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Short linear motifs (SLiMs) are functional stretches of protein sequence that are of crucial
importance for numerous biological processes by mediating protein–protein interactions.
These motifs often comprise peptides of less than 10 amino acids that modulate
protein–protein interactions. While well-characterized in eukaryotic intracellular signaling,
their role in prokaryotic signaling is less well-understood. We surveyed the distribution of
known motifs in prokaryotic extracellular and virulence proteins across a range of bacterial
species and conducted searches for novel motifs in virulence proteins. Many known motifs
in virulence effector proteins mimic eukaryotic motifs and enable the pathogen to control
the intracellular processes of their hosts. Novel motifs were detected by finding those
that had evolved independently in three or more unrelated virulence proteins. The search
returned several significantly over-represented linear motifs of which some were known
motifs and others are novel candidates with potential roles in bacterial pathogenesis.
A putative C-terminal G[AG].$ motif found in type IV secretion system proteins was
among the most significant detected. A KK$ motif that has been previously identified
in a plasminogen-binding protein, was demonstrated to be enriched across a number of
adhesion and lipoproteins. While there is some potential to develop peptide drugs against
bacterial infection based on bacterial peptides that mimic host components, this could
have unwanted effects on host signaling. Thus, novel SLiMs in virulence factors that do
not mimic host components but are crucial for bacterial pathogenesis, such as the type IV
secretion system, may be more useful to develop as leads for anti-microbial peptides or
drugs.
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INTRODUCTION
Short linear motifs (SLiMs) are functional microdomains in pro-
teins that play a critical role in many distinct biological processes
such as cell signaling and regulation, post-translational modifica-
tions, proteolytic cleavage, and protein trafficking (Davey et al.,
2011b; Mooney et al., 2012). These motifs are typically found in
eukaryotic disordered protein regions and vary in size from 3 to
12 amino acids (Fuxreiter et al., 2007). In general, SLiMs have
less than five defined amino acid positions and frequently these
positions have some degree of flexibility in amino acid composi-
tion. Their shortness makes them evolutionarily plastic, allowing
them to evolve convergently in unrelated proteins. This can allow
proteins to rapidly acquire new protein interaction functions
(Neduva and Russell, 2005; Diella et al., 2008; Davey et al., 2010,
2012b). Their short length also presents a challenge for SLiM dis-
covery both experimentally and computationally, since there may
be many false positive findings using both methods.

The presence of SLiMs in eukaryotes and viruses has been well-
established. Several pioneering viral studies were crucial for the
original characterization of SLiMs (Davey et al., 2011b). Viruses
use SLiMs as a principal mechanism of hijacking cells by bind-
ing to host proteins and recruiting them to process viral proteins.
A viral genome can contain various short motifs, many of which
are necessary for the viral life cycle, providing a plethora of ways
for the virus to take over the molecular machinery of the host
cell (Kadaveru et al., 2008; Davey et al., 2011b). Like viruses,
pathogenic bacteria are extremely proficient in intercepting host
cell functions and in many cases it is still poorly understood how
bacteria carry out the manipulation of the host cells. SLiMs have
been documented in a number of cases to play a role in bac-
terial pathogenicity. However, bacterial linear motifs are not as
well-characterized as in eukaryotes.

Most of the known instances of bacterial motifs are involved in
pathogenicity including signals in effector proteins or host motif
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mimicry (Cornelis and Van Gijsegem, 2000; Alto et al., 2006).
The tripeptide RGD motif is a known host extracellular matrix
adhesion factor that is also used by bacteria to attach onto host
cells (Tegtmeyer et al., 2010; Zimmermann et al., 2010; Zhang
et al., 2012). RGD based anticancer and antithrombotic drugs are
currently being developed but their direct impact on limiting bac-
terial adhesion and infectivity has not been investigated. A second
example of a bacterial motif is the EPIYA motif found in several
bacterial type III or IV secretion system effector proteins, which
mimics SH2 binding peptides of the host (Hayashi et al., 2013). A
third example of a bacterial motif has evolved to antagonize host
proteins, but does this using a motif for which there is no eukary-
otic equivalent. This W. . . E motif (where “.” indicates any amino
acid) in bacterial effector proteins has been proposed to mimic
host G-proteins (Alto et al., 2006; Jackson et al., 2008; Ham et al.,
2009). Other motifs found in prokaryotes which are not sim-
ply mimicking known eukaryotic motifs play roles in transport,
modification and proteolysis of the bacterial proteins (Table 1).

Since SLiMs are used in a plethora of cellular processes in
eukaryotes and are utilized by both pathogenic bacteria and
viruses, discovering and characterizing new linear motifs is of
great importance. As well as shedding light on the mechanisms of
fundamental cellular processes they also hold promise as future
therapeutic targets. There is an urgent need for new classes of
antimicrobial therapeutics that are effective against multidrug
resistant bacteria. Conventional antibiotics are becoming increas-
ingly ineffective against pathogenic bacteria, such as methicillin
resistant Staphylococcus aureus (MRSA) which presents a severe
threat to public health.

We were interested in whether SLiMs may be valuable when
developing new antimicrobial peptides or drugs. Compared with
recombinant proteins, the smaller size of peptides makes them
easier to manufacture and deliver. The use of chemically synthe-
sized peptides in pharmacological and clinical applications is rel-
atively limited by their low systemic stability and high clearance,
poor membrane permeability, negligible activity when adminis-
tered orally and their high cost of manufacture in comparison
to small chemical compounds. However, to date more than 100
peptide-based drugs have already reached the market and of these,
the majority are at the smaller end of the size spectrum at 8–10
amino acids (Craik et al., 2013).

Here, we conducted a study to discover SLiMs computationally
in bacterial virulence factor datasets. We surveyed the distribu-
tion of these novel motifs, and compared their distribution with
that of known motifs observed in prokaryotic proteins. The list
of motifs given here represents a useful resource for experimental
scientists interested in targeting SLiMs that may be important for
the pathogenicity of bacteria.

MATERIALS AND METHODS
We utilized data from a virulence factor database MvirDB
(Lawrence Livermore National Laboratory), which integrates
DNA and protein sequence information from Tox-Prot,
SCORPION, the PRINTS database of virulence factors, VFDB,
TVFac, Islander, ARGO, CONUS, KNOTTIN, a subset of VIDA
and sequences derived by means of literature searches (Zhou
et al., 2007). MvirDB can be accessed at http://mvirdb.llnl.gov.

