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Invasive intracranial EEG (icEEG) offers a unique opportunity to study human cognitive

networks at an unmatched spatiotemporal resolution. To date, the contributions of

icEEG have been limited to the individual-level analyses or cohorts whose data are not

integrated in any way. Here we discuss how grouped approaches to icEEG overcome

challenges related to sparse-sampling, correct for individual variations in response and

provide statistically valid models of brain activity in a population. By the generation of

whole-brain activity maps, grouped icEEG enables the study of intra and interregional

dynamics between distributed cortical substrates exhibiting task-dependent activity. In

this fashion, grouped icEEG analyses can provide significant advances in understanding

the mechanisms by which cortical networks give rise to cognitive functions.

Keywords: icEEG, ECoG, cortical network dynamics, distributed cortical networks, ventral temporal cortex, face

perception, fusiform face area (FFA), parahippocampal place area (PPA)

Introduction

The exponential growth in whole-brain neuroimaging studies has produced an overwhelming
amount of data, and the conceptual frameworks for the neurobiology of human cognition have
undergone tremendous change. These data have produced a consensus that complex cognitive
functions—such as language—cannot be understood through the isolated study of specialized,
cortical regions (Hagoort, 2014). Currently, a major focus of cognitive neuroscience is to
understand how cognition emerges from transient, coordinated neural interactions in distributed
large-scale cortical networks (Felleman and Van Essen, 1991; Bressler, 1995; Sporns et al., 2005;
Martin, 2007; Patterson et al., 2007; Poeppel, 2014). Driven largely by fMRI, PET, and lesion-based
analyses, significant advances have been made in identifying anatomical substrates that form the
neural architecture of these distributed networks (Damasio et al., 2004; Dronkers and Ogar, 2004;
Binder et al., 2009; Price, 2010; Friederici, 2011; Kanwisher, 2011). However, the limited temporal
resolution of these neuroimaging modalities has hindered our understanding of how intra- and
interregional cortical interactions give rise to cognition (Lachaux et al., 2003a; Jerbi et al., 2009;
Friederici and Singer, 2015).

Introducing icEEG

A unique opportunity to study cognitive function is presented in patients undergoing
intracranial EEG (icEEG) recordings as part of their pre-surgical evaluations for
medically refractive focal epilepsy (Mukamel and Fried, 2012). In order to delineate their
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epileptogenic networks, these patients are implanted with either
subdural electrodes that record from the cortical surface or
penetrating depth electrodes that record from below the cortical
surface, and in some case both (McGonigal et al., 2007; Van
Gompel et al., 2008; Tandon et al., 2009). As such, icEEG
recordings yield multi-lobar, high spatio-temporal resolution
sampling of disseminated brain regions, providing optimal
coverage and signal fidelity in comparison to the poor temporal
resolution of fMRI/PET and poor spatial resolution of surface
EEG/MEG (Jerbi et al., 2009; Lachaux et al., 2012). Importantly,
high-frequency broadband gamma activity (BGA, 40–200Hz)
captured by icEEG yields precise estimates of task-related cortical
activity, thereby permitting the study of local and long-distance
networks at the millisecond time-scales relevant to neural
processes (Jacobs and Kahana, 2010; Lachaux et al., 2012).

The Need for Grouped icEEG Analysis: The
Sparse-sampling Problem

Despite its remarkable advantages, the widespread acceptance of
icEEG by cognitive neuroscience has been hindered by difficulties
in data representation and analyses at the individual and
population-level (for review see Lachaux et al., 2003b; Conner
et al., 2013; Kadipasaoglu et al., 2014; Chang, 2015). Relevant to
the current discussion are the challenges arising from spatially
variable and limited electrode coverage in patients- termed the
sparse-sampling problem. This issue is unique to icEEG research,
as electrode implantation, and therefore the sites where data
are actually collected, are dictated solely by clinical criteria.
Therefore, only a fraction of the total brain volume is sampled in
any one patient (Halgren et al., 1998), precluding comprehensive
investigation of cortical networks at the individual-level.

