,
2009) and is therefore rather tempting to conjecture about a tight
interrelation between Ca2+ dyshomeostasis and the involvement
of critical proteins in ALS.

ALS Toxic Processes and the Role of
Calcium

In fact, major pathological processes in ALS involving
excitotoxicity and the ER-mitochondria Ca2+ cycle are deeply
connected and potentially trigger or/and are enhanced by
intracellular Ca2+ deregulation: (a) Glutamatergic excitotoxicity
is tough to be mediated by an excessive influx of extracellular
ions, including Ca2+, resulting in elevated intracellular Ca2+

levels that can activate cytoplasmatic Ca2+-dependent apoptotic
proteins (e.g., calcineurin, calpain) which promote cell death
(Wang et al., 1999; Kim et al., 2002); (b) elevated intracellular
levels of Ca2+ also lead to mitochondrial Ca2+ overload, that is

deeply interconnected with mitochondrial dysfunction resulting
in ROS production, oxidative stress and eventually to apoptosis
or necrosis (Kawamata and Manfredi, 2010; Cozzolino and
Carrì, 2012); and (c) depletion of Ca2+ levels in the ER which is
suggested to occur via a persistent shift of Ca2+ from the ER to
the mitochondria due to deregulated ER MCC leads to protein
folding dysfunction and proteasome impairment, resulting in
ER stress and apoptosis (Prell et al., 2013; Tadic et al., 2014).
Mutations in critical proteins associated with ALS actually seem
to increase the susceptibility for these toxic processes to occur.
For example, misfolded and aggregated SOD1 mutants localized
within the mitochondrial membrane of spinal cord MN cause
dysfunction in oxidative phosphorylation and bind aberrantly to
Bcl-2, generating toxicity (Jung et al., 2002; Mattiazzi et al., 2002;
Liu et al., 2004; Vande Velde et al., 2008; Pedrini et al., 2010);
also, the ALS linked P56S mutation in VAPB, or th A4V, G85R
and G93A SOD1 mutations leads to toxic protein aggregation
and ER stress (Prosser et al., 2008; Kim et al., 2010; Atkin et al.,
2014).

Conclusions

Overall, we here argue that Ca2+ deregulation seems to establish
a converging point for major ALS dysfunctional pathways
and critical associated proteins, and can therefore be a key
environmental factor to better understand ALS etiology and its
pathomechanisms. However, we do not intend to ground that
all proteins implicated in ALS will necessarily lead to Ca2+

deregulation; rather, we seek to discuss that processes involving
Ca2+ could directly or indirectly (e.g., via Ca2+ effects on
processes dependent of other divalent cations) account for their
mutual involvement in ALS. Interestingly, the so-called ‘‘calcium
hypothesis’’ establishing a close link between Ca2+ deregulation
and neurodegeneration, has also been suggested to play a central
role in other neurodegenerative disorders such as Alzheimer’s,
Ataxia, Parkinson’s and Huntington Diseases (Bezprozvanny,
2010; Kasumu and Bezprozvanny, 2012), where Ca2+ channels
and proteins involved in neuronal Ca2+ signalling systems are
likely potential targets for therapeutic strategies (Zundorf and
Reiser, 2011).
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