The MvirDB browser tool was used to search the database to
retrieve virulence factors by functional categories (Table 2) and
to download sequences of interest. Protein sequence identifiers
for the downloaded sequences for each functional category are
available in Table S1.

The recovered protein sequences in each functional category
thought to be associated with pathogenicity were searched for
SLiMs using SLiMFinder (Davey et al., 2010) both locally, and
on a webserver that is available at http://bioware.ucd.ie. The
default settings provided in SLiMFinder without any extra mask-
ing were used in the analysis. This method finds sets of three
or more unrelated proteins in a dataset of proteins that share a
motif. Chemotaxis and enzyme protein sequence datasets were
filtered to contain only sequences longer than 20 amino acids
and lipoprotein and Exotoxin datasets sequences longer than 40
amino acids prior to the analysis.

The motifs identified by the SLiMFinder analysis were further
examined for similarity to known SLiMs from literature motifs
using CompariMotif, which takes two lists of protein motifs and
compares them to each other, identifying and scoring similarities
between short motifs in the sets (Edwards et al., 2008).

Motifs were visualized using the MEME Suite (Bailey et al.,
2009), by taking a stretch of 10 amino acid residues containing
the motif of interest from each protein sequence where the motif
was found. MEME represents motifs as position dependent letter
probability matrices which describe the probability of each pos-
sible letter at each position in the pattern. These are displayed as
“sequence LOGOS,” containing stacks of letters at each position
in the motif. The total height of the stack is the “information
content” of that position in the motif in bits. The height of the
individual letters in a stack is the probability of the letter at that
position multiplied by the total information content of the stack.

Datasets comprised of protein sequences obtained from
UniProtKB that are predicted to be effector proteins from a selec-
tion of 60 organisms represented in the MvirDB were used to
assess the distribution of prokaryotic protein motifs. The presence
of both known and novel motifs in these datasets was investi-
gated using the predictive computational tool SLiMSearch which
can be used to determine the occurrences of predefined motifs in
protein sequences (Davey et al., 2011a). Heat maps were gener-
ated to visualize the incidences of motifs in the protein datasets
where the frequency of the heat map represents the logarithm
of the normalized N_UPC (Number of incidences of a motif in
an Unrelated Protein Cluster) value returned in the SLiMSearch
results. The N_UPC for an individual motif in a specific organ-
ism was normalized by dividing the value by the total amount
of UPCs (Unrelated Protein Clusters) in the specific organism
and the average N_UPCs of a motif across all 60 organisms. For
motifs where there were no incidences in a specific organism the
frequency was set to an arbitrary value lower than the minimum
actual observed value.

The organisms in Figures 2, 3 which cover the motif sequences
were presented in a phylogenetic tree (Figure 4). The Taxonomic
IDs for all the organisms are used as input in NCBI’s Taxonomy
Common Tree tool (http://www.ncbi.nlm.nih.gov/Taxonomy/
CommonTree/wwwcmt.cgi). The “phenogram” taxonomic tree
(∗.phy format) obtained from the NCBI server was fed into
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Table 1 | Examples of known instances of Short Linear Motifs in bacterial virulence factors.

Virulence factor Motif Function References

ADHERENCE

CagL, Mce RGD*, NGR An integrin binding cell adhesion
motif

Conradi et al., 2012a,b;
Zhang et al., 2012

CagL FEANE Participates in integrin binding Conradi et al., 2012b

YadA [SG][VI][AS][IVT]G..S Repeated collagen binding motif Tahir et al., 2000

InlJ, InlA, nanA,
CspA

LP.TG Cell wall anchor motif Harris et al., 2003; Sabet
et al., 2005; Banerjee
et al., 2010

Eno [LF]Y[DNK]. . . [KG][KV]Y[VD]* Plasminogen binding motif Bergmann et al., 2003;
Nogueira et al., 2012

CBPA-G, LytA-C W[WFY][FY]. . . .G.M Repeated cholin (cell wall) binding
motif

Garau et al., 2005

SpsA YRNYPT Host secretory immunglobulin A
(SlgA) and secretory component
(SC) binding motif

Hammerschmidt et al.,
2000

EFFECTOR

SipA, SopA DEVD*, [DSTE][∧P][∧DEWHFYC]D[GSAN] Caspase 3 cleavage site motif Srikanth et al., 2010;
Dinkel et al., 2012

AvrPto, HopF2,
AvrB, AvrRpm1

MG..C*,G. . . [STC],
∧M{0,1}(G)[∧EDRKHPFYW]..[STAGCN][∧P]

N-myristoylation/S-palmitoylation
motif

Shan et al., 2000;
Robert-Seilaniantz et al.,
2006; Dinkel et al., 2012;
Hicks and Galan, 2013

WtsE, AvrE1,
IpgB2, IpgB1, Map,
EspM, EspT, SifA,
SifB

W. . . E* Host Rho GTPase
activation/modulation motif

Alto et al., 2006; Ham
et al., 2009

WtsE, [LR][KQVS][KQLR][EST][GQR][FLKS][EGPK]
[MLVAS][KNAL][SGIE]*

Putative endoplasmic reticulum
membrane retention/retrieval
motif

Ham et al., 2006, 2009

SifA, AnkB CLCCFL*, (C)[∧DENQ][LIVM].$ CAAX box, putative prenylation
motif (addition of farnesyl or
geranylgeranyl group)

Boucrot et al., 2003;
Hicks et al., 2011; Dinkel
et al., 2012

YopE, SptP, ExoS G.LR. . . T(YopE*) Arginine finger motif, essential for
Rho GAP function of virulence
factors

Black and Bliska, 2000;
Wurtele et al., 2001

PopB, PopP2,
AvrBs3

[∧DE]((K[RK])|(RK))[KRP][KR][∧DE],
[KR][KR].{7,15}[∧DE]((K[KR])|(RK))(([∧DE][KR])
|(KR][∧DE]))[∧DE],
[∧DE]((K[RK])|(RK))(([∧DE][KR])|([KR][∧DE]))(([PKR])
|([∧DE][DE])),
(([PKR].{0,1}[∧DE])|([PKR]))((K[RK])|(RK))
(([∧DE][KR])|([KR][∧DE]))[∧DE]

Nuclear localization signal (NLS)
motifs

Szurek et al., 2002;
Deslandes et al., 2003;
Dean, 2011; Dinkel et al.,
2012

CagA, Tarp, AnkA,
LspA

E[PNS][IV]Y[AEG] Membrane
targeting/phosphorylation motif

Higashi et al., 2005;
Suzuki et al., 2009;
Hayashi et al., 2013

SspH2, SseI . . . .GSGC. . . .., G(C)M[GS][CL][KP]C,
∧M{0,1}G(C)..S[AKS]