To address the sparse-sampling problem, and thereby develop
icEEG for the study of large-scale, distributed networks, different
methods for the grouped analysis of icEEG data have recently
been proposed (Miller et al., 2009; Dykstra et al., 2012; Burke
et al., 2013; Conner et al., 2013; Davidesco et al., 2013;
Kadipasaoglu et al., 2014). Because of the discrete nature of
recordings, icEEG activity will likely underestimate functional
activity at the individual level. Therefore, a primary goal in all
of these methods is to accurately combine data across large
numbers of subjects to generate continuous brain activity maps,
which leverage the spatiotemporal advantages of icEEG toward
providing a more comprehensive view of cortical function.
One such method—developed by our lab—employs topologically
accurate representations of subdural electrode coverage and
BGA on subject-specific cortical models. By integrating this
approach with surface-based normalization to precisely align
datasets across subjects (Argall et al., 2006; Saad and Reynolds,
2012), and a mixed effects multilevel analysis (MEMA) to
correct for unsampled cortical regions (i.e., missing data) (Chen
et al., 2011), we are able to perform statistically valid and
topologically accurate grouped analyses of icEEG data. In this
fashion, our surface-based MEMA (SB-MEMA) can generate
continuous brain-activity maps to fully leverage the unique
spatio-temporal properties of icEEG in the study of network
function (Kadipasaoglu et al., 2014).

To illustrate how such grouped icEEG approaches can
contribute to cognitive neuroscience, we discuss SB-MEMA
in the context of cortical networks relating to visual object
recognition and reading. We note here that the following
analyses are intended only as illustrative examples. Therefore, we
have not provided detailed experimental methods or statistical
interpretations of our results. Furthermore, all results presented
in this manuscript are intended solely to highlight the potential
application of such grouped icEEG approaches. Importantly,
these results will be elaborated in subsequent publications, and
this manuscript is not the definitive representation of those
analyses.

Visual Object Recognition
Visual object recognition is believed to be mediated by neural
substrates in the ventral temporal cortex (VTC) capable of
categorizing visual inputs within a few 100ms (Thorpe et al.,
1996; Grill-Spector and Kanwisher, 2005). Yet the role of the
VTC in accomplishing these complex functional computations
remains a mystery. Non-invasive neuroimaging studies have
demonstrated a consistent relationship between cortical topology
(and white matter connectivity) and functional representations
in the VTC (Saygin et al., 2012; Pyles et al., 2013; Grill-Spector
and Weiner, 2014; Gomez et al., 2015). Specifically, the mid-
fusiform sulcus predicts transitions in the location of cyto-
architectonic regions, receptor architectonics, and large-scale
functional maps in the VTC (e.g., eccentricity bias/domain-
specificity/animacy/real-world object size) (Grill-Spector and
Weiner, 2014; Weiner et al., 2014; Gomez et al., 2015). This
has led to a hypothesis that the VTC’s anatomical organization
is spatially optimized for the computational processes of
the distinct functional networks subserving object recognition
(Grill-Spector and Weiner, 2014). Grouped icEEG studies are
uniquely suited to investigate such hypotheses, which require the
differentiation of functional networks at millimeter resolution
and millisecond time-scales.

To demonstrate this, we use SB-MEMA to investigate
category-specific differences in the fusiform gyrus. We applied
SB-MEMA to icEEG data collected in a large cohort (n = 27,
left hemisphere only) as they performed visual confrontation
naming of famous faces and places. Importantly, we were able to
achieve comprehensive fusiform coverage using the precise inter-
subject co-registration afforded by SB-MEMA (Figure 1, top). To
focus on early perceptual processes, the analysis was constrained
to window from 50 to 500ms after stimulus presentation.
Consistent with previously reported domain-specificity maps,
significant BGA for faces and places was localized in a lateral-
to-medial fashion, respectively, along the mid-fusiform sulcus
(Figure 1, middle; Kanwisher et al., 1997; Epstein and Kanwisher,
1998; Nasr et al., 2011; Grill-Spector and Weiner, 2014).