S-palmitoylation motif Hicks et al., 2011; Dinkel
et al., 2012

(Continued)
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Table 1 | Continued

Virulence factor Motif Function References

ExoS, SopE [FIV]..[FIV].[FIV]..[NC].[FIV] Membrane localization motif (targets ExoS
to the Golgi-endoplasmic reticulum)

Zhang and Barbieri, 2005

SopD2, SifA, SseJ,
SspH2

WEK[IM]..FF Translocation/late endocytic
compartments targeting motif

Brown et al., 2006

ExoU KAWRN Plasma membrane
localization/ubiquitinylation motif

Rabin and Hauser, 2005;
Stirling et al., 2006

SopE, BopE GAG[AT] Catalytic loop motif essential for guanine
nucleotide exchange

Schlumberger et al.,
2003

AvrPphB GDK Autoproteolytic cleavage motif Dowen et al., 2009

SopA, IpaH, SspH1 L. . ..TC, C.D E3 ubiquitin ligase motif Zhang et al., 2006;
Rohde et al., 2007

VirF LP. . . . . . . . . .L F-box domain motif, mediates
protein–protein interactions

Tzfira et al., 2004

VopL, VopF [∧R]..((.[ILMVF])|([ILMVF].))[∧P][∧P][ILVM].
{4,7}L(([KR].)|(NK))[VATIGS],
[R]..[ILVMF][ILMVF][∧P][ILVM].{4,7}L(([KR].)
|(NK))[VATI]

WH2-domain motif Liverman et al., 2007;
Dinkel et al., 2012

SpvC, OspF, VirA [KR]{0,2}[KR].{0,2}[KR].{2,4}[ILVM].[ILVF] D motif, Docking motif required for
specific binding to MAPKs

Zhu et al., 2007; Dinkel
et al., 2012

IpaA L..AA..VA..V..LI..A. Vinculin binding domain motif Hamiaux et al., 2006

ExoS, ExoT LLDALDLA FAS (14-3-3 protein) binding motif,
mediates activation of the ADPRT domain

Sun et al., 2004; Dean,
2011

EspF [RKY]..P..P, P..P.[KR],...[PV]..P, KP..[QK]. . . SH3 binding motif Alto et al., 2007; Dinkel
et al., 2012

Map, NleH1, EspI
(NleA)

...[ST].[ACVILF]$, . . .

[VLIFY].[ACVILF]$,...[DE].[ACVILF]$ (EspI*)
C-terminal PDZ1 binding motif Lee et al., 2008; Martinez

et al., 2010; Dinkel et al.,
2012

TOXIN

Listeriolysin O
(LLO)

PPASP* PEST-motif, involved in phagosomal
escape of bacteria in infected cells

Lety et al., 2001

OTHER

VirD4, VirB11,
VirB4, SecA

G. . ..GK[TS]* Walker A motif, nucleotide-binding motif Sato et al., 1996;
Atmakuri et al., 2004

SecA [RK]. . ..G. . ..L[VILFWYMC]{4,4}D Walker B, nucleotide binding motif Sato et al., 1996

MsbA, PiaA, PiuA LSGGQ (PiaA*, PiuA*) ABC-motif, ATP binding cassette
transporter motif

Garmory and Titball,
2004; Buchaklian and
Klug, 2006

EsxA, EsxB, esat6 W.G W.G motif helps to create a shallow cleft
structure and may represent a peptide
recognition feature by which cargo
proteins are acquired for transport

Burts et al., 2005;
Sundaramoorthy et al.,
2008

*Proven role in virulence. Bold, a non-eukaryotic motif. “∧” start of the protein or if in the middle of the motif sequence states which amino acids are excluded in

the position, “$” end of the protein, “.” any amino acid, {} defines the length of a range in the motif sequence, [] defines which amino acids can occur at a given

motif position, () marks positions of specific interest e.g., covalent modification or is used to group parts of the expression. Motif table modified from Dean (2011),

additional motifs added from the literature.
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Table 2 | Functional search terms used to retrieve and download

protein sequences from virulence factor database MvirDBbrowser

tool.

Virulence protein Number of Number of

group sequences unrelated proteins

Adherence 749 181

Capsule 332 57

Chemotaxis 192 18

Effector 111 27

Endotoxin 66 27

Enzyme 647 121

Exotoxin 92 12

Lipoprotein 463 70

Motility 86 23

Siderophore 150 43

Type III secretion system 571 75

Type IV secretion system 181 38

Drawgram tree drawing program of Phylip package (version
3.695). Branches were colored according to the following scheme:
Purple, High GC Gram+ bacteria; Blue, Firmicutes; Yellow,
a-proteobacteria; Light Brown, b-proteobacteria; Dark Brown,
e-proteobacteria; Green, g-proteobacteria (non-enterobacteria);
Red, g-proteobacteria (enterobacteria); Black, others (CFB).

RESULTS
Our objective was to discover novel SLiMs in non-homologous
bacterial proteins with similar roles in virulence that may have
functional importance in pathogenesis, and thus have potential
to be developed into antimicrobial peptides or drugs. Our anal-
ysis returned both previously characterized and novel motifs in
several different functional categories indicating the suitability of
SLiMFinder for the analysis of bacterial sequence data as well as
eukaryotic data. We focused on 12 groups of bacterial proteins
with predefined roles in pathogenicity (Table 2). SLiMFinder
identified numerous motifs among these proteins. Table 3 lists
those with a p-value (Sig) less than 0.05. Bonferroni correction
for significance with 12 search datasets would suggest that motifs
with a Sig value of less than 0.004 are significant. Since patho-
genesis proteins from bacteria often interact with host protein
components, we examined whether any of the identified motifs
showed similarity to known eukaryotic linear motifs, using the
Comparimotif tool. However, we did not find any convincing
similarities, in spite of the known occurrence of eukaryotic motifs
in bacterial effector proteins. We also investigated if any of the
motifs were known prokaryotic motifs identified in the literature.

KNOWN MOTIFS
Three of the motifs highlighted by SLiMFinder were previ-
ously known bacterial motifs. The most significant of these was
the well-characterized prokaryotic N-terminal lipid modification
[LVI][ASTVI][GAS]C motif that has been previously shown to be
essential for the anchoring of bacterial proteins to the membrane
surface (Braun and Rehn, 1969; Babu et al., 2006). The square
brackets enclose alternative amino acids which are possible at that

position in the motif. This motif is present in a wide range of pro-
teins across Gram-positive and Gram-negative bacteria and is a
clear example of a motif that has convergently evolved in many
unrelated proteins. It was found in numerous configurations in
the lipoprotein dataset of which seven are listed in Table 3. This
“lipobox” motif sequence is located at the C-terminal end of the
signal peptide and the lipid-modifiable cysteine (+1 position) is
invariant (Juncker et al., 2003). Lipid modification of this cys-
teine residue (N-acyl-S-diacylglyceryl-Cys) has been found to be
an essential, ubiquitous, and unique bacterial post-translational
modification. Such a modification allows anchoring of even
highly hydrophilic proteins to the membrane surface leaving the
rest of the protein to carry out a variety of relevant functions in
the aqueous or aqueous-membrane interface (Juncker et al., 2003;
Babu et al., 2006). Bacterial lipoproteins affect a wide range of
mechanisms in virulence. They have been shown to play key roles
in adhesion to host cells and in translocation of virulence factors
into host cells (Kovacs-Simon et al., 2011). Furthermore, they are
potent inducers of host inflammatory responses.

The second known motif identified was an N-terminal
∧MK.{0,2}K motif present in several search categories in
varying configurations (Table 3, Adherence, Capsule, Enzyme,
Lipoprotein, Siderophore, and Type IV secretion system). This
motif representation indicates that the second K (lysine) may lay
0, 1, or 2 residues after the K that follows the initiator methionine.
The “∧” symbol indicates the start of the protein, which is treated
as a distinct character in motif discovery. SLiMFinder omits the M
from the returned motif resulting in ∧.K.{0,2}K representation,
since initiator methionines were deliberately masked out to avoid
returning motifs reliant simply on the strong enrichment of M at
the start of proteins. The ∧MK.{0,2}K motif is commonly found
in bacterial signal peptides both in proteins that are targeted to
the membrane and in secreted proteins (Juncker et al., 2003;
Bagos et al., 2008). Both of the known motifs are presented as
regular expressions in Figure 1, which provides some informa-
tion on additional contextual preferences beyond the simple motif
description. Signal peptides in bacteria are mainly divided into
the secretory signal peptides that are cleaved by Signal Peptidase
I and those cleaved by Signal Peptidase II which characterize the
membrane-bound lipoproteins (Juncker et al., 2003; Bagos et al.,
2008). The signal peptides in both classes of proteins in Gram-
positive and Gram-negative bacteria are quite similar, sharing the
N-terminal region which is characterized by presence of the posi-
tive amino acids at the start of the protein, as well as the preference
for hydrophobic residues further along the signal peptide.

The third previously characterized bacterial motif returned in
our analysis is the C-terminal KK$ motif (where $ indicates the
end of the protein, and is treated as a distinct character in motif
discovery) found in adherence and lipoprotein datasets (Table 3;
Figure 1). This motif has been shown to play a role in plas-
minogen binding in S. pyogenes and S. pneumoniae α-enolase
(Bergmann et al., 2003; Derbise et al., 2004; Itzek et al., 2010).
Binding of plasminogen by α-enolase and its subsequent activa-
tion has been demonstrated to promote invasion of pathogenic
bacteria and therefore represents an important determinant of
virulence in invasive infection (Bergmann et al., 2003). Moreover,
KK motifs close to the C-terminus are present in a family of
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Table 3 | Significant motifs returned by SLiMFinder in each dataset (where probability <0.05).

Virulence Number of Motif pattern Motif name Information Occurrences Unrelated Probability References

protein sequences content proteins (Sig value)

group

(A) PREVIOUSLY DESCRIBED MOTIFS

Adherence 749 ∧.K.{0,2}K Signal peptide
motif

3 151 47 0.00E+00 Juncker et al., 2003; Bagos
et al., 2008

∧.{1,2}K.{1,2}L Signal peptide
motif

3 102 35 1.15E–10 Juncker et al., 2003; Bagos
et al., 2008

∧.{1,2}K.{0,2}I Signal peptide
motif

3 91 34 1.41E–08 Juncker et al., 2003; Bagos
et al., 2008

∧.K.[IL] Signal peptide
motif

2.77 58 21 5.80E–07 Juncker et al., 2003; Bagos
et al., 2008

∧.K..S Signal peptide
motif

3 24 12 0.002 Juncker et al., 2003; Bagos
et al., 2008

KK$ C-terminal KK 3 23 11 0.034 Bergmann et al., 2003; Itzek
et al., 2010

Capsule 332 ∧.{1,2}K.{0,1}I Signal peptide
motif

3 55 18 6.96E–06 Juncker et al., 2003; Bagos
et al., 2008

∧.{1,2}K.{0,1}I..V Signal peptide
motif

4 16 7 0.002 Juncker et al., 2003; Bagos
et al., 2008

∧.{1,2}K.{0,2}I Signal peptide
motif

3 59 18 0.003 Juncker et al., 2003; Bagos
et al., 2008

∧.K.[ILV] Signal peptide
motif

2.63 39 13 0.003 Juncker et al., 2003; Bagos
et al., 2008

∧.{1,2}K.{0,2}K Signal peptide
motif

3 52 17 0.006 Juncker et al., 2003; Bagos
et al., 2008

Chemotaxis 192 – – – – – –

Effector 111 – – – – – –

Endotoxin 66 – – – – – –

Enzyme 647 ∧.{1,2}KK Signal peptide
motif

3 27 14 9.52E–05 Juncker et al., 2003; Bagos
et al., 2008

∧..K.{0,2}I Signal peptide
motif

3 30 13 0.042 Juncker et al., 2003; Bagos
et al., 2008

Exotoxin 92 – – – – – –

Lipoprotein 463 L.[AG]C[AGS] Lipobox 3.4 78 30 0.00E+00 Braun and Rehn, 1969; Babu
et al., 2006

[FLV].L.[AG]C Lipobox 3.4 136 24 0.00E+00 Braun and Rehn, 1969; Babu
et al., 2006

[ILV].[AGS]C Lipobox 2.27 370 53 0.00E+00 Braun and Rehn, 1969; Babu
et al., 2006