Given that SB-MEMA computes grouped effects estimates by
summing BGA over time, a temporal smoothing of the data is still
present. This precludes the evaluation of certain cortical response
properties (e.g., onset latency/response duration), which may
otherwise provide valuable insight into a given region’s functional
role (Lachaux et al., 2012). To evaluate the temporal profile
of BGA, time-series representations of averaged BGA can be
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FIGURE 1 | Top: icEEG data were collected in 27 patients, implanted with

subdural electrodes (SDEs) in the left hemisphere, as they performed a visual

confrontation naming of famous faces, places, and scrambled control images.

Surface-based representations of SDE coverage and high-frequency

broadband gamma activity (BGA; 60–120Hz) were generated for each

subject. We utilize cortical surface models that have been reconstructed from

each subject’s pre-implantation high-resolution anatomical MRI scans (Phillips

Medical; T1-weighted, 1mm isotropic resolution; using FreeSurfer software),

and subsequently imported to the SUMA module of AFNI. Surface-based

datasets of SDE coverage and BGA are generated with respect to each

subject’s cortical model using geodesic metrics to correct for local gyral and

sulcal folding patterns. By spatially transforming data to the cortical surface,

we integrate SUMA’s surface-based normalization strategy to convert

individual datasets to a standardized cortical surface (N27). To achieve this,

SUMA resamples individual cortical models (and therefore their associated

datasets) to a standardized mesh and enables a one-to-one correspondence

between anatomical locations across subjects. Group maps for electrode (left)

and surface-based coverage (right) are shown for the ventral temporal cortex.

SDEs are modeled as spheres, with red spheres indicated SDEs that were

excluded due to 60Hz line noise or epileptiform activity. By grouping data in

this fashion, comprehensive cortical coverage is obtained, and cognitive

function can be critically evaluated at spatio-temporal scales relevant to neural

processes. Middle: SB-MEMA derived significant grouped effects estimates

by comparing composite BGA percent change (50–500ms post-stim; with

respect to pre-stimulus baseline of −700 to –200ms) for each stimulus

category against its scrambled control. Notably, BGA to faces was localized

lateral to the mid-fusiform sulcus, while peak BGA to places was localized

(Continued)

FIGURE 1 | Continued

medially. Anterior to the mid-fusiform sulcus BGA for both conditions

converged in magnitude and spatial extent. Bottom: Subject electrodes

localized over the three regions in the fusiform (Fusi.) gyrus with significant

activity to faces, places, or both stimuli as revealed by SB-MEMA (see B).

SDEs are color-coded by region and displayed on a common brain surface

(N27). Notably, SDEs are spatially arranged with respect to the mid-fusiform

sulcus: laterally (purple), medially (blue), or anteriorly (red). Below, group

time-series of percent change in BGA for face (orange) and place (cyan) stimuli

can be seen. Of note, traces colored green indicate a region of activity overlap.

Percent change is relative to a pre-stimulus baseline (−700 to −200ms).

Stimulus onset at 0ms. Shading denotes 1 SEM. All figures display the

ventro-medial aspect of the left hemisphere (N27 cortical surface model).

generated from all electrodes contributing to significant loci
seen in SB-MEMA (Figure 1, bottom; Conner et al., 2013;
Kadipasaoglu et al., 2014). In contrast to summing BGA over
a time window, time-series representations instead compute
percent change in BGA at each data point (which can be on
the order of ms, depending on sampling rate) and plot these
changes over time (Yoshor et al., 2007; Kadipasaoglu et al.,
2014). Alternatively, data from time-series representations can be
spatially transformed back onto the cortical surface to generate
4-dimensional, whole brain representations of cortical activity
(Movie 1). Such visualization of time-varying BGA (shown
as cortical surface heat maps) relative to cortical anatomy
facilitates insights into dynamic network behavior that may not
be readily appreciable in static images, and is complementary to
SB-MEMA.