[AGS]C[AGS] Lipobox 2.27 285 50 7.22E–15 Braun and Rehn, 1969; Babu
et al., 2006

∧.{1,2}K.{0,2}K Signal peptide
motif

3 109 27 1.27E–09 Juncker et al., 2003; Bagos
et al., 2008

(Continued)
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Table 3 | Continued

Virulence Number of Motif pattern Motif name Information Occurrences Unrelated Probability References

protein sequences content proteins (Sig value)

group

L.{1,2}GC.{0,1}A Lipobox 4 41 15 1.65E–09 Braun and Rehn, 1969; Babu
et al., 2006

A.{0,2}L..C.{0,2}S Lipobox 4 68 19 3.02E–09 Braun and Rehn, 1969; Babu
et al., 2006

∧.K..[ILV] Signal peptide
motif

2.63 66 19 4.36E–09 Juncker et al., 2003; Bagos
et al., 2008

∧..K..[FLV] Signal peptide
motif

2.63 65 17 1.07E–07 Juncker et al., 2003; Bagos
et al., 2008

[ILV]..C.[AGS] Lipobox 2.27 217 36 4.11E–06 Braun and Rehn, 1969; Babu
et al., 2006

KK$ C-terminal KK 3 22 9 0.016 Bergmann et al., 2003; Itzek
et al., 2010

Motility 86 – – – – – –

Siderophore 150 ∧.[KR]I Signal peptide
motif

2.77 12 7 0.024 Juncker et al., 2003; Bagos
et al., 2008

Type III
secretion

571 – – – – – –

Type IV
secretion

181 ∧.K[KR] Signal peptide
motif

2.77 29 9 0.003 Juncker et al., 2003; Bagos
et al., 2008

∧.K..[FIL] Signal peptide
motif

2.63 27 10 0.025 Juncker et al., 2003; Bagos
et al., 2008

(B) NOVEL MOTIFS

Adherence 749 LP.G.Y 4 37 12 0.012

Capsule 332 G.S..M.L 4 15 7 0.029

Chemotaxis 192 E..Q.I[AG].I 4.77 22 5 0.004

E..Q.[IV]..I 3.77 24 7 0.02

Effector 111 ∧..I.{0,1}N 3 21 6 0.012

[LV].PY 2.77 46 11 0.042

∧..I[ST] 2.77 17 6 0.049

Endotoxin 66 – – – – –

Enzyme 647 A.I.P.VL 5 14 7 0.019

VSIL.S 5 11 7 0.049

Exotoxin 92 – – – – –

Lipoprotein 463 ML..C 3 14 7 0.017

Motility 86 – – – – –

Siderophore 150 I.K..G 3 28 17 0.044

GYP..TP 5 5 4 0.052

(Continued)
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Table 3 | Continued

Virulence Number of Motif pattern Motif name Information Occurrences Unrelated Probability References

protein sequences content proteins (Sig value)

group

Type III
secretion

571 – – – – –

Type IV
secretion

181 G[AG].$ 2.77 19 9 2.64E–04

Where very similar motifs are returned for a protein group, only a representative motif is shown.

Information content (Edwards et al., 2007), “∧” start of the protein, “$” end of the protein, “.” any amino acid, {} defines the range of a repeat in the motif sequence,

[] defines which amino acids can occur at a given motif position.

Italic font is used when Probability (Sig-value) is higher than the 0.05 confidence level.

Shigella flexneri glucosyl transferases (Gtr) that are integral mem-
brane proteins embedded within the cytoplasmic membrane.
These glucosyl transferases contribute to the altering of the struc-
ture of the bacterial surface lipopolysaccharide (LPS) O-antigen
along with O-acetyltransferase (Lehane et al., 2005; Ramiscal
et al., 2010). The KK motif has been shown to be essential for
the activity of Gtrs. However, Ramiscal et al. showed that the KK
motif in a recently identified GtrIc is not critical for its activ-
ity (Ramiscal et al., 2010). We hypothesize that the KK$ motif
instances identified here in diverse proteins may play an adhesive
role similar to the plasminogen binding instances in α-enolase.
We note that plants have a KK$ variant (Gidda et al., 2009) of
a known eukaryotic cytoplasmically exposed endoplasmic reticu-
lum (ER) localization motif KKxx$ found in mammals, yeast and
plants (Nilsson et al., 1989; Jackson et al., 1990; Contreras et al.,
2004). It is therefore conceivable that the bacterial KK$ motif
could in some proteins direct invading proteins to certain parts
of the eukaryotic host cell. However, we do not think this is very
plausible, since the enrichment of KK$ motifs spans many known
bacterial lipoproteins (Table 3) which seem unlikely to migrate to
this host cell location.

NOVEL MOTIFS
The most significant novel motif (p-value 0.0003) discovered is a
C-terminal G[AG].$ motif in the type IV secretion system dataset.
The full list of unrelated proteins containing the G[AG].$ motif is
represented in Table 4. The MEME regular expression pattern of
the motif in these proteins is described in Figure 1. Four of the
nine unrelated proteins containing this motif appear to be identi-
fied equivalents of the type IV secretion system components in the
well-studied Agrobacterium tumefaciens: VirB4, VirB8, VirB11,
and VirB7 [TrwH has 59% identity with VirB7 family (Patey
et al., 2006)]. VirB4 and VirB11 are known energetic compo-
nents of the type IV secretion system in A. tumefaciens. Both of
these proteins are membrane associated NTPases on the inner
membrane (Tegtmeyer et al., 2011). VirB8 on the other hand,
is an essential inner membrane component of type IV secre-
tion systems that is believed to form a homodimer and has been
shown to be of importance for complex stability in A. tumefaciens
(Sivanesan and Baron, 2011). The VirB7 is an outer membrane
lipoprotein that localizes exocellularly and associates with the
type IV secretion system pilus. Both VirB7 lipid modification and

disulfide cross-linking have been shown to be important for pilus
assembly (Sagulenko et al., 2001). The Helicobacter pylori pro-
tein Cag7 that is among the proteins containing the C-terminal
G[AG].$ motif has previously been proposed to be a transmem-
brane protein that is associated with the pilus (Rohde et al., 2003;
Tegtmeyer et al., 2011). At least five of the nine unrelated pro-
teins containing the G[AG].$ motif seem to be associated with
the bacterial membranes and it is thus possible that this motif
would be involved in the targeting and/or attachment of these
proteins into the bacterial membranes. However, since the motif
has been specifically identified within type IV secretion proteins,
it is more likely that the motif facilitates interaction with a com-
ponent of the type IV secretion system itself. We inspected the
distribution of the motif across effector proteins (Figure 2) and
noted that there are typically one or none per species, suggest-
ing that the motif is not itself enriched strongly among effector
proteins themselves.

Other novel motifs discovered are summarized in Table 3 and
in Figure 1. Their significance is in the range between that for the
nominal significance level (p < 0.05) and the Bonferroni adjusted
significance level (p < 0.004). While it is likely that a number
of these motifs are genuine, a few may be false positives. The
LP.G.Y motif found in the adherence dataset superficially resem-
bles a Gram-positive bacteria cell wall anchoring LP.TG motif.
Cleavage between the Thr and Gly by sortase or a related enzyme
leads to covalent anchoring of the new C-terminal Thr to the cell
wall (Navarre and Schneewind, 1994; Gaspar et al., 2005). Cell
wall-anchored surface proteins of Gram-positive pathogens play
important roles during the establishment of many infectious dis-
eases. While it could be hypothesized that the LP.G.Y motif is
similarly involved in the anchoring of bacterial proteins to the
cell surface, there are two lines of evidence that argue against
this. Firstly, there is no enrichment for T or similar amino acids
between P and G in the instances of the motif returned (Figure 1).
Secondly, this motif is present both in Gram-positive and Gram-
negative bacterial proteins in our study. Accordingly, we consider
LP.G.Y a potential novel motif involved in bacterial adhesion
through an unidentified mechanism.

REPEATED MOTIFS
While SLiMFinder looks for motifs which recur one or more
times in a number of independent proteins, it is of biological
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FIGURE 1 | MEME suite motif logos of the novel and known

motifs returned in the SLiMFinder analysis. Each position in the
motif is represented as a stack of letters. The total height of the
stack is the “information content” of that position in the motif in
bits. The height of the individual letters in a stack is the probability

of the letter at that position multiplied by the total information
content of the stack. Black box: the most significant novel motif
G[AG].$, Yellow box: KK$ motifs found in Adherence and
Lipoprotein datasets, Red box: Known bacterial motifs ∧.K.{0,2}K and
[ILV].[AGS]C.
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Table 4 | List of proteins containing G[AG].$ and KK$ motifs.

Pattern Protein group P-value (Sig) Match No. unrelated Description

proteins

G[AG].$ Type IV secretion 2.64E–04 GGN 9 virB11 protein homolog|9992|YP_034060|49476019|8040|[Bartonella
henselae str. Houston-1]

GAK virB4|10558|NP_863348|32469876|8343|VirB4 [Campylobacter jejuni
subsp. jejuni 81-176]

GAK virB8|10560|NP_863298|32469826|8344|VirB8 [Campylobacter jejuni
subsp. jejuni 81-176]

GAE cag pathogenicity island protein
(cag11)|10866|NP_207327|15645157|8497|[Helicobacter pylori 26695]

GGK trwF protein|9938|YP_034270|49476229|8013|[Bartonella henselae str.
Houston-1]

GAI trwH2 hypothetical protein BH15720|9944|YP_034268|49476227|8016
[Bartonella henselae str. Houston-1]

GAS cag pathogenicity island protein
(cag25)|10894|NP_207342|15645172|8511|[Helicobacter pylori 26695]

GGN Putative type IV secretion system
protein|41299|NP_790379|NP_790379.1|18355|[Pseudomonas syringae
pv. tomato str. DC3000]

GAI trwH1 hypothetical protein
BH15690|9942|YP_034265|49476224|8015|[Bartonella henselae str.
Houston-1]

GGN cag pathogenicity island protein
(cag7)|10904|NP_207323|15645153|8516|[Helicobacter pylori 26695]

KK$ Adherence 0.034 KK 11 hmw2C putative accessory processing protein [Haemophilus
influenzae]|2847|AAA20526|482843|2554|

KK kpsC polysaccharide modification protein [Campylobacter jejuni subsp.
jejuni NCTC 11168]|10454|NP_282555|15792732|8291|

KK ica operon transcriptional regulator [Staphylococcus aureus subsp.
aureus MW2]|3137|NP_647402|21284314|2699|

KK pavA adherence and virulence protein A [Streptococcus agalactiae
2603V/R]|9719|NP_688199|22537348|7896|

KK Type 4 fimbrial biogenesis protein PilO [Pseudomonas aeruginosa
PAO1]|8738|NP_253729|15600235|7426|

KK Type 4 fimbrial biogenesis protein PilN [Pseudomonas aeruginosa
PAO1]|8740|NP_253730|15600236|7427|

KK Putative collagen binding protein [Streptococcus pyogenes MGAS315]
SpyM3_0098|9709|NP_663902|21909634|7891|

KK oapA opacity associated protein [Haemophilus influenzae Rd
KW20]|2865|NP_438494|16272282|2563|

KK neuC1 putative N-acetylglucosamine-6-phosphate
2-epimerase/N-acetylglucosamine-6-phosphatase [Campylobacter jejuni
subsp. jejuni NCTC 11168]|10349|NP_282290|15792467|8218|

KK waaE D,D-heptose 1-phosphate adenosyltransferase/7-phosphate kinase
[Campylobacter jejuni subsp. jejuni NCTC
11168]|10396|NP_282297|15792474|8262|

KK hmw1C putative accessory processing protein [Haemophilus
influenzae]|2841|AAA20529|475773|2551|

KK cytotoxin [Escherichia coli O157:H7]|11176|AAC70163|3822209|8652|

KK$ Lipoprotein 0.016 KK 9 Multidrug resistance outer membrane efflux protein mdtP; Flags:
Precursor|58083|Q8CVH8|24068|Escherichia coli

KK ylpB/yscJ needle complex inner membrane lipoprotein [Yersinia pestis
CO92]|20866|NP_395193|16082747|13354|

KK Yop proteins translocation lipoprotein J OS = Yersinia enterocolitica GN
= yscJ PE = 2 SV = 1|18600|AltName: Full = Lipoprotein ylpB; Flags:
Precursor; |Q01251|11895|

(Continued)
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Table 4 | Continued

Pattern Protein group P-value (Sig) Match No. unrelated Description

proteins

KK Lipoprotein [Salmonella enterica subsp. enterica serovar Typhi str.
CT18]|44580|NP_455466|NP_455466.1|19996|

KK LPP20 lipoprotein OS = Helicobacter pylori GN = lpp20 PE = 1 SV =
1|17433|P0A0V0|10728|

KK Outer membrane factor of efflux pump [Escherichia coli str. K-12 substr.
MG1655]58055|NP_418504|NP_418504|24053|