Once cortical regions of interest have been identified, more
sophisticated measures for assessing functional connectivity and
information flow can then be applied to understand how these
regions interact during cognitive operations (Bruns et al., 2000;
Canolty et al., 2006; Nir et al., 2008; Korzeniewska et al., 2011;
Vidal et al., 2012; Watrous et al., 2013; Flinker et al., 2015).
To illustrate this, we discuss one such connectivity measure—
the short time direct directed transfer function (SdDTF)
(Korzeniewska et al., 2008, 2011)—in the context of cortical
reading networks. Of note, the electrodes for this example
were identified using SB-MEMA for the evaluation of a word-
completion task (not shown).

Network Dynamics of Reading
The neural substrates that comprise the reading network include
cortical areas traditionally associated with language production
(e.g., Broca’s area), as well a ventrally positioned region in the
fusiform gyrus, which demonstrates preferential responses to
visually presented words and pseudowords (w-FG) (McCandliss
et al., 2003). Cognitive approaches are divided on connectivity
patterns during word reading that facilitate the visual processing
of orthographic stimuli (Carreiras et al., 2014). While it is agreed
upon that w-FG is crucial to word reading, some models predict
strictly feed-forward connectivity patterns accompany word
reading while other models stress the presence of bi-directional
interactions between ventral visual and higher-level frontal
cortex (Price and Devlin, 2011; Carreiras et al., 2014). Given
that the anatomical sources and temporal evolution of top-down
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FIGURE 2 | Frontal-ventral temporal interactions are evaluated using

grouped icEEG collected during a word-completion task. Connectivity

is evaluated using the Short-time direct Directed Transfer Function (SdDTF).

Post-stimulus interregional flows were determined across post-stimulus

windows (100ms long, 50ms shift) for high-frequency broadband gamma

activity (60–120Hz) and were compared to pre-stimulus flows computed

over one pre-stimulus, baseline window (−700ms to −200ms). After

normalizing across all patients, all post-stimulus interregional flows were

tested for significance (FDR-corrected with a significance level of p = 0.05).

Shown at right is the time course of percent change of flows (±1 standard

error of the mean) from pars triangularis to word-preferential areas in fusiform

gyrus (w-FG) that achieved significance. Electrodes for each region (colored

spheres) have been identified using SB-MEMA (not shown). The cortical

model to the left (lateral view at top, ventral view at bottom; left hemisphere)

provides a snapshot of significant flows for the cortical reading network at

400ms after stimulus onset (w-FG is shown in green and pars triangularis is

shown in red). The ability to study long-distance cortical network interactions

at millisecond resolution is a unique advantage of grouped icEEG, and

enables the critical evaluation of hypotheses regarding functional network

dynamics.

control are not well-established, a data-driven connectivity
measure, such as SdDTF, is necessary to investigate the timing
and directionality of information transmission during word
reading. SdDTF quantifies connectivity across multi-dimensional
networks, and can derive directed information flow between any
two network nodes, while controlling for the contributions from
all other sources (Korzeniewska et al., 2008, 2011). Applied to our
icEEG data, patient-specific information flows were computed
for subsets of task-relevant electrodes identified through SB-
MEMA. It is important to note that connectivity between any
two regions can only be derived in patients with electrodes
recording simultaneously from both regions. In other words,
connectivity measures must first be performed within subject,
before individual connectivity estimates can be combined across
subjects to yield a grouped connectivity estimate. In this fashion,
flows derived from SdDTF were averaged over patient and
region, and were able to isolate top-down information flow
from Pars Triangularis to w-FG during a word completion task
(Figure 2).