KK Lipoprotein, putative [Enterococcus faecalis
V583]9889|NP_816134|29376980|7982|

KK Iron transport lipoprotein SirF [Staphylococcus aureus subsp. aureus
Mu50]|8986|NP_371657|15924123|7550|

KK Export protein prsA cytoplasmic membrane protein, protein
folding|3480|GBAA2336 prsA-3 |GBAA2336|2870|

KK LPP20 lipoprotein OS = Helicobacter pylori J99 GN = lpp20 PE = 3
SV = 1|17432|P0A0V1|

KK Yop proteins translocation lipoprotein J OS = Yersinia
pseudotuberculosis GN = yscJ PE = 2 SV = 1|18863|AltName:
Lipoprotein ylpB |P69973|12158|

KK YaeC family lipoprotein [Enterococcus faecalis V583] [Enterococcus
faecalis V583]|39473|NP_815743|NP_815743.1|17442|

KK Major outer membrane lipoprotein OS = Yersinia pestis GN = lpp PE =
3 SV = 1|24369||Q8ZDZ6|15171|

KK Putative lipoprotein [Salmonella enterica subsp. enterica serovar Typhi
str. Ty2]|44956|NP_805720|NP_805720.1|20184|

interest when those motifs are themselves repeated within the
proteins, for example, representing multiple adhesion sites.
Accordingly, we investigated the frequency of repeats of the iden-
tified motifs. Duplicated motifs were found with between two
and four copies in proteins. The lipoprotein lipid anchoring
motif was found repeated three times in the protein HrpB3 of
Xanthomonas euvesicatoria (instances LAGC, LALC, and LSAC).
Among these motif instances, LAGC and LSAC are known lipid
anchoring motifs (Klein et al., 2005; Konkel et al., 2010). The
third instance may represent a true positive anchoring motif, a
degenerate motif that is no longer functional or a false positive
sequence that fulfills some other functional role in the pro-
tein. However, it is clear that the repetition of this well-known
motif is in some cases biologically important for function. Thus,
for novel motifs, repetition within as well as between proteins
may be a potential further indication of important function.
An example would be the threefold repetition of the “LP.G.Y”
motif in the surface-anchored fimbrial subunit protein SpaG
of Corynebacterium diptherae. This motif has a known struc-
ture in the collagen binding domain of Staphylococcus aureus
(PDB entry 1D2P) (Deivanayagam et al., 2000). Collagen is
itself a repetitive structure, occurring in many dense repeats
in the host extracellular matrix. The repetition of this bacte-
rial motif in this particular protein may indicate its potential
role in making multiple contacts with collagen. However, other
instances of the motif detected by SLiMFinder only occurred
once in each protein, suggesting that a single copy may be
sufficient.

DISTRIBUTION OF SHORT LINEAR MOTIFS ACROSS EFFECTOR
PROTEINS OF DIFFERENT SPECIES
We visualized the cross-species distribution of the SLiMFinder
identified novel motifs (see Table 3B) among the annotated effec-
tor proteins of other species. The species were chosen to include
those present in the MvirDB database that contributed motifs
to the discovery, in order to display a varied set of species that
could be visualized with ease. It is likely that they also exist in
other organisms, although distinguishing true and false positives
is not possible computationally. The visualization is normalized
to correct for the fact that some species have very few proteins
and that some motifs have very few instances. The total number
of UPCs are indicated in brackets before each bacterial species as
well as the total incidences of a motif in UPCs across all bacte-
rial species indicated before each motif regular expression. The
novel SLiMFinder identified effector protein motifs ∧..I.{0,1}N,
[LV].PY and ∧..I[ST] are found among the effector proteins of
many species, but are absent in those of many other species,
including those with a reasonable number of annotated effector
proteins (Figure 2).

We also looked at the distribution of known motifs (see
Tables 1, 3A) across species (Figure 3). While some effector
motifs (see second section of Table 1) show a wide phyloge-
netic distribution, others are restricted to only a few species,
such as the G.LR. . . T motif involved in Rho GAP function. The
nuclear localization signals (at the bottom of Figure 3) show a
relatively restricted distribution. The WEK[IM]..FF late endo-
cytic compartment localization motif is restricted to the genus
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FIGURE 2 | Heat map visualization of the distribution of novel

SliMFinder identified motifs amongst effector proteins from a selection

of 60 organisms represented in the MvirDB. Columns: The bacterial
species name with the total number of UPCs indicated in brackets at the
start of the description. Purple, High GC Gram+ bacteria; Blue, Firmicutes;
Yellow, a-proteobacteria; Light Brown, b-proteobacteria; Dark Brown,

e-proteobacteria; Green, g-proteobacteria (non-enterobacteria); Red,
g-proteobacteria (enterobacteria); Black, others (CFB). Rows: The motif
regular expression with the total number of incidences in UPCs across all 60
organisms indicated in brackets at the start of the description. Color scale:
The logarithm of the normalized N_UPC returned from the SLiMSearch
results.

Salmonella. While the ubiquitin ligase motifs L. . . .TC and C.D
are found in more than 71 and 199 instances respectively across
the dataset whereas a number of species lack one or both of these
motifs. The two SH3 binding motifs [RKY]..P..P and P..P.[KR]
also show a restricted distribution. Similarly, the two PDZ bind-
ing motifs,...[ST].[ACVILF]$ and . . . [VLIFY].[ACVILF]$ show a
restricted distribution. Bacterial effector proteins may under cer-
tain circumstances be under negative selection to avoid motifs
that bind to common domains in the host such as PDZ and SH3
domains.

It can be seen that strains of a species often have very similar
motif distributions (Figures 2–4). There is a weak but not con-
vincing trend (Figure 3) for the known motif distribution among
effector proteins of the Firmicutes (Blue) to group together,
relative the gamma-proteobacteria (Red and Green). While the
Group 2 Bacillus species, anthracis and cereus, cluster together
(Figure 3), many sets of closely related species (Figure 4) do
not show particularly close relationships in terms of motif dis-
tribution. This may result from two factors: firstly, motifs are

highly dynamic during evolution, and secondly, factors that play
a role in pathogenicity also evolve very fast. It is also diffi-
cult to compare rare vs. common motifs, since rare ones may
be missed simply because of variation among proteins in the
definition of effector proteins, while common motifs may be
dominated by false positives that obscure the biologically relevant
signals.

DISCUSSION
We believe that SLiMs are one potential class of new antimicro-
bial substances for the development of antimicrobial peptides and
drugs. While they may lack the potency of antimicrobial pep-
tides that damage the bacterial membrane, they may have other
benefits. In particular, those that mimic peptide components
of uniquely prokaryotic motifs are likely to have less off-target
effects. The value of developing such therapeutic approaches
depends on the range of species likely to be affected by the
peptide therapeutic. While targeting eukaryotic peptides mim-
icked by prokaryote effector proteins provides a potential line of
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FIGURE 3 | Heat map visualization of the distribution of known

virulence motifs amongst effector proteins from a selection of 60

organisms represented in the MvirDB. Columns: The bacterial species
name with the total number of UPCs indicated in brackets at the start of
the description. Purple, High GC Gram+ bacteria; Blue, Firmicutes; Yellow,
a-proteobacteria; Light Brown, b-proteobacteria; Dark Brown,

e-proteobacteria; Green, g-proteobacteria (non-enterobacteria); Red,
g-proteobacteria (enterobacteria); Black, others (CFB). Rows: The motif
regular expression with the total number of incidences in UPCs across all
60 organisms indicated in brackets at the start of the description. Color
scale: The logarithm of the normalized N_UPC returned from the
SLiMSearch results.
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FIGURE 4 | Phylogenetic tree of the 60 organisms used to assess the

distribution of prokaryotic protein motifs in Figures 2, 3. Purple, High GC
Gram+ bacteria; Blue, Firmicutes; Yellow, a-proteobacteria; Light Brown,

b-proteobacteria; Dark Brown, e-proteobacteria; Green, g-proteobacteria
(non-enterobacteria); Red, g-proteobacteria (enterobacteria); Black, others
(CFB).
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attack, the evolutionary plasticity of such motifs in both bacte-
ria (Figure 3) and in hosts (Neduva and Russell, 2005) suggest
that bacteria can rapidly evolve alternative effector strategies to
replace one targeted host component with another. Nevertheless,
where such drugs are developed for other indications in treating
non-infectious disease, they may also have an impact on bacte-
rial pathogenesis and would certainly be worth investigating. This
problem of evolutionary evasion by pathogens is also relevant,
however, to many adhesion motifs. In order for peptide therapeu-
tics to be more robust in the face of rapid evolution of pathogen
resistance, they may need to target fundamental components of
bacterial biology. Targeting aspects of the central machinery of
bacterial Type IV secretion systems may be a good compromise
between targeting a component that is central to pathogenicity,
while not affecting the biology of advantageous bacteria in the
host. In this respect, the G[AG].$ motif identified in this study is
a potential candidate worthy of further investigation. Some clues
as to the function of this motif may be provided by the pattern
of evolution. Presumably this motif has evolved in multiple com-
ponents of the Type IV secretion system because of a selection
pressure for these proteins to interact with some common fac-
tor. Identifying the common interaction partners of these proteins
may help in pinpointing its potential functional role. In targeting
such pathogenicity systems, the benefit of focusing on recurrent
motifs is that they may be small enough interaction surfaces to be
feasibly targeted by peptidomimetics, and important enough that
it is difficult for the bacterial system to evolve resistance (Baron
and Coombes, 2007; Paschos et al., 2011).

The shortlist of predicted motifs that we have generated pro-
vides a resource for researchers interested in the mechanisms of
action of virulence factor proteins across a diverse range of bac-
terial species. The limitations of the list are well-illustrated by
the fact that the motif discovery failed to rediscover the many
mimicked eukaryotic motifs. This reflects not only the fact that
some motifs have not evolved multiple times in unrelated pro-
teins, but also the limitations in the datasets provided to the
SLiMFinder approach. Ideally, datasets should have less than
a 100 proteins which have clearly identified similar functions.
The challenge is to group proteins according to function effi-
ciently, since the annotation of protein function is highly variable,
and frequently relies on computational predictions arising from
homology rather than from direct experimentation. The bigger
challenge is how to test and manipulate these motifs to provide
insights into the mechanisms of action and to determine potential
means of interrupting pathogenic processes. While mutagenesis
studies can identify the key features of motif function, target-
ing of a motif may also be progressed by experimental use of
bioactive peptides. However, identification of more potent pep-
tidomimetic compounds that resemble such motifs will ideally
need 3D models of the peptide regions in complex with their
target interactors.

What, then, is the contribution that computational screening
of novel motifs may play in the discovery of novel antimicrobial
peptides? Firstly, it clearly will not identify all known motifs, since
patterns of recurrent evolution or of strong sequence conserva-
tion are not seen for all antimicrobial peptides. Computational
screens will also have some “false positives” in two senses: firstly,

statistical false positives where the motif arose simply by chance;
and secondly, biological false positives where the motif that func-
tions effectively within its biological context of a larger protein
and that protein’s complexes, but it will not function as a stand-
alone synthetic peptide. This could reflect a lack of strong affinity
for its targets or it could reflect an inability to be delivered to
the appropriate context in the first place. Nevertheless, compu-
tational screens have the advantage that they can be performed
on high throughput sequencing of organisms about which little
else is known and for which biological screening by mutagene-
sis is painstaking or impossible. The advantage of computational
prioritization is that it identifies a subset of peptides which are
enriched for biologically active peptides. Clearly, the strategy we
adopted here is only detecting a small fraction of known motifs, in
part because of the stringent correction for statistical mismatches
that could be false positives, but also because many motifs do
not recur in known unrelated proteins that fall into the same
functional class. Discovery for bioactive peptides could follow
other strategies, including searches for evolutionary conservation
(Davey et al., 2012a). However, pathogenicity factors frequently
evolve rapidly, and so conservation may not be an effective sig-
nal. Bioactivity predictors based on biophysical properties within
the peptide sequences are an alternative strategy (Dosztanyi et al.,
2009; Thomas et al., 2010; Mooney et al., 2012, 2013). These
have the disadvantage that there is no straightforward statistical
approach available to determine likely false discovery rates, but
are very valuable in prioritizing a list of peptides for further exper-
imental characterization. Other computational approaches focus
more on particular classes of antimicrobial peptides with a strong
therapeutic potential, including ribosomal and non-ribosomal
cyclic peptides (Prieto et al., 2012; Kedarisetti et al., 2014).
While their computational screening methods have the benefit
that they focus more strongly on peptides in classes of known
therapeutic benefit, we believe that the computational screening
approach we identified here complements their approaches, and
widens the diversity of peptides for experimental investigation
and validation.
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