Conclusion

The study of icEEG has been able to generate novel insights
into a wide range of cognitive functions (Jacobs and Kahana,
2010; Lachaux et al., 2012). Within the past decade alone, it
has significantly advanced diverse areas of neuroscience research,
including cognitive control (Wessel et al., 2013), working and
episodic memory (Fell et al., 2001; Axmacher et al., 2007;
Watrous et al., 2013), sensorimotor integration (Brovelli et al.,
2005; Hermes et al., 2011; Bouchard et al., 2013), brain-machine

interfaces (Leuthardt et al., 2004, 2011; Miller et al., 2007),
perception (Allison et al., 1994, 1999; McCarthy et al., 1999;
Privman et al., 2007, 2011; Fisch et al., 2009; Liu et al., 2009;
Engell and McCarthy, 2010, 2014; Vidal et al., 2010; Chan et al.,
2011; Davidesco et al., 2014; Ghuman et al., 2014), and language
processing (Crone et al., 2001; Sahin et al., 2009; Chang et al.,
2011; Mesgarani and Chang, 2012; Conner et al., 2013; Flinker
et al., 2015). With the development of robust techniques for
grouped analysis, icEEG analyses are provided a powerful new
tool to investigate the architecture and interregional dynamics
of distributed cortical networks. Yet despite its significant
advantages, grouped approaches to icEEG still suffer from a
number of limitations. Most notably, group-size, and degree
of cortical coverage limit the applicability of methods like
SB-MEMA. As mentioned earlier, the discrete nature of the
recordings may underrepresent functional activity. A failure to
find significant effects may be due to the absence of such effects
in a given region (true negative) or the lack of sufficient coverage
in that region (false negative). Furthermore, as discussed in
Section Network Dynamics of Reading, connectivity measures
are also dependent on individual with coverage in all regions
of interest. For these reasons, it is critical that population-level
analyses continue to be supported by data at the individual
level.

A final concern that arises with any icEEG study is whether
the results found in these patient populations are applicable to
the normal human brain. Such concerns are generally addressed
using a variety of inclusion criteria, both for patients as well
as the data analyzed (e.g., data free of electrophysiological
abnormalities, or which arise from pathological cortex) (Halgren
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et al., 1998; Lachaux et al., 2003b; Crone et al., 2006; Jerbi
et al., 2009). The development of grouped icEEG provides
a new environment in which to voice these concerns, but
also a new opportunity to resolve them. Work from our lab
has previously compared patient fMRI and icEEG recordings
against fMRI obtained in healthy volunteers, under identical
task conditions (Conner et al., 2013). Critically, we identified no
significant difference in activity, further validating the reliability
of such icEEG recordings. Additionally, work from other groups
has begun to investigate the potential of multi-modal analyses
by critically investigating grouped icEEG and grouped fMRI
analyses from the same patient populations (Mukamel et al.,
2005; Privman et al., 2007; He et al., 2008; Conner et al., 2011;
Esposito et al., 2012). In doing so, these studies have hoped to
better understand the electrophysiological basis of the BOLD
signal. Such multi-modal approaches also provide a method
for resolving concerns arising from the lack of global coverage
in grouped icEEG studies. By integrating data from grouped
fMRI and icEEG analyses, it could be confirmed that all relevant
components of a given cognitive network have indeed been
sampled within the icEEG cohort, prior to subjecting these data
to a population-level analysis.
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Movie 1 | Intracranial recordings provide unparalleled insights into rapidly

evolving patterns of cortical activity across distributed neural substrates.

Electrocorticographic movies of grouped percent change in high-frequency

broadband gamma activity (BGA; 60–120Hz; n = 27 subject) during a face and

place-naming task are visualized on the N27 cortical surface model. Hotter colors

denote an increase in mid-gamma band power, while cooler colors denote a

decrease (color-scale ranges from −50 to 50% change). The movie begins

100ms before stimulus onset and continues until 700ms after stimulus onset, in

5ms steps (stimulus onset at 0ms). Notably, for face stimuli (left surface) increases

in BGA are localized to the lateral aspect of the mid-fusiform sulcus. In contrast,

place stimuli produce more widespread activations in the medial aspects of the

fusiform gyrus.